
A Highly-Parameterized Ensemble to Play Gin Rummy

Masayuki Nagai, Kavya Shrivastava, Kien Ta, Steven Bogaerts, Chad Byers
DePauw University

Greencastle, IN 46135, U.S.A.
{masayukinagai 2022, kshrivastava 2023, kienta 2022, stevenbogaerts, cbyers}@depauw.edu

Abstract

This paper describes the design and training of a computer
Gin Rummy player. The system includes three main compo-
nents to make decisions about drawing cards, discarding, and
ending the game, with numerous parameters controlling be-
havior. In particular, an ensemble approach is explored in the
discard decision. Finally, three sets of parameter tuning and
performance experiments are analyzed.

1 Introduction
Gin Rummy is a two-player card game played over a se-
ries of rounds. A round begins with each player receiving
10 cards from a standard deck. One additional card is placed
face-up to form the initial discard pile, with the remaining
placed face-down to form the stock pile. Players alternate
turns, drawing a card from either pile and then discarding a
card face-up in the discard pile, attempting to form melds in
their hand. A meld can be either a rank meld with 3+ cards
of the same rank, or a run meld with 3+ cards of the same
suit and consecutive ranks (with aces low). Unmelded cards
are called deadwood, with a cost equivalent to rank, with
aces worth 1 point and face cards worth 10. A player with
10 or fewer deadwood points can knock by revealing their
melds to the opponent. The total deadwood points of un-
melded cards in each player’s hand is calculated. The player
with the least deadwood wins the round, with significant ad-
ditional bonuses for having 0 deadwood (going gin) or hav-
ing less deadwood than a knocking player (an undercut). For
more details about rules, see (McLeod 2020).

This paper describes a computer player for Gin Rummy.
We begin with a discussion of the system’s tracking of the
state of the round. Next, the measures of obtainability and
meldability are presented. We then describe the system com-
ponents, and finally three sets of parameter tuning and per-
formance experiments.

2 Tracking the State of a Round
Let self represent the computer player and opp the opponent.
In this paper, opp is always the same: the simple player that

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only draws a card when it can immediately form a meld, con-
siders only the minimization of deadwood in forming melds,
and knocks as soon as possible.

Building upon the work in (Mark 2017), self tracks each
card’s current state in the round from its own perspective.
(Recall in Section 1 that a “game” consists of multiple
“rounds”.) For cards known by self to be held by a player,
the state includes which player holds the card, where it came
from (initial deal, stock, or discard pile), and whether opp
also knows about the card. For discarded cards, the state in-
cludes which is on top, which are irretrievable, and which
player discarded the card.

The remaining cards are in the unknown state. In that
case we also estimate the probability p(c) that c is in the
stock pile. Since an unknown card must be either in stock
or in opp’s hand, the probability that c is in opp’s hand is
1 − p(c). As the round progresses, adjustments to p(c) for
various c are made by observing opp’s actions.

Let St and Ot represent the set of cards in stock and the
set of cards in opp’s hand that self has not seen, respectively,
at turn t. The set Ut of cards in the unknown state can be
formed by Ut = St ∪ Ot. At the start of a round, |S0| = 31
and |U0| = 41, since self only knows about its own hand and
the single card in the discard pile. We therefore initialize the
probabilities: ∀c ∈ U0, p(c) = |S0|/|U0| = 31/41.

For a given card c, define an adjacent card as one of the
same rank, or 1-2 ranks away of the same suit. Let Ac be the
set of cards adjacent to c that have state unknown. When
self observes certain actions involving c, adjacency updates
are made to the estimated probabilities of the cards in Ac.

If opp draws face-up card c, opp likely already has some
of the cards in Ac. Self therefore decreases the estimated
probability that the cards in Ac are in stock, corresponding
to an increased expectation that they are in opp’s hand:

∀a ∈ Ac, p(a)← p(a)− p(a) · β
for a parameter1 β in (0, 1).

