
FACS: Fast Code-based Algorithm for Coalition Structure Generation
(Student Abstract)

Redha Taguelmimt1, Samir Aknine1, Djamila Boukredera2, Narayan Changder3

1 LIRIS, Lyon 1 University, France
2 Laboratory of Applied Mathematics, Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria

3 National Institute of Technology Durgapur, India
redha.taguelmimt@gmail.com, samir.aknine@univ-lyon1.fr, boukredera@hotmail.com, narayan.changder@gmail.com

Abstract

In this paper, we propose a new algorithm for the Coalition
Structure Generation (CSG) problem that can be run with
more than 28 agents while using a complete set of coali-
tions as input. The current state-of-the-art limit for exact al-
gorithms to solve the CSG problem within a reasonable time
is 27 agents. Our algorithm uses a novel representation of the
search space and a new code-based search technique. We pro-
pose an effective heuristic search method to efficiently ex-
plore the space of coalition structures using our code-based
technique and show that our method outperforms existing
state-of-the-art algorithms by multiple orders of magnitude.

CSG Problem Formulation and Preliminaries
In this paper, we propose a new algorithm for the CSG prob-
lem that can be run with more than 28 agents while using
a complete set of coalitions as input. ODP-IP (Michalak
et al. 2016) and ODSS (Changder et al. 2020) algorithms
are very efficient for solving many problem instances. How-
ever, in case time is limited, an approach that gives good
enough quality solutions, within a reasonable time, is more
valuable (Wu and Ramchurn 2020). In the CSG problem,
given a set A = {a1, a2, ..., an} of n agents, any sub-
set of A is called a coalition. A coalition structure CS =
{C1, C2, ..., Ck} is a partition of A, where k = |CS|, ∀Ci ∈
CS , Ci 6= ∅,

⋃k
i=1 Ci = A and for all i, j ∈ {1, 2, ..., k}

where i 6= j, Ci ∩ Cj = ∅. The set of all coalition struc-
tures is Π(A). The value V (CS) of a coalition structure CS
is assessed as the sum of the values v(C) of its composing
coalitions: V (CS) =

∑
C∈CS v(C). The optimal solution of

the CSG problem is the highest valued coalition structure
CS∗ ∈ Π(A), where CS∗ = arg maxCS∈Π(A) V (CS).

Novel Search Space Representation
First, let us recall the principle of the integer parti-
tion (IP) graph (Rahwan et al. 2007), which divides the
space of all the coalition structures into subspaces that
are each represented by an integer partition of n. For in-
stance, for n = 4 agents, the set of integer partitions is:
{[4], [1, 3], [2, 2], [1, 1, 2], [1, 1, 1, 1]}. In the IP graph, each
partitionP of n is represented by a node, whereP represents

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

[1, 1, 1, 1]

[1, 1, 2]

[1, 3] [2, 2]

[4] Π[4] : {{a1, a2, a3, a4}}

Π[2,2] :{{a1, a2}, {a3, a4}}
{{a1, a3}, {a2, a4}}
{{a1, a4}, {a2, a3}}

Π[1,3] :{{a1}, {a2, a3, a4}}
{{a2}, {a1, a3, a4}}
{{a3}, {a1, a2, a4}}
{{a4}, {a1, a2, a3}}

Π[1,1,2] : {{a1}, {a2}, {a3, a4}}
{{a1}, {a3}, {a2, a4}}
{{a1}, {a4}, {a2, a3}}

{{a2}, {a3}, {a1, a4}}
{{a2}, {a4}, {a1, a3}}
{{a3}, {a4}, {a1, a2}}

,
,
,

Π[1,1,1,1] :{{a1}, {a2}, {a3}, {a4}}

Figure 1: A four-agent example of the IP graph.

