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Abstract

A common task in data analysis is to compute an approxi-
mate embedding of the data in a low dimensional subspace.
Robust Subspace Recovery computes the embedding by ig-
noring a fraction of the data considered as outliers. Its per-
formance can be evaluated by how accurate the inliers are
represented. We propose a new algorithm that outperforms
the current state of the art when the data is dominated by out-
liers. The main idea is to rank each point by evaluating the
change in the global PCA error when that point is considered
as an outlier. We show that this lookahead procedure can be
implemented efficiently by centered rank-one modifications.

Introduction
Principal Component Analysis (PCA) is a common tech-
nique for embedding data in a low dimensional subspace.
Unfortunately, it is known to be sensitive to outliers. Ro-
bust algorithms identify the outliers and produce embedding
only for the inliers. For recent surveys see (Vaswani and
Narayanamurthy 2018; Lerman and Maunu 2018). The first
reviews techniques that consider outliers as partially corrupt
coordinates, while the second reviews techniques that con-
sider each point as either an outlier or an inlier. We follow
the same interpretation of outliers as in the second reference.

Typically the term “outliers” refers to a small portion of
the data that does not follow the same pattern as most of the
data. We consider situations where a significant portion of
the data is irrelevant. The algorithmic challenges of dealing
with a large fraction of outliers is quite different from han-
dling a small fraction of outliers. The first is running time,
which may significantly increase with the number of out-
liers. The second is accuracy. If there are many outliers they
may mask the statistical properties of the inliers. Indeed,
evaluating the performance of previously proposed robust
subspace recovery algorithms we observed significant dete-
rioration in accuracy when increasing the outlier fraction.

Our Approach
A fundamental part in our approach is to assign a value
to each point, indicating how likely it is to be an outlier.
We compute this as the error of the entire PCA model “if”
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that point becomes an outlier. Our technical contribution is
showing that these lookahead errors can be computed effi-
ciently by a rank-one modification of centered matrices. Our
main contributions are: 1. An algorithm for fast eigenvalue
updates of centered matrices. 2. A Robust Subspace Recov-
ery algorithm based on 1.

Top View of the Algorithm
Let X=(x1, . . . , xn) be the data matrix of n data points and
each point is of dimensionm. Let r be the desired number of
principal components. Let O1, O2 be two outlier subsets of
same size: |O1|=|O2|. Suppose we have access to a function
f such that: if f(O1, X, r)>f(O2, X, r), then O1 “appears
to be” a better outlier set than O2. Using f we propose an
iterative algorithm for computing k outliers.

Given an outlier set O, a single iteration that adds c out-
liers to O is given in Algorithm 1. We also use a “k-means”
style algorithm as a subroutine described in Algorithm 2.
Iterating these algorithms gives the entire algorithm in Al-
gorithm 3. The value of α affects both the accuracy and the
running time of the algorithm. Increasing αwould in general
result in a reduction in accuracy and a faster running time.

Algorithm 1: O = Update(O,α, k,X, r)
Input: Data X , a set O of j outliers,

user defined parameters α, k, r.
1. For each i=1...n−j, create the child Oi by adding
the inlier xi to O. Compute fi=f(Oi, X, r).

2. Compute c from α by: c = α(k − j − 1) + 1.
Output: the union of the c children of largest fi.

Algorithm 2: O = KM(O,X, r)
Input: Data X , r, a set O of j outliers.
Initialization: Set current error value to infinity.
Repeat:
1. Set old error value to the value of current error.
2. Compute V, µ from rank-r PCA of the inliers.
3. ei = ||(xi−µ)− V V T (xi−µ)||2 for all xi.
4. Replace O by the j columns with the largest ei.
5. Set current error value =

∑
xi 6∈O ei.

Until: current error value = old error value.
Output: the new set O of j outliers.
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Algorithm 3: The Lookahead Algorithm
Input: 1 ≤ k ≤ n, 0 ≤ α ≤ 1, X , r.
Output: A subset O of k outliers.
Initialization: O = ∅ (the empty set).
Iterate: while |O|<k do:
O=Update(O,α, k,X, r), O=KM(O,X, r).

The Lookahead Error
Given O and r, the PCA error is defined as the summation
of reconstruction errors for all inliers:

ei = ‖(xi−µ)−V V T (xi−µ)‖2, E(X,O) =
∑
i6∈O

ei (1)

where µ= 1
n−|O|

∑
i6∈O xi. It is known (e.g., (Jolliffe 2002))

that V has as its columns the r dominant eigenvectors of the
covariance matrixC of inliers. Our results rely on a relation-
ship between the PCA error and the eigenvalues of C.
Theorem 1: (The proof will be given in the full paper.)

E(X,O) =
m∑

i=r+1

λi(C) = trace{C} −
r∑

j=1

λj(C)

The lookahead error of a point xi is the model error E as
defined in (1) of Oi, obtained by adding xi to the current
selected outlier set O: fi = f(Oi, X, r) = E(X,Oi).

Rank-one Modification
A direct evaluation of the lookahead error in the “Update”
step requires that a PCA algorithm is applied to each inlier.
This is impractical. We show how to calculate lookahead er-
rors efficiently. Let p be the number of inliers at the parent
level. Let Z be the m×p matrix of the inliers and µ be the
column mean of Z. Then the scaled covariance matrix is:
C = Zc(Zc)T , where Zc=Z−µ1T . Suppose a child is con-
structed by removing xi from Z. Let Zi be the m×(p − 1)
matrix of the remaining inliers and µi be the mean of Zi.
The following Theorem shows that Ci = Zc

i (Z
c
i )

T can be
obtained by a rank-one modification of C. To the best of our
knowledge this was not previously observed.
Theorem 2: (The proof will be given in the full paper.)
Define: yi = xi−µ, and β = p

p−1 . Then: Ci = C − βyiyTi .
Corollary: trace{Ci} = trace{C} − β‖yi‖2.
The rank-one modification can be used to obtain fast cal-
culations of eigenvalues. See, e.g., (Bunch, Nielsen, and
Sorensen 1978).

Experimental Results
We follow closely the experimental methodology used in the
recent survey of the field (Lerman and Maunu 2018). It uses
two artificial datasets (Haystack and Blurryface) to com-
pare algorithms. We experimented on these datasets with the
same error criteria. We refer to our lookahead algorithm with
the initials LA followed by the α value. Thus, LA05 means
the algorithm with α=0.5. For details of the other algorithms
see the survey. We added “Truth” as the ground truth result,
and “PCA” for the result of (non-robust) standard PCA.
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Figure 1: Box plots for the Haystack. Outlier fraction: 0.6.
Outlier mean: 1. Time was averaged over 10 runs.
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Figure 2: Error versus outlier fraction. Outlier mean: 0.
Left: Haystack. Right: Blurryface.

The results show a huge decline in the accuracy of current
state-of-the-art algorithms on the nonzero mean data shown
in Figure 1. The vertical axis corresponds to speed, and the
horizontal axis to accuracy. We observe that the lookahead
variants are very accurate, but none of the other algorithms
are. In fact, many have similar accuracy to the (non robust)
standard PCA.

Plots of the accuracy as a function of the outlier fraction
are shown in Figure 2. For Blurryface, LA05 and LA1 are
distinctly better than the other algorithms until 80% after
that the accuracy of LA1 deteriorates.
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