Similarly, opp may show disinterest in a card c, either by
declining to draw it when face-up, or by discarding it. In
either case, we may expect opp to be less likely to have cards
in Ac. Thus we increase our estimate that they are in stock:

∀a ∈ Ac, p(a)← p(a) + (1− p(a)) · β
1β is actually a temporary placeholder for a more expressive

parameterization (Section 5).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15614

In addition to the adjacency updates defined above, we
also employ a baseline update based on the number of
unknown cards. The baseline update continues the pattern
introduced in the initialization of p(c) for each c ∈ U0 as
described above. At each turn t, the estimated probabilities
of remaining unknown cards are updated by calculating the
change in probability (∆t) of a card being in stock:

∆t =
|St|
|Ut|
− |St−1|
|Ut−1|

=
|St|

|St|+ |Ot|
− |St−1|
|St−1|+ |Ot−1|

∀c ∈ Ut, p(c)← p(c) + ∆t (1)
There are multiple circumstances in which |St| and/or

|Ot| will change from turn t−1. ∆t is negative when self or
opp draws from stock. ∆t is positive when opp draws from
the discard pile and discards a previously unknown card.
Finally, ∆t is zero when self draws from the discard pile or
opp draws from the discard pile and discards a known card.
The adjacency and baseline updates are refined and experi-
mentally validated in Section 5.1.

3 Obtainability and Meldability
We now define two measures that use state and probability
information: obtainability and meldability.

3.1 Obtainability
We define the obtainability ob(c) of a card c as an estimated
likelihood that self can obtain c. The value ob(c) is com-
puted according to c’s state. If c is currently in self’s hand,
then ob(c) = 1, with one exception described in Section 3.2.
If c is the top card of the discard pile, then self can obtain
the card, but at the cost of discarding another, and so we dis-
tinguish from cards in-hand with ob(c) = 0.99. If opp ob-
tained c from the discard pile, then it seems less likely that
the card will be discarded later, and so we use a low value
ob(c) = αm0 with parameter αm0 in [0, 0.5] to be tuned in
Section 5. If c is buried in the discard pile, it cannot be ob-
tained, and so ob(c) = 0. Finally, if c has state unknown,
then self may be able to obtain c, provided that the card is
in stock and not in opp’s hand. Therefore, ob(c) is a frac-
tion of the probability of the card being in stock. We define
ob(c) = αm1 · p(c), with parameter αm1 in (0, 1) represent-
ing this fraction, to be tuned in Section 5.

3.2 Meldability
We define the overall meldability m(c) of a card c as the
estimated likelihood that c will eventually be part of a meld
in self’s hand. Meldability is calculated using obtainability
for rank and run melds, as defined below.

The rank meldability mrank(c) of a card c estimates the
likelihood of c being in a rank meld. If c is already in a rank
meld, then let mrank(c) = 100, a comparatively high value.
Otherwise, mrank(c) is calculated according to the obtain-
ability of cards with the same rank as c. Given a card c1 and
cards c2, c3, and c4 with the same rank, we define:

mrank(c1) = ob(c2)ob(c3) + ob(c3)ob(c4) + ob(c2)ob(c4)

This makes an analogy to probability theory, since c1 may be
combined with any two of {c2, c3, c4} to form a rank meld.

The run meldability mrun(c) is defined similarly. Given
a card c and same-suit adjacent cards ca, cb, cd, and ce in
increasing rank order, we define:

mrun(c) = ob(ca)ob(cb) + ob(cb)ob(cd) + ob(cd)ob(ce)

Recall that if c is currently in self’s hand, then ob(c) = 1.
However, if c is in a meld already, then we set ob(c) = 0
in the meldability calculations of any other potential melds,
since c is not available for multiple melds simultaneously.

We can now define the overall meldability of c:

m(c) = αm2 ·mrank(c) + αm3 ·mrun(c)

with parameter weights αm2 and αm3 summing to 1, to be
tuned in Section 5.

4 Three Components of a Player
In Gin Rummy, a player has three decisions to make at each
turn: (1) whether to draw from the stock or discard pile, (2)
which card to discard, and (3) whether to knock. For each de-
cision we describe below a parameterized decider. We can
therefore define a computer player as a given set of parame-
ter values controlling these three deciders.

4.1 Deciding From Which Pile to Draw
In a turn, the player chooses whether to draw the face-up
card cu from the discard pile or the face-down card from the
stock pile. Let d(c) represent the deadwood value of a card
c, and let ch be the unmelded card in the player’s hand that
maximizes d(·). The player might use one of the following
criteria to choose to draw cu: (1) cu can immediately be part
of a meld, (2) cu cannot immediately be part of a meld but
d(cu) < d(ch), or (3) cu cannot immediately be part of a
meld but the player expects this to change in the future.

Clearly every player should draw when criterion (1) is
met. Meldability may be leveraged for criterion (3), as con-
sidered briefly in Section 6. Here, we turn our attention to
criterion (2): no meld with cu; d(cu) < d(ch).