a set of coalition structures in which the size of the coali-
tions matches the parts of P (see Figure 1). For example, the
node [2,2] represents all coalition structures that contain two
coalitions of size 2. In our coalition structure representation,
we codify each coalition Ci with a code (i.e., an index-based
code). As a result, each agent of a given coalition Ci will be
encoded with a number i, which corresponds to the index of
the coalition to which it belongs. By doing so, each coali-
tion structure is defined as a vector of size n. Each position
p in the vector identifies the agent p/p=1..n while the code
in position p of the vector identifies the coalition to which
the agent p belongs. Hence, a coalition structure will be en-
coded by a set of xi/i=1..n ≥ 0 numbers. For example, letA
be a set of n = 10 agents. Consider the coalition structure
CS = {{a3}, {a2, a4, a6}, {a1, a5, a7, a8, a9, a10}} con-
taining three coalitions: C0 = {a3} , C1 = {a2, a4, a6} and
C2 = {a1, a5, a7, a8, a9, a10}. C0, C1 and C2 are encoded
with codes 0, 1 and 2, respectively. CS will be encoded
by the vector of codes [x1 x2 ... x10], where xi/i=1..10 =
j ⇔ ai ∈ Cj . CS is encoded here with the vector of
codes [2 1 0 1 2 1 2 2 2 2], where the number of dif-
ferent codes equals the number of coalitions forming the
corresponding coalition structure and the size of the vec-
tor equals n. Any permutation of these numbers provides
a different coalition structure. For example, the vector of
codes [0 1 1 1 2 2 2 2 2 2] represents the coalition struc-
ture CS = {{a1}, {a2, a3, a4}, {a5, a6, a7, a8, a9, a10}}.

Generating all the combinations of these numbers guar-
antees exploration of all the coalition structures represented
by each node. Let us now generalize this representation for
the entire IP graph. For each node in level l, we have l

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15907

coalitions, we then codify each coalition Ci with a code
i ∈ {0, 1, .., l−1}. Then, to represent with a vector of codes
each coalition structure CS of this node, each coalition Ci of
size k is depicted by k times the number (code) i.

Code-based Coalition Structure Generation
FACS1 partially enumerates the coalition structures of each
node of the IP graph. Specifically, we start by generating all
the integer partitions of n and searching each node of the
IP graph. Once all the possible partitions of the integer n are
generated, the FACS algorithm proceeds in two main phases.

First, FACS partially generates the permutations between
the codes of the vectors. Consider the node [1, 3, 6]. To
enumerate the coalition structures represented by this node,
we use the codes 0, 1 and 2. Rather than computing all
the combinations of the 10 numbers (which is not effi-
cient due to the high computational load), FACS calculates
the combinations of the three codes, {0, 1, 2} that repre-
sent the coalitions. We then obtain these combinations: ϑ =
{{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, {2, 1, 0}}.
For each combination in ϑ, FACS calculates the first coali-
tion structure of the combination called initialization. Each
code in the combination will then be repeated as many times
as the size of the coalition it represents. This means that in
each initialization, the agents are assigned to the coalitions
by respecting the order of these coalitions in the combina-
tion. For example, the initialization of {0, 1, 2} is [0 1 1 1
2 2 2 2 2 2] because the coalition encoded with 0 is of size
1, the coalition encoded with 1 is of size 3 and the coalition
encoded with 2 is of size 6. The different initializations thus
obtained will then be used in the second phase to generate
the different permutations.

Second, FACS generates the permutations of the codes
composing the vectors obtained at the end of phase 1. Each
newly generated vector of codes after each permutation will
then be associated with a different coalition structure. For
each initialization vector performed in phase 1, FACS com-
putes the permutations as follows. First, FACS starts with
the first agent (first number) and permutes its code with each
of the codes of the other agents. Then, FACS moves to the
next agent and applies the same permutation operations to
its code. This process is then iterated until FACS reaches the
last code of the concerned vector.

