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Abstract
In Markov Decision Process (MDP) models of sequential
decision-making, it is common practice to account for tem-
poral discounting by incorporating a constant discount factor.
While the effectiveness of fixed-rate discounting in various
Reinforcement Learning (RL) settings is well-established, the
efficiency of this scheme has been questioned in recent stud-
ies. Another notable shortcoming of fixed-rate discounting
stems from abstracting away the experiential information of
the agent, which is shown to be a significant component of
delay discounting in human cognition. To address this is-
sue, we propose State-wise Adaptive Discounting from Ex-
perience (SADE) as a novel adaptive discounting scheme for
RL agents. SADE leverages the experiential observations of
state values in episodic trajectories to iteratively adjust state-
specific discount rates. We report experimental evaluations
of SADE in Q-learning agents, which demonstrate signifi-
cant enhancement of sample complexity and convergence rate
compared to fixed-rate discounting.

Introduction
In Markov Decision Processes (MDPs), the effect of de-
layed rewards on utilities is often captured by exponential
discounting with a fixed discount rate γ. However, recent
studies question the efficacy of this approach. For instance,
((Naik et al. 2019)) establishes that in Reinforcement Learn-
ing environments with continuous tasks, the stationary for-
mulation of discounted MDPs is not an optimization prob-
lem. Inspired by the evidence supporting the adaptive dy-
namics of temporal discounting in human cognition (e.g.,
(Kurth-Nelson, Bickel, and Redish 2012)), we propose a
novel scheme for State-Wise Adaptive Discounting from Ex-
perience (SADE), that leverages experience to iteratively ad-
just state-specific discount rates. Furthermore, we experi-
mentally investigate the performance of SADE in compari-
son to commonly used fixed-rate approaches, namely: expo-
nential discounting and hyperbolic discounting ((Fedus et al.
2019)).

Preliminaries
Accounting for delayed consequences is one of the defin-
ing features of sequential decision-making problems mod-
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eled as MDPs, since the objective of such problems is to
maximize Return G, defined as the sum of all rewards re-
ceived during an episode. MDPs are defined by the tuple
MDP = (S,A,R, P, γ), where S is the set of reachable
states, A is the set of permissible actions, R is the mapping
of transitions to immediate numeric rewards, P represents
the transition probabilities (i.e., dynamics), and γ ∈ [0, 1] is
the discount factor, which is traditionally assumed to be a
fixed value for all states and timesteps. In such formulations
of MDPs, the return at timestep ti, denoted by Gti , is the
expected discounted sum of rewards. Formally,

Gt = E[
∞∑
k=0

γkRt+k+1] (1)

Where k is the number of timesteps from t, Rt is the reward
at timestep t and γ is the discount factor. The discount rate
measures the present utility of future rewards: the reward
received k timesteps in the future is adjusted by a factor of
γk−1 to account for preference over sooner rewards.

State-wise Adaptive Discounting from
Experience (SADE)

Considering the settings of episodic RL, SADE replaces the
classical discount factor γ with a discount function λ : S →
[0, 1], which provides a mapping of states to a correspond-
ing discount rate. SADE hypothesizes that in the evolution
of trajectories in consecutive episodes, the expected return
increases for states that are more likely to be on or close to
optimal trajectories. Accordingly, SADE increases the dis-
count rate of states with increasing estimate of returns, and
decreases the discount rate for vice versa.

In SADE, each state s is mapped to a specific discount
factor, denoted by λs. Assume that at timestep t, expected
return is GSADE

t and the expected return of the immediate
next state is GSADE

t+1 then, GSADE
t = Rt + λs ∗ GSADE

t+1 .
The proposed discount function incorporates the past expe-
riences of agent by adjusting the discount rate of each state
based on the time-steps needed to achieve it. Accordingly,
the SADE-discounted return of an agent within the finite
horizon k is given by:

GSADE(st) = Rt +
∞∑
k=1

(
k∏
1

λk(s))Rt+k+1 (2)
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Where Rt is the reward at timestep t, and k is number of
steps in the horizon.

Initially every λs are assigned a value ∈ (0, 1). After each
episode during training, values of λs for all s ∈ trajectory
will be adjusted with a predefined adjustment rate accord-
ing to SADE hypothesis. To prevent λ(s) from becoming
zero during the adjustment, we also define the values 0 <
λmin < λmax < 1 where λmin and λmax are the lowest and
highest permissible values of λ(s) for all states, respectively.
After passing initial value of λin (λmin ≤ λin ≤ λmax),
The adjustment procedure is presented in Algorithm 1.

Algorithm 1 SADE Algorithm
input : adjustment rate a%, upper and lower bounds

λmin,λmax and Initial λin
λs ← λin∀s ∈ S
After Each Episode for ∀s ∈ Trajectory do

if GSADE(st−1) < GSADE(st) then
λst ← min(λmax, a%− increased− λst)

end
if GSADE(st−1) > GSADE(st) then

λst ← max(λmin, a%− decreased− λst)
end

end

Experimental Analysis
Grid World is a rectangular grid setting with m × n cells
as states, where an RL agent starting with (x,y) state aims
to traverse through to reach goal state (i, j) while avoiding
blocked grids (i.e., walls). where x, i < m and y, j < n.
For comparison of SADE with fixed discounting, we imple-
mented the standard Q-learning algorithms in Grid World
using both schemes. In these experiments, we took λmin =
0.3, λmax = 0.7 and λin = 0.5. Our experiments were
performed in 6 different dimensions of the Grid World ,
each trained for up to 1400 iterations or until it convergence.
As illustrated in Fig. 1, in each setting, the agent is trained
with exponential discounting, hyperbolic discounting ((Fe-
dus et al. 2019)) and SADE. To measure the performance of
each scheme, we measure the training efficiency defined as:

Efficiency =

∑
R

No. Of Visited States In Training
(3)

We also experimented with 14 different adjustment ratesin
each of the settings, and recorded the count of winners (i.e.,
agents with higher total scores), as demonstrated in Fig. 2.

It is observed that SADE outperforms both fixed-
discounting schemes (i.e., exponential and hyperbolic) if the
appropriate range of λs and adjustment rates are selected.

Discussion and Conclusion
As the experimental results demonstrate, SADE outperforms
fixed exponential and hyperbolic discounting by at least a
factor of 2 not only in terms of speed of convergence, but
also in reward to episode-length ratio. As all 3 versions of

Figure 1: Comparison of Efficiency between Exponential,
Hyperbolic and SADE Discounting

Figure 2: Comparison of performance between SADE with
various adjustment rates and Exponential and Hyperbolic
discounting

Q-learning agents have identical settings except for their dis-
counting schemes, our experiments strongly support the ad-
vantages of adaptive discounting over the classical fixed dis-
counting.
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