To always draw cu when it meets criterion (2) leads to
frequent face-up draws, particularly early in the round when
there are few melds and d(ch) is likely high. This is prob-
lematic because face-up draws give the opponent informa-
tion about cards in hand. Furthermore, to quickly discard
cards with high deadwood value may lead to the removal of
highly meldable cards – particularly if the opponent is fol-
lowing a similar strategy. Thus, to always draw cu when it
meets criterion (2) would be unwise. On the other hand, to
never draw cu when it meets criterion (2) would also be un-
wise. Even when melds cannot be formed, the player may
benefit from replacing ch with cu when d(cu)� d(ch).

A hybrid approach seems best. Indeed, human players of-
ten advise holding high deadwood cards early in the round,
but replacing them later (Solutions 2019). This corresponds
to not drawing cu under criterion (2) early in the round, but
doing so later in the round. Thus we divide a round into
two stages with a threshold αd0 (tuned in Section 5) for the
number of turns (t) that have occurred. In the early stage
of a round (t < αd0), criterion (1) must be met in order
to draw cu (i.e. cu must form a meld). In the later stage

15615

(t ≥ αd0), criterion (2) is also sufficient to draw cu (i.e. cu
reduces deadwood). Note that αd0 = 0 is equivalent to the
strategy always draw if there is a reduction in deadwood, as
described above. Similarly, αd0 = ∞ is the strategy never
draw given a mere reduction in deadwood.

4.2 Deciding Which Card to Discard
Having drawn a card from the stock or discard pile, the
player next chooses a card to discard from the current hand
of 11. To make this decision, we consider the 11 candidate
hands of 10 cards that could be formed. Let hi represent the
hand formed by discarding card ci, with integer i ∈ [1, 11].
We evaluate each hi with an ensemble of hand evaluation
policies. The ensemble’s evaluation eval(h) of a hand h is a
weighted sum of the evaluation evalj(h) of each member j:

eval(h) =
∑
j

evalj(h) · αwj (2)

We require
∑
j αwj = 1 and ∀j ∀h, evalj(h) ∈ [0, 1].

The ideal αwj values are tuned as described in Section 5.
Given this ensemble evaluation function we can find the hi
that maximizes eval(·), and discard ci.

We now describe each hand evaluation policy evalj in the
ensemble. It is not the case that each hand evaluation policy
would be effective on its own, but in combination they make
a discard decision that considers many factors.

Hand Evaluation Policy 1: Seek High Meldability Re-
call that the card meldability m(c) estimates the likelihood
that card c will eventually be part of a meld for self. Thus,
cards with high meldability should be kept. We define the
hand meldability hm(h) of a hand of 10 cards (h):

hm(h) =
∑
c∈h

m(c) (3)

We normalize this by dividing by the maximum value
hmmax observed over 10,000 games. Thus eval1(h) =
hm(h)/hmmax.

Hand Evaluation Policy 2: Lower Deadwood This pol-
icy evaluates a hand h based on its total deadwood score
d(h). The score is normalized by the maximum amount of
deadwood possible, 98. The result is subtracted from 1 to
obtain a value to be maximized:

eval2(h) = 1− d(h)/98 (4)

Hand Evaluation Policy 3: Penalize Deadwood by Turn
As discussed in Section 4.1, it may be beneficial early in the
round to keep high-rank cards if they seem likely to become
part of a meld. However, such a strategy becomes more
dangerous as the round proceeds, due to these cards’ high
deadwood values. So, while formula (4) penalizes deadwood
consistently throughout the round, here we apply a further
penalty as the round proceeds. We compute eval3(h) exactly
as eval2(h). However, we use an ensemble weight αw3,t that
increases as turn t increases:

αw3,t = αw3,0 + αts · tαte (5)

where αw3,0 is the weight at the start of the round (i.e. the
initial αw3 in formula (2)) and parameters αts and αte shape
the weight adjustment function, with 0 ≤ αts ≤ 1 and 0 ≤
αte ≤ 4. Thus at turn t we set αw3 in formula (2) to αw3,t

and renormalize all ensemble weights to again sum to 1. αts
and αte are tuned in Section 5.

Hand Evaluation Policy 4: Penalize Deadwood by
Known Opponent’s Cards When opp draws a face-up
card, this provides information to self. Opp would likely
choose to avoid this unless the face-up card is deemed suffi-
ciently useful. Thus, the more face-up cards opp has drawn,
the closer opp may be to knocking, and the more dangerous
it is for self to keep high-deadwood cards.

While formula (5) penalizes deadwood according to turn
t, this policy penalizes deadwood by increasing the ensem-
ble member’s weight according to the number of face-up
cards k that self knows opp has:

αw4,k = αw4,0 + αos · kαoe

In every other way this policy behaves analogously to the
previous. Parameters will be tuned in Section 5.

