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Abstract

In this paper, we focus on the Coalition Structure Genera-
tion (CSG) problem, which involves finding exhaustive and
disjoint partitions of agents such that the efficiency of the
entire system is optimized. We propose an efficient hybrid
algorithm for optimal coalition structure generation called
BOSS1. When compared to the state-of-the-art, BOSS is
shown to perform better by up to 33.63% on benchmark in-
puts. The maximum time gain by BOSS is 3392 seconds for
27 agents.

The BOSS Algorithm
The ODP-IP (Michalak et al. 2016) and the ODSS
(Changder et al. 2020) algorithms are the fastest exact al-
gorithms for the CSG problem. Both ODP-IP and ODSS
struggle to cope with specific types of inputs which un-
dermine their hybridization approach. This paper proposes
a novel bi-directional search algorithm for the CSG prob-
lem. Given a set of n agents A = {a1, a2, . . . , an}, C =
{a1, a2, . . . , al} is a coalition of agents, where l ≤ n. Let
v be a characteristic function, v assigns a real value v(C) to
each coalition C. A coalition structure CS over A is a par-
titioning of A into {C1, C2, . . . , Ck}, where: 1) k = |CS|.
2) Ci 6= ∅ , i ∈ {1, 2, . . . , k}. 3) Ci ∩ Cj = ∅, for all

i 6= j. 4)
k⋃

i=1

Ci = A. The value of any CS is defined

by v(CS) =
∑
Ci∈CS(v(Ci)). The optimal solution of the

CSG problem is a coalition structure CS∗ ∈ ΠA, where ΠA

denotes the set of all the coalition structures over A. Thus,
CS∗ = arg maxCS∈ΠAv(CS).

In BOSS, IDP (Rahwan and Jennings 2008) and IP (Rah-
wan et al. 2009) run in parallel. BOSS minimizes the du-
plicated operations performed by ODP-IP and ODSS by di-
viding the whole search space of CSG into b 2n

3 c disjoint sets
Di, ∀i ∈ {1, 2, . . . , b 2n

3 c} of subspaces using the properties
P1, P2, P3 observed on the integer partitions of an integer n.
A partition of n is an increasing sequence of positive inte-
gers p1, p2, . . . , pk the sum of which is n. Each pi is called
a part of the partition.
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1BOSS stands for Bi-directional, Overlapping minimization
and Subspace Shrinking

P1: the highest part of a partition can be greater than dn2 e.
P2: the highest part or the subset-sum of an integer parti-

tion can be equal to dn2 e. Given an integer partition, the
subset-sum problem is to find a subset of parts that are
selected from the parts of the given integer partition, the
sum of which is a given number.

P3: the subset-sum of a partition is not equal to dn2 e and the
highest part of the integer partition is less than dn2 e.

The subspaces following the properties P1 and P2 are dis-
joint with the subspaces following P3. All the subspaces
in the sets Di, ∀i ∈ {1, 2, . . . dn2 e − 1} follow the prop-
erty P1. The set Ddn2 e follows P2, while the sets Di, ∀i ∈
{dn2 e+ 1, . . . , b 2n

3 c} follow P3. First, BOSS considers each
subspace SP in the CSG. If the largest integer in SP is
k > dn2 e, then SP is added to the set Dn−k. In our ex-
ample (cf. Figure 1), the subspaces [1, 9], [1, 2, 7] are added
to D1, and D3 respectively. On the other hand, if k = dn2 e
or k < dn2 e and subset-sum(SP) = dn2 e, then SP is added
to Ddn2 e, where subset-sum checks whether there is a sub-
set X of the given set SP , X ⊆ SP and the parts of X
sum to dn2 e. For example, given ten agents, the subspaces
[1, 1, 4, 4] and [1, 1, 3, 5] are added to D5 because subset-
sum ([1, 1, 4, 4]) = 1 + 4 = 5, and dn2 e = 5 is in [1, 1, 3, 5].
Next, BOSS processes the rest of the subspaces in the inte-
ger partition graph and creates the set Ddn2 e+1, then the set
Ddn2 e+2 and so on up to the set Db 2n3 c as follows. For each
dn2 e < i <= b 2n

3 c, if subset-sum(SP) = i, then SP is
added to the set Di.

BOSS deals with the two following cases:
Case 1: IP finishes searching all the subspaces in the set Di,
and IDP finishes evaluating all the coalitions of size i − 1,
where i ≤ b 2n

3 c. Hence, all the subspaces have been ex-
plored. BOSS stops and returns the optimal solution.
Case 2: Both IP and IDP are searching the subspaces in a set
Di, where i ≤ b 2n

3 c. In this case, there are still duplicated
operations in the setDi carried out by IP and IDP. As soon as
one of them (IP or IDP) finishes, BOSS returns the optimal
solution.

