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Abstract

Compiling the votes of a subelectorate consists of storing the
votes of a subset of voters in a compressed form, such that
the winners can still be determined when additional votes are
included. This leads to the notion of compilation complexity,
which has already been investigated for single-winner voting
rules. We perform a compilation complexity analysis of sev-
eral common multi-winner voting rules.

Introduction
Voting is a common way by which a group of agents make
joint decisions. However, in many contexts, the votes are not
obtained at the same time or at the same place. In such sce-
narios, we might want to preprocess the information con-
tained in the votes that are already available. Compiling a
set of votes means storing the information contained in these
votes using as little space as possible in such a way that when
the rest of the votes are known, the winner(s) can be deter-
mined. The compilation complexity of a voting rule is the
worst-case size of the most succinct compilation. Compila-
tion has two advantages: first, the votes of the subelectorate
can be stored succinctly; second, the storage of the infor-
mation contained in the ballots of the subelectorate can be
done in an anonymous, yet verifiable manner. Compilation
of single-winner rules has been studied. Here we initiate the
compilation of multi-winner voting rules.

Multi-Winner Voting Rules
Let A be a set of candidates, with |A| = m. Let [m] =
{1, . . . ,m}. Let PA be a set of votes, which depending on
the rule used is either the set of all linear orders over A
(ranked ballots) or the set of subsets of A (approval ballots).
A (partial or complete) profile P is a collection (V1, . . . , Vn)
of n votes, for some n; it is therefore a member of ∪n≥1PnA.

Let Sk(A) be the set of all subsets of A of size k, called
(k-)committees. A (resolute) multi-winner voting rule is a
function f that maps any profile P and any k ∈ [m] to a
k-committee f(P, k) ∈ Sk(A).

We present below the multi-winner rules, further de-
scribed in (Faliszewski et al. 2017; Lackner and Skowron
2018) which we will need in the rest of the paper. All of
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them except one (sequential plurality) are defined via scores:
given a profile P = (V1, . . . , Vn), a score s(S, P ) is asso-
ciated with each committee S ∈ Sk(A), and the winning
committee is the one that maximizes s(S, P ). If P contains
a single vote V then we note s(S, V ) instead of s(S, P ).
The multi-winner rule that selects a committee maximizing
s is denoted by fs. In case we have a tie between two or
more committees, there is a tie-breaking mechanism (usu-
ally a priority relation over committees) that will output a
single committee.

We start with these five rules whose input is a profile con-
sisting of ranked ballots. The first four are defined via scores,
and for these four, the score of a k-committee is the sum of
the scores s(S, Vi) it gets from all votes V1, . . . , Vn.
• Single Non Transferable Vote (SNTV): s(S, Vi) = 1 if
S contains the top candidate of Vi; else s(S, Vi) = 0.

• Bloc: s(S, Vi) is the number of candidates in S ranked in
the first k positions of Vi.

• k−Borda: s(S, Vi) is the sum of the Borda scores of the
candidates in S; the Borda score of a candidate ranked in
position j in a vote is m− j.

• Chamberlin-Courant (β−CC): s(S, Vi) is the Borda
score w.r.t. Vi of the best candidate in S according to Vi.

• Sequential Plurality (SeqPlu): We proceed in rounds.
Initially, S = ∅. The candidate ranked first by the largest
number of votes is added to S, removed from the pro-
file, and the procedure is repeated k times (breaking ties
if necessary). The output is S.
SNTV, Bloc, k−Borda and β−CC are all specific cases

of the larger family of committee scoring rules (Skowron,
Faliszewski, and Slinko 2019), for which (1) s(S, P ) =∑
Vi∈P s(S, Vi), and (2) s(S, Vi) is a function of the vec-

tor containing the ranks of the elements of S in Vi. More-
over, SNTV, Bloc and k−Borda are decomposable commit-
tee scoring rules: there is a score function over candidates
s(x, V ) such that s(S, V ) =

∑
x∈S s(x, V ).

For the next two rules, the input is a profile consisting of
approval ballots.
• Approval Voting (AV): The winning committee consists

of the k candidates that are approved most frequently.
• Approval-based Chamberlin-Courant (α−CC):
s(S, P ) is the number of votes in P that intersect S.
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Compilation Functions, Compilation
Complexity

Compilation complexity was introduced by (Chevaleyre
et al. 2009) for single-winner voting rules. It was further
studied in (Xia and Conitzer 2010). Its extension to multi-
winner rules is straightforward so we define it directly in the
latter context.

Let f be a multi-winner voting rule. Let k ∈ [m] be fixed.
Consider two profiles P,Q ∈ PnA, that contain the votes of
subelectorates composed of n voters. We say that P and Q
are f -equivalent, which we denote by P ∼f Q, if for each
t ≥ 0 and each profile T ∈ PtA, we have f(P ∪ T, k) =
f(Q ∪ T, k). (Clearly, ∼f is an equivalence relation.)