Hand Evaluation Policy 5: Bonus for Aces and Twos
Aces, twos, queens, and kings inherently have lower run
meldability than cards of other ranks, because other ranks
have four cards (± two ranks) that could form a run meld
of length three. Aces and kings only have two such cards,
while twos and queens have three. We ignore queens and
kings here due to their high deadwood values. In light of the
low deadwood values of aces and twos, however, this en-
semble member is designed to give them a small bonus to
counteract the run meldability penalty:

eval5(h) = n/8

where n represents the number of aces and twos in h with
rank 1 or 2, which is then normalized by the maximum num-
ber of these cards possible in a hand (8). While this policy is
ineffective on its own, it serves as a potentially useful addi-
tional voice in an ensemble.

Hand Evaluation Policy 6: Seek High Adjacency Recall
that hand meldability (formula (3)) considers not just cards
in the hand but also estimated probabilities of obtaining use-
ful cards not in the hand. This simpler “adjacency” policy
considers only cards in hand. We first define the card adja-
cency a(c) for card c:

a(c) = nc,0 · αc0 + nc,1 · αc1 + nc,2 · αc2
where nc,0 is the number of cards with the same rank as
c, and nc,1 and nc,2 are the number of cards with the same
suit and 1 or 2 ranks away, respectively. The parameters αc0,
αc1, and αc2 (tuned in Section 5) represent the respective
weight of each adjacency type. Each is constrained to the
range [0,1], and they sum to 1. We also require αc1 > αc2
since a card 1 rank away provides more meld possibilities
than a card 2 ranks away.

We then define the hand adjacency a(h) for hand h:

a(h) =
∑
c∈h

a(c)

We normalize this by dividing by the maximum value amax
observed over 10,000 games. Thus eval6(h) = a(h)/amax.

15616

4.3 Deciding When to Knock
If for hand h, d(h) ≤ 10, then the player must make a third
decision: whether or not to knock. If d(h) = 0, knocking is
guaranteed to be beneficial; otherwise, there are tradeoffs to
consider. A knock with high deadwood (but still ≤ 10) risks
an undercut, but may be advantageous if the opponent has
even more deadwood. To wait for a hand with lower dead-
wood may reduce undercut risk, but also gives the opponent
more time to obtain a better hand.

In an effort to address this, we consider the round to be
in one of two stages. Let t be the number of elapsed turns
and define a parameter αt2. The round is in the early stage
when t < αt2, and the late stage otherwise. Let kn(t) be
the knocking threshold, in which the player will only knock
with hand h at turn t if d(h) ≤ kn(t). Define:

kn(t) =

{
αt0 if t < αt2 (early stage)
αt1 otherwise (late stage)

with additional parameters αt0 and αt1. We require αt0 >
αt1 since self should be more willing to make higher-
deadwood knocks at the early stage than the late stage.

Since t is always greater than 0, we can also set αt2 = 0
and vary αt1 as desired to obtain a one-stage strategy. We
evaluate various knock strategies in Section 5.

5 Parameter Tuning Experiments
We use genetic algorithms (Holland 1992) and grid searches
to tune the parameters. A player is created for evaluation
with a set of parameter values, determining the behavior of
the draw, discard, and knock deciders.

Since many strategies depend on accurate state tracking,
we tune the state tracking parameters first, using a genetic
algorithm with a fitness function that isolates those param-
eters from the influence of others. We then tune the knock
decider parameters with a grid search, since those too can
be tuned in isolation from the others. Finally, we tune the
remaining parameters through additional grid searches.

5.1 A Genetic Algorithm to Tune State Tracking
In this section, we discuss the tuning of state tracking pa-
rameter β, introduced in Section 2. Recall that state track-
ing includes the estimation of p(c) for unknown cards,
where p(c) is the estimated probability that c is in stock, and
1− p(c) is the estimated probability that c is in opp’s hand.
As described previously, these probabilities can be updated
through baseline updates at each turn, and also by adjacency
updates when self observes opp’s actions. There are three ac-
tions opp may take that lead to adjacency updates: (1) draw
a face-up card, (2) decline a face-up card, and (3) discard a
card. In combination with the three types of adjacent cards,
there are 3·3 = 9 distinct probability update scenarios. Thus
what was introduced in Section 2 as one adjacency update
parameter β is actually nine – one for each scenario.

