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Abstract

My research activity focuses on the integration of acting,
learning and planning. The main objective is to build a sys-
tem that is capable to learn how to plan and act in an un-
known, dynamic and complex environment. The only knowl-
edge the agent has about the environment is provided by a set
of sensor observations which returns continuous measures on
the environment. On the learning side, I’m interested in de-
veloping algorithms that allow an artificial agent to learn an
abstract model of the dynamics of the environment (either an
explicit model like a deterministic finite state machine or a
model described in a language to express planning domains).
The type of abstract model is specified by means of discrete
state variables rather than continuous variables representing
agent observations. In addition to learning the abstract model,
I’m interested in learning probabilistic (generative) models
that connects the abstract model with the perceptions of the
agents. On the acting and planning side, the artificial agent
does not rely on a prior set of execution traces, it rather de-
cides online how to act by means of state-of-art planners.
With its own experience, it enriches the planner knowledge,
as well as the learned model of the environment. On the learn-
ing part, the agent applies techniques for dynamic probabilis-
tic clustering of perceptions in a set of abstract states, neural
network for learning transition models, and inductive reason-
ing for learning action model descriptions. Notice that this is
different from Reinforcement Learning where the focus is to
learn a policy for achieving a goal, we are interested in learn-
ing an abstract model of the environment. We do not have a
reward function that encodes the goal to be reached. Indeed in
this work an agent does not necessarily need to reach a goal.

A large amount of work on learning planning domains fo-
cuses on learning action schema from data. Gregory and
Cresswell (2016) and Cresswell, McCluskey, and West
(2013) propose learning general action schema in a struc-
tured language starting from plans containing grounded ap-
plication instances of actions. Mourão et al. (2012) learn ac-
tion schemata from noisy and incomplete observations. Each
observation is a sequence of alternating actions and set of
fluent expressions. Zhuo and Yang (2014) learn an action
schema on a target domain by transfer learning from a set of
source domains and by observing partial plan traces. Aineto,
Jiménez, and Onaindia (2018) propose a method for learn-
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ing action models from observations of plan executions that
compiles the learning task into a classical planning task. In
all these approaches, learning is performed at the symbolic
level, and mappings to perceptions in a continuous environ-
ment are not considered. This is also the case of the work
by Bonet and Geffner (2019), which provides a framework
for learning first-order symbolic representations from plain
graphs. Indeed, plain graphs are state transition systems, and
there is no mapping to perceptions in a continuous space,
which is what sensors actually provide.

All the above mentioned works do not tackle the prob-
lem of finding an abstraction of the continuous environment
(with continuous states) into a finite set of states. Building
this abstraction (encoded in the perception function) is one
of the key contributions of our work. There are however a set
of approaches that learn a discrete planning domain from a
continous environment. Causal InfoGAN learns discrete or
continuous models from high dimensional sequential obser-
vations (Kurutach et al. 2018). This approach fixes a priori
the size of the discrete domain model. Differently from our
approach, their goal is to generate an execution trace in the
high dimensional space. LatPlan takes in input pairs of high
dimensional raw data (e.g., images) corresponding to transi-
tions (Asai 2019). LatPlan is an offline approach, while our
approach is online and works also in dynamic environments.
Konidaris, Kaelbling, and Lozano-Pérez (2018) construct a
STRIPS model by learning the boolean atoms of the precon-
ditions and effects of actions. However, their basic assump-
tion is that a continuous model of the world is available, and
that it is possible to know a fixed mapping from the con-
tinuous model to the deterministic planning domain. We do
not rely on such assumptions. Moreover, in our approach,
the mapping through perception functions is learned dy-
namically. Finally, in the work by Konidaris, Kaelbling, and
Lozano-Pérez (2018), the mapping is set-theoretic, while we
allow for a probabilistic mapping through a probability den-
sity function. Most of the work on learning and planning in
Partially Observable Markov Decision Processes (POMDP)
– see, e.g., (Ross et al. 2011; Katt et al. 2017) – focuses
on learning transitions and policies by assuming a fixed and
given set of states and a given reward function. Some of
them drop the assumption of a bounded state space, see, e.g.,
(Doshi-Velez 2009). However, none of these works uses an
intensional representation to guide the search for learning an
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extensional representation of the planning domain.
The proposed research plan consists in:

• Learn an extensional representation of a discrete deter-
ministic planning domain from observations in a continu-
ous space navigated by the agent actions. This is achieved
through the use of a perception function providing the
likelihood of a real-value observation being in a given
state of the planning domain after executing an action.
The agent learns an extensional representation of the do-
main (the set of states, the transitions from states to states
caused by actions) and the perception function on-line,
while it acts. I have integrated and tested the framework
presented in (Serafini and Traverso 2019) with three plan-
ning domains (Logistics, Grid and Rovers).

• Guide agent exploration of the environment and provide a
practical approach that can scale up to large state spaces
through the exploitation of a draft intensional (PDDL-
based) model of the planning domain. The intensional
model is draft in the sense that the action preconditions
can be incomplete. When an action execution fails, the
intensional model is updated in order to prevent the ac-
tion from being performed again in the future. I have inte-
grated the framework proposed in (Serafini and Traverso
2019) with the use of a draft intensional model and tested
the method to update the intensional model suggested by
A.E.Gerevini.

• Learn an intensional representation of a discrete determin-
istic planning domain, i.e., learn an action model. Particu-
larly, the focus is on learning the action preconditions by
online execution. Together with L.Serafini, I developed a
method to learn action preconditions by online execution
and tested it in three planning domains.

We wrote an article summarizing the work done so far, it
has been presented in the ICAPS-KEPS 2020 workshop.

The future works of the proposed research plan are:

• Perception clustering in abstract states: the objective is
to learn the perception function which can effectively ab-
stract away irrelevant details of the environment and clus-
tering continuous perceptions into a finite set of signifi-
cantly different states. Possible approaches are: incremen-
tal clustering, Gaussian clustering and autoencoders.

• Learning abstract state structure: the objective is to learn
the right set of state variables and the set of values of their
domains, that allow to represent the set of abstract states
provided by the perception clustering.

• Action Model Learning: the objective is to learn a gen-
erative model which is capable to predict the perceptions
after the execution of the action (without executing it) and
use this model to learn an explicit representation of the
abstract transition model. Some possible approaches are:
inductive learning, abstraction.
This thesis will contribute to the integration of acting,

learning and planning in dynamic and uncertain environ-
ments. Particularly, it will propose a method to map contin-
uous perception variables into discrete state variables. This
will enable the reasoning at an abstract level. An abstract

TODAY

Research plan timeline

Learn extensional model
Guide agent exploration

Preconditions learning
Perceptions clustering

Learn abstract states
Action model learning

Figure 1: Brief timeline of the proposed research plan

and discrete representation of the agent state will enable the
learning of an intensional representation of the environment.
Finally the intensional representation will be used by the
agent to accomplish its task.
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