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Abstract
In deep learning models, most of network architectures are
designed artificially and empirically. Although adding new
structures such as convolution kernels is widely used, there
are few methods to design new structures and mathemati-
cal tools to evaluate feature representation capabilities of new
structures. Inspired by ensemble learning, we propose an in-
terpretable regularization method named Minimize Mutual
Information Method(MMIM), which minimize the general-
ization error by minimizing the mutual information of hidden
neurons and provides ideas for designing new structures. The
experimental results also verify the effectiveness of our pro-
posed MMIM.

Introduction
Deep learning has become the mainstream framework for
various tasks. It increases the number of network layers or
designs of new network structures on the basis of classic
DNN, CNN and other networks to improve the performance
of the model. Convolutional neural networks, from LeNet
to ResNet, increase the number of layers from 5 to 100,
and add convolution kernels, dropout and other structures.
Although the result of such complex networks are usually
better, the network is a black box. On the one hand, it is
difficult to understand what features neural networks learn
when the number of layers increases. The work in this area
includes visual interpretability mainly involved in visualiza-
tion of hidden units, etc. On the other hand, it lacks methods
to design a new structure and mathematical tools to evaluate
feature representation capabilities of networks.

In response to the second problem above, Zhang et al. pro-
pose a generalization error upper bound of neural networks
from an information-theoretic perspective. They introduce a
new definition of redundancy to describe the diversity of hid-
den units by mutual information and only use two mutual in-
formation in the upper bound as a regularizer. However, this
does not sufficiently minimize the entire upper bound, only
a part of it. We propose a two-step regularization method
named Minimize Mutual Information Method(MMIM) that
minimizes the entire upper bound instead of a part. Our ex-
periments minimize the mutual information by Mutual In-
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formation Neural Estimation (Belghazi et al. 2018) to up-
date network parameters. In addition, inspired by ensemble
learning, we interpret why MMIM performs better.

The main idea of ensemble learning is to construct a
strong learner which has better generalization performance
through multiple weak learners. Weak learners are also
called base learners. Obviously, base learners learn basic
features, and strong learners learn overall features. For ex-
ample, when using a convolutional neural network for image
recognition tasks, different convolution kernels can be re-
garded as different base learners, and they may learn texture
and contour of pictures. The strong learner, the final output
of the neural network, learns what the picture is, which may
be a dog or a cat.

We use mutual information to measure the independence
between hidden layer neurons. Mutual information can help
us explain our method from the perspective of ensemble
learning. If we regard the neurons in a hidden layer of a
neural network as a group of base learners, we hope that
the more independent the neurons, the better. Therefore they
learn different feature instead of learning same things. Ob-
viously, the smaller the mutual information of random vari-
ables, the more independent they are.

Method
First, let’s introduce Zhang’s work. Let P(·) denote either
a probability mass function (PMF), or a probability density
function(PDF), depending on the random variable having ei-
ther discrete or continuous support. The symbol EX(·) de-
notes expectation of the random object within the brackets
with respect to the subscript random variable X .

For a stochastic variable X, its entropy is defined as

H(X) = −EX(logP (X)) (1)

The multivariate mutual information is defined as

I (X1, X2, . . . , Xn) = E(X1,X2,...,Xn)

(
log

P (X1, . . . , Xn)

P (X1) , . . . , P (Xn)

)
(2)

g is the error on the new sample. Zhang et al. derived a
generalization error upper bound of the neural network

g ≤
√
2σ2

√√√√ I (h1(X), . . . , hm(X))− I (h1(X), . . . , hm(X) | Y )

−
∑n

i=1 I (Y, hi(X)) +H(Y ) +
H(W )−H(Sy,W |ĥ(Sx))

n

(3)
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Let X be the input space and Y be the label space. X ∈ X .
Y ∈ Y . The layer before the output layer is called the sub-
high-level layer. The output of neurons in the sub-high-level
layer is hi(X) and there are m hidden units. σ is a subgaus-
sian constant of loss function. n is the size of dataset S. W
are the neural network parameters from the sub-high-level
layer to the output layer. Sx = {X1, X2, . . . , Xn} , Sy =

{Y1, Y2, . . . , Yn} .ĥ = (h1, h2, . . . , hm) .
Zhang et al. propose a regularization method named re-

dundancy decrease method(RDM) by mimimizing total loss

Tloss = Eloss +λ(I (h1(X), . . . , hm(X))− I (h1(X), . . . , hm(X) | Y ))

(4)

where Eloss is the premier loss function of neural networks
without any regularizer.