A function σ : PnA× [m]→ {0, 1}∗ is a compilation func-
tion for f if there exists a function ρ : {0, 1}∗×P∗A× [m]→
A such that for all P ∈ PnA, t ≥ 0 and T ∈ PtA, we
have ρ(σ(P ), T, k) = f(P ∪ T, k). We denote by size(σ)
the number of bits needed to represent σ(P ). The compila-
tion complexity of f , denoted C(f), is the minimum value
of size(σ) over all compilation functions for f . A useful
lemma (established for single-winner rules and easily gener-
alizable to multi-winner rules) is that C(f) is the logarithm
of the number of equivalence classes for ∼f .

Results for Ranking-Based Rules
Let k ∈ [m] be fixed. It is easy to derive a sufficient condi-
tion for all committee scoring rules:

Lemma 1. Let fs be a committee scoring rule based on
scoring function s. If for all committees S ∈ Sk(A) we have
s(S, P ) = s(S,Q) then P ∼fs Q.

A weaker sufficient condition holds for decomposable
rules. For P = (V1, . . . , Vn) let s(x, P ) =

∑
i s(x, Vi).

Lemma 2. Let f ′s be a decomposable committee scoring
rule based on score function s. If for every candidate x ∈ A
we have s(x, P ) = s(x,Q) then P ∼f ′

s
Q.

This applies to SNTV, k-Borda and Bloc. Moreover, for
these three rules, this condition is also necessary.

Proposition 1. Let f be SNTV, k-Borda or Bloc and let s be
the corresponding score function. Then P ∼f Q if and only
if for every x ∈ A we have s(x, P ) = s(x,Q).

Finally, for β−CC, the general sufficient condition for
committee scoring rules is necessary.

Proposition 2. P ∼β−CC Q if and only if for all S ∈
Sk(A) , sβ−CC(S, P ) = sβ−CC(S,Q).

As a corollary of Propositions 1 and 2 we get:

Corollary 1.

1. C(SNTV ) = Θ
(
m log

(
1 + n

m

)
+ n log

(
1 + m

n

))
2. C(k −Borda) = Θ(m log nm)

3. Let k̂ = min(k,m− k). Then

C(Bloc) = Θ
(
m log

(
1 + nk̂

m

)
+ nk̂ log

(
1 + m

nk̂

))
4. log(n(m− k)) ≤ C(β − CC) ≤

(
m
k

)
log(n(m− k))

For each vote V let V j be the top-j truncation of V ,
where j ∈ [k]. For example, if V = (abcd) then V 2 =
(ab). Given a profile P , for each ordered sequence of
j candidates θj , consider N(P, θj) to be the number of
votes V in P such that V j = θj . For instance, if P =
(abcd, abdc, acbd, dabc, dabc) and k = 2, then N(P, ab) =
N(P, da) = 2, N(P, ac) = 1, and N(P, θk) = 0 for
θk 6= ab, ac, da.
Proposition 3. P ∼SeqP lu Q if and only if N(P, θk) =
N(Q, θk) for each ordered sequence of k candidates θk.
Corollary 2. C(SeqP lu)

= Θ
(

m!
(m−k)! log

(
1 + n(m−k)!

m!

)
+ n log

(
1 + m!

n(m−k)!

))
Results for Approval-Based Rules

Let sAV (a, P ) be the approval score of a with respect to P .
Proposition 4. P ∼AV Q if and only if for all a, b ∈
A, sAV (a, P )− sAV (b, P ) = sAV (a,Q)− sAV (b,Q)

Corollary 3. C(fAV ) = Θ(m log n)

Let sα−CC(S, P ) be the α-CC score of a k-committee S
with the ballot set P and W be the winning committee.
Proposition 5. P ∼α−CC Q holds if and only if for all S ∈
Sk(A), sα−CC(W,P )− sα−CC(S, P ) = sα−CC(W,Q)−
sα−CC(S,Q).
Corollary 4. C(α− CC) = O

((
m
k

)
log n

)
and

C(α− CC) = Ω
(⌊
m
k

⌋
log n

)
The reason why the lower and upper bounds for α−CC

and β−CC do not match is that it is not easy to count the
number of functions from Sk(A) to N that correspond to
sα−CC(·, P ) or sβ−CC(·, P ) for some profile P , because of
the dependencies between the scores of the different com-
mittees. We are working on obtaining better bounds.

Future Work
We have obtained results for Gehrlein-stable rules,
θ−winning Sets and Proportional Approval Voting (PAV),
which are not presented here due to lack of space. We are
also working on Single Transferable Vote and Monroe.
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