Empirical Evaluation
We empirically evaluated the BOSS algorithm and bench-
marked it against the state-of-the-art (Michalak et al. 2016;
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D1 D2 D3 D4 D5 D6

[10]

[3, 7]

[2, 2, 6]

[1, 1, 4, 4]

[1, 1, 2, 2, 4]

[1, 1, 1, 1, 3, 3]

[1, 1, 1, 1, 1, 2, 3]

[2, 8][1, 9] [4, 6] [5, 5]

[1, 3, 6] [1, 4, 5] [2, 3, 5] [2, 4, 4][1, 2, 7][1, 1, 8] [3, 3, 4]

[1, 2, 3, 4][2, 2, 3, 3] [1, 2, 2, 5] [1, 1, 3, 5][1, 1, 2, 6][1, 1, 1, 7] [2, 2, 2, 4] [1, 3, 3, 3]

[1, 1, 1, 2, 5] [1, 2, 2, 2, 3] [2, 2, 2, 2, 2][1, 1, 1, 3, 4][1, 1, 2, 3, 3][1, 1, 1, 1, 6]

[1, 1, 1, 2, 2, 3] [1, 1, 2, 2, 2, 2][1, 1, 1, 1, 2, 4][1, 1, 1, 1, 1, 5]

[1, 1, 1, 1, 2, 2, 2][1, 1, 1, 1, 1, 1, 4]

[1, 1, 1, 1, 1, 1, 1, 3] [1, 1, 1, 1, 1, 1, 2, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Figure 1: Subspaces of CSG given n = 10 agents. Each
shaded area indicates the subspaces in the set Di, ∀i ∈
{1, 2, . . . b 2n

3 c}. In BOSS, IDP searches the subspaces in
an increasing order starting from D1, then D2 and so on,
whereas IP searches in a decreasing order starting from
Db 2n3 c = D6, then Db 2n3 c−1 = D5, and so on.

2020) on several value distributions. Given 27 agents, with
SVA-β, F, agent-based uniform, raleigh, agent-based nor-
mal, and modified uniform distributions, the time gain with
BOSS is 3392, 37, 33, 7, 6, and 6 seconds, respectively, com-
pared to the minimum time taken by ODP-IP and ODSS.
With these distributions, BOSS performs well (cf. Table 1).
In the case of beta, and weibull distributions, the perfor-
mance of ODP-IP, ODSS, and BOSS is the same. It is
clear that the performance of BOSS is better for the most
challenging input distributions. Using the subspace division

Time in seconds
Distribution ODP-IP ODSS BOSS ∆t
SVA-β 10700 10087 6695 3392
F 682 227 190 37
ABU 2780 1455 1422 33
R 407 355 348 7
ABN 3075 1573 1567 6
MU 1244 102 96 6
Beta 1 1 1 0
Weibull 3 3 3 0

Table 1: Evaluating the effectiveness of ODP-IP, ODSS,
and BOSS. The table shows the runtime (in seconds) for
27 agents. ∆t represents min(ODP-IP time, ODSS time)-
BOSS time in seconds.

F P P < α F > Fc

ABU 61.79 4.8e−07 Yes Yes
ABN 175.32 1.31e−09 Yes Yes
SVA-β 82.29 9.8e−08 Yes Yes
MU 5.05 0.02 Yes Yes
Beta 0.90 0.431 No No
Weibull 0.04 0.96 No No
R 0.28 0.75 No No
F 2.55 0.11 No No

Table 2: Important ANOVA information for 8 different data
distributions with α error level set to 0.05.

technique in BOSS, IDP and IP always work on disjoint sub-
spaces except for the meeting point. To determine whether
there are any statistically significant differences between the
means of the runtime of ODP-IP, ODSS, and BOSS, we per-
form one-way analysis of variance (ANOVA) (Green and
Salkind 2011). Our null hypothesis H0: There is no statisti-
cally significant difference between the runtimes of ODP-IP,
ODSS, and BOSS. Table 2 shows the ANOVA information
for each distribution. We only report three values obtained
from the ANOVA test: P , F , and Fc. P < 0.05 and F > Fc

indicate that there is a very strong evidence against H0. (1)
For the first four distributions (cf. Table 2), there is a sig-
nificant difference among the means of the runtime of the
algorithms at the α error level 0.05. The results suggest us
to reject the null hypothesis (H0). (2) For other distributions,
we failed to reject the null hypothesis H0. This means that
for these distributions, we have no evidence to suggest that
the runtime means are different. As a conclusion, we observe
that the improvement obtained on ODP-IP and ODSS is of
the order of 33.63% for some distributions.
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