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Abstract

We implement a quantum binary classifier where given a
dataset of pairs of training inputs and target outputs our goal
is to predict the output of a new input. The script is based
in a hybrid scheme inspired in an existing PennyLane’s vari-
ational classifier and to encode the classical data we resort
to PennyLane’s amplitude encoding embedding template. We
use the quantum binary classifier applied to the well known
Iris dataset and to a car traffic dataset. Our results show that
the quantum approach is capable of performing the task using
as few as 2 qubits. Accuracies are similar to other quantum
machine learning research studies, and as good as the ones
produced by classical classifiers.

Introduction
Near-term quantum devices involve random processes and
are built to transform the input data following a unitary op-
eration, gate operations and measurements and are described
by a quantum circuit. A classical bit has a state of either 0
or 1 and is the smallest quantity of non-probabilistic infor-
mation. The simplest possible quantum system (2-state sys-
tem) can hold precisely one bit of information. However, the
qubit (unit of quantum information) has two possible states
|0〉 and |1〉 defined as a finite-dimensional quantum system
that forms a computational basis - two basis states composed
by two distinct quantum states that the qubit can be in phys-
ically. Fault-tolerant quantum computers use few physical
qubits to encode each logical qubit. These qubits are also
used for error correction where the logical information is
encoded through the relationship of the qubits, also known
as entanglement. In this work we focus on a quantum binary
classifier that resembles a multilayer perceptron (Tiwari and
Melucci 2019; Schuld et al. 2018; Schuld and F. 2018).

Quantum Supervised Binary Classification
The inference is performed with the model by initializing
a state preparation circuit encoding the input into the am-
plitudes of the quantum device, resorting to a model cir-
cuit Uθ with trained parameters. The optimizer uses a loss
function and initial parameters. Let X be the inputs and Y
the outputs (actual instance labels). Given a dataset D =
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Algorithm 1 Circuit node

1: procedure CIRCUIT(weights,features)
2: AMPLITUDEEMBEDDING(features, qubits =

[0, 1], pad = 0.0, normalized)
3: for w in weights do
4: LAYER(w)
5: end for
6: return Expectation value Pauli Z
7: end procedure

Algorithm 2 Layer function

1: procedure LAYER(w)
2: Rot(w[0, 0], w[0, 1], w[0, 2], qubits = 0)
3: Rot(w[1, 0], w[1, 1], w[1, 2], qubits = 1)
4: CNOT (qubits = [0, 1])
5: end procedure

(x1, y1), ..., (xM , yM ) with pairs of training inputs xm ∈ X
and target outputs ym ∈ Y for m = 1, ...,M , our goal is to
predict the output y ∈ Y of a new input x ∈ X . The binary
classification task on an N-dimensional real input space can
be then defined using X = IRN and Y = {0, 1}.

Amplitude Encoding and Quantum Classifier

The embeddings that we can found in PennyLane1 are tem-
plates to encode features into a quantum state. The ampli-
tude encoding, encodes 2n features into the amplitude vec-
tor of n qubits with padded dimension 2n, Algorithm 1. Our
circuit layer (Algorithm 2) consists of rotations on one qubit
as well as CNOTs that entangle the qubit with its neighbour,
according the n features of the dataset D.

Inference is performed with the model f(x, θ) = y by
initialising a state preparation circuit SX encoding the input
X into the amplitudes of the quantum device, resorting to a
model circuit Uθ (parametrised unitary matrix) with classifi-
cation parameters θ (trained by a variational scheme), and a
single qubit measurement which gives the probability of the
model predicting 0 or 1.

1https://pennylane.ai/
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Gradient-Descent Optimiser

The optimiser uses a loss function and initial parameters,
and through differentiation performs the gradient descent
in order to choose a set of optimal hyperparameters for
the learning algorithm. We resort to the well known Adam
gradient-descent optimizer with adaptive learning rate, first
and second moment x(t+1) = x(t) − η(t+1) a(t+1)

√
b(t+1)+ε

, with
the update rules,

a(t+1) =
β1a

(t) + (1− β1)∇f(x(t))
(1− β1)

,

b(t+1) =
β2b

(t) + (1− β2)(∇f(x(t)))�2

(1− β2)
,

η(t+1) = η(t)
√
(1− β2)
(1− β1)

where (∇f(x(t−1)))�2 refers to the element-wise square
operation (each element in the gradient is multiplied by it-
self) and at start the first and second moment are zero. The
loss function was built using the standard square loss that
measures the distance between target labels and model pre-
dictions. The model optimises the weights such that the loss
function is minimised.

Materials and Methods

In order to model a car traffic problem we search for a data
set in an open source repository. The Traffic dataset was
retrieved from the R package (LPCM), package to analyse
traffic patterns. It concerns a fundamental diagram with ob-
servations of speed and flow from 9th of July 2007, 9am,
to 10th of July 2007, 10pm, on Lane 5 of the Californian
Freeway SR57-N, VDS number 1202263. The original car
traffic dataset has a total of 444 samples. The features in
the dataset are: Lane5Flow, Lane5Speed, Lane5Density. The
output variable was created (Lane5congestion) based in two
classes resorting to the fundamental diagram relationship
q − v where we calculate the critical point v(qmax) (max
flow) to obtain the critical speed and assign 1 to values be-
low the critical speed (meaning congestion) and -1, other-
wise.

The Iris dataset was used in R.A. Fisher’s 1936 paper. The
original dataset has a total of 150 samples of three species
of plants (50 of each). We create two splitted datasets (Iris
A and Iris B), each one with 100 instances, and based in two
classes. The features in the data sets are: SepalLength, Sepa-
lWidth, PetalLength, PetalWidth, and Species is the target
variable. As is well known, class setosa distinguishes very
well from the other two classes, so we should expect almost
perfect accuracy results for Iris A since we only take the first
two classes. Our goal is to map the proposed binary classifier
onto quantum simulator, analyse whether the variation in the
number of qubits has impact on the results obtained for ac-
curacy in classification. Also, if the results obtained are very
unlike if we use a simulator or a real quantum device.

Experiments

(a) Data points (b) Distribution (c) Loss/Accuracy
Figure 1: Iris A

(a) Data points (b) Distribution (c) Loss/Accuracy
Figure 2: Traffic

Figures 1 and 2 show data distribution and classification re-
sults for the Iris A and Traffic, namely, loss and accuracy,
retrieved from the quantum simulator, considering the train-
ing and validation sets. We performed a comparison with
a classical neural network which also resulted in accuracy
equals to 1 for the Iris A dataset and 0.982 for Traffic.

The circuit parameters were adjusted to maximise the
classification accuracy and minimise the loss. As such, a
gradient descent is performed to adjust the circuit to min-
imise the loss function. The loss function is estimated by
iteratively running the model to compare estimated predic-
tions with respect to the ground truth (known values of y).

Conclusion and Perspectives
In this work, we resort to amplitude encoding where we use
the pad argument for automated padding. In the future, we
will explore other encoding classical data methods, e.g., an-
gle which encodes N features into the rotation angles of n
qubits where N ≤ n, variational/trained or higher order
embedding (Lloyd et al. 2020; Havlı́ček et al. 2019).
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