Empirical Evaluation
We evaluated the performance of our algorithm on several
value distributions given different numbers of agents (20 to
30) and compared it with CSG-UCT (Wu and Ramchurn
2020) and ODP-IP. For CSG-UCT and ODP-IP, we used the
codes provided by the authors. Figure 2 illustrates the execu-
tion time of FACS, ODP-IP and CSG-UCT on different dis-
tributions. For each point in Figure 2, we conducted an aver-
age of 50 tests. We tested more than 12 distributions, but we
show the results for only some of them. As we can see, for all
these value distributions, our algorithm outperforms all the
considered algorithms. For example, with 25 agents for the

1FACS stands for Fast Agorithm for Coalition Structure gener-
ation

20 22 24 26
10−1

100

101

102

Number of agents

Ti
m

e
(in

se
co

nd
s)

(a) Normal

FACS
ODP-IP

CSG-UCT

20 22 24 26
10−1

100

101

102

Number of agents

Ti
m

e
(in

se
co

nd
s)

(b) Uniform

.

.

.

20 22 24 26
10−1

101

103

Number of agents

Ti
m

e
(in

se
co

nd
s)

(c) Agent-based Normal

FACS
ODP-IP

CSG-UCT

99 100
0

10
400
700

1000
2000

Solution quality (%)

Ti
m

e
(in

m
ill

is
ec

on
ds

)

(d) Agent-based Normal

FACS
CSG-UCT

90 95 100
0

10
400
700

1000
2000

Solution quality (%)

Ti
m

e
(in

m
ill

is
ec

on
ds

)

(e) Uniform

.

.

99 100
0

10
400
700

1000
2000

Solution quality (%)

Ti
m

e
(in

m
ill

is
ec

on
ds

)

(f) Normal

FACS
CSG-UCT

Figure 2: The first figures a, b, c depict the time performance
in seconds of FACS, ODP-IP and CSG-UCT for a number
of agents between 20 and 26. The figures d, e, f depict the
time taken to produce a certain solution quality by FACS
and CSG-UCT for 30 agents. Here, solution quality is calcu-
lated by using the formula: v(CS)

max(v(CS+
FACS),v(CS+

CSG−UCT))
,

where v(CS) is the current best solution of the algorithm.

Normal distribution, the ratio of ODP-IP time and our algo-
rithm time is 75.9, meaning that our algorithm takes 0.013%
of the time taken by ODP-IP to provide a good quality so-
lution (99%). FACS can be run with more than 28 agents.
To demonstrate this, we conducted experiments on several
value distributions and showed the solution quality of FACS
and CSG-UCT given 30 agents. As no exact algorithm is run
for these sets of agents, the solution quality shown in Figure
2 is calculated as follows: v(CS)

max(v(CS+
FACS),v(CS+

CSG−UCT))
,

where v(CS+
FACS) and v(CS+

CSG−UCT) are the values of
the best solutions provided by FACS and CSG-UCT, respec-
tively. As we can see, FACS yields good quality solutions
when run with more than 28 agents, compared to those pro-
vided by CSG-UCT. Moreover, for several distributions, so-
lution quality exceeds 99% after about 10 milliseconds.

References
Changder, N.; Aknine, S.; Ramchurn, S. D.; and Dutta, A.
2020. ODSS: Efficient Hybridization for Optimal Coalition
Structure Generation. In Proc. of AAAI, 7079–7086.
Michalak, T.; Rahwan, T.; Elkind, E.; Wooldridge, M.; and
Jennings, N. R. 2016. A hybrid exact algorithm for complete
set partitioning. Artificial Intelligence 230: 14–50.
Rahwan, T.; Ramchurn, S. D.; Dang, V. D.; and Jennings,
N. R. 2007. Near-Optimal Anytime Coalition Structure Gen-
eration. In Proc. of IJCAI, volume 7, 2365–2371.
Wu, F.; and Ramchurn, S. D. 2020. Monte-Carlo Tree
Search for Scalable Coalition Formation. In Proc. of IJCAI,
407–413.

15908