Note that they only used two terms in the Equation 3 and
do not consider the influence of other terms. Our method
takes each item into consideration. Since

H(W )−H
(
Sy,W | ĥ (Sx)

)
≤ H(W )−H

(
W | ĥ (Sx)

)
= I

(
W, ĥ (Sx)

) (5)

and the generalization error upper bound changes to

g ≤
√
2σ2

√√√√ I (h1(X), . . . , hm(X))− I (h1(X), . . . , hm(X) | Y )

−
∑n

i=1 I (Y, hi(X)) +H(Y ) +
I(W,ĥ(Sx))

n

(6)

We decompose terms of the second radical in g into
C1, C2, C3.

C1 =I (h1(X), . . . , hm(X))− I (h1(X), . . . , hm(X) | Y )

−
n∑

i=1

I (Y, hi(X))

C2 =H(Y )

C3 =
I
(
W, ĥ (Sx)

)
n

(7)

Our method is as follows. C2 is constant. So we minimize
g by minimizing C1 and C3. C1 are not related to W. C3

is related to W. Therefore, firstly we minimize C1. Then fix
the network parameters before the sub-high-level layer, and
minimize C3, which minimize g. We call the above algo-
rithm Mimimize Mutual Information Method(MMIM).

We use MINE to estimate mutual information in C1 and
C3. MINE can be used to minimiaze mutual information and
is linearly scalable in dimensionality as well as in sample
size, trainable through back-prop, and strongly consistent.

Experimental Results
To verify the performance of MMIM, we test our method
on fully connected neural networks and convolutional neural
networks on the Fashion-MINST dataset.

We train two networks with different hyperparameter set-
tings and apply MMIM to original network structures. In ad-
dition, we test the performance on networks by usingC4, C5

and C6 as a regularizer separately.

C4 = I (h1(X), . . . , hm(X))

C5 = −I (h1(X), . . . , hm(X) | Y )

C6 = −
n∑

i=1

I (Y, hi(X))

(8)

Methods Accuracy Methods Accuracy
DNN 89.15 CNN 90.89

DNN with MMIM 90.82 CNN with MMIM 92.39
DNN with C4 90.1 CNN with C4 91.85
DNN with C5 89.64 CNN with C5 91.3
DNN with C6 89.37 CNN with C6 91.06

Table 1: Results of different methods on two networks.

We can see results from Table 1. We call fully connected
networks as DNN in the table. From the table, we can see
that MMIM or using C4, C5 or C6 as a regularizer is effec-
tive. We think there are three reasons from the perspective
of ensemble learning why MMIM is effective.

1. Regard neurons in the sub-high-level layer as base learn-
ers. The more independent the output of base learners, the
better the generalization performance. According to C4,
the smaller the mutual information, the more independent
the output of base learners.

2. The smaller C5 means that the network learn the over-
all feature representation that more relevant to Y, which
means the smaller generalization error upper bound.

3. The smallerC6 is, the more relavant between the output of
base learners and Y, which leads to smaller upper bound.

The first point ensures the diversity of base learners. The
second point and the third point ensure that each base learner
covers some samples, that is, learning ability. For example,
convolution kernels can be regarded as some base learners
that are independent of each other and have learning ability.
In the future, we should design new network structures based
on C4, C5 and C6 with both diversity and learning ability.

Conclusions
In this paper, we propose a new interpretable regularization
method MMIM with a better performance. Our results sug-
gest that designing a new network structure should take into
account both diversity and learning ability, and quantify fea-
ture representation capabilities of the network through our
equations. In the future, we will focus on why and how net-
work structures ensure their diversity and learning ability.
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