For a given card c, let Ac,0 be the set of unknown cards
with the same rank as c, and Ac,1 and Ac,2 the sets of
unknown cards of the same suit that are 1 or 2 ranks away,
respectively. When opp draws face-up card c, the in-stock

probabilities of adjacent cards are decreased. For example:

∀a ∈ Ac,0, p(a)← p(a)− p(a) · αs0
with parameter αs0. A similar update occurs for Ac,1 and
Ac,2 with parameters αs1 and αs2, respectively.

When opp declines face-up card c, the in-stock probabili-
ties of adjacent cards are increased. For example:

∀a ∈ Ac,0, p(a)← p(a) + (1− p(a)) · αs3
This occurs similarly for Ac,1 and Ac,2 with parameters αs4
and αs5, respectively. Similarly, the probabilities of the three
sets of adjacent cards are also increased when opp discards
c, with parameters αs6, αs7, and αs8.

Again, we call the above probability updates adjacency
updates, to distinguish from the baseline updates based only
on the number of unknown cards (Equation 1). Recall that
these occur only for adjacent cards with state unknown. For
all other cards, no probability is tracked, because the state of
the card is known with certainty. Also note that each param-
eter above is constrained to the range (0, 1). Finally, we con-
strain αs1 ≥ αs2, αs4 ≥ αs5, αs7 ≥ αs8 because intuitively
cards that are 1 rank away from c should be influenced more
strongly than cards that are 2 ranks away.

It might be argued that some of the above scenarios
can or should use the same parameter value. This nine-
parameter approach gives us greater expressiveness at the
cost of higher dimensionality. However, since the state track-
ing parameters are considered in isolation (as justified be-
low), we choose greater expressiveness in this case.

We tune these parameters with a genetic algorithm. An
individual is nine numbers, corresponding to the nine pa-
rameter values, subject to the constraints above. An initial
population of 100 random individuals (100 “selfs”) is cre-
ated. At each generation, each individual plays 2,000 games
against a player who behaves the same as the simple player
(Section 2) but knocks only on gin to prolong each round
and generate more data.

Let Uo be the unknown cards that are actually in opp’s
hand (not in stock). Self attempts to guess the cards in Uo
based on the in-stock probability estimates, and the fitness
function counts the number of correct guesses. Instead of
always requiring that self guess precisely the elements of Uo
(a very difficult task), self chooses the (|Uo|+ad) cards with
the lowest in-stock p(c) values, where ad ≥ 0 is the number
of additional cards self considers. These selected cards form
the set Gad, on which the fitness is calculated:

Fitnessad(Gad) = |Uo ∩Gad|/|Uo|
Thus, the higher ad is, the greater allowance there is for
some error in the in-stock probability estimates. We discuss
different values of ad below.

The genetic algorithm computes this fitness for each in-
dividual. Individuals are selected by tournament selection
(Miller et al. 1995). That is, 3% of the population is cho-
sen randomly, and the fittest individual among them is se-
lected. This process is repeated to select many individuals
in sequence, consecutive pairs of which undergo two-point
crossover. The children are mutated with a 2% chance per
gene per child, to create the next generation. Finally, we also

15617

Figure 1: In tuning the state tracking parameters, the average
fitness of the best individual based on number of turns, for
two fitness functions (ad = 0 and 3) and two probability
update types.

apply elitism (Whitley and Sutton 2012), in which the single
highest-fitness individual from one generation proceeds to
the next without any crossover or mutation adjustments.

Again, in this procedure opp is the simple player, which
has no parameters. Since Uo depends only on opp’s actions
and random chance, this fitness calculation is not influenced
by any other parameters. Thus it is reasonable to consider
these nine parameters in isolation.

Results and Discussion In the experiment, we apply the
above genetic algorithm in its entirety in six different ways:
with either ad = 0 or 3, and with different times and fre-
quencies of measuring fitness. To compare the results of the
six separate genetic algorithm runs, we make six players,
each with the corresponding run’s best set of parameter val-
ues, and two additional players that use only the baseline
update with either ad = 0 or 3. These eight players each
then play 24,000 games against the simple player.

Selected results are shown in Figure 1. Experiments using
other fitness-measuring times and frequencies lead to nearly
identical results, and thus are omitted. In all cases, as the
number of turns increases, fitness increases. This suggests
that the baseline probability adjustment is effective. Com-
paring the two lines with ad = 0, we see that the adjacency
updates result in a consistently higher fitness than the cor-
responding baseline. Similar results are seen for ad = 3.
This suggests that adjacency updates provide additional ac-
curacy over the baseline. Nevertheless note that fitness is
rather low earlier in the game, reflecting the uncertainty of
predictions about unknown cards. The consequences of this
uncertainty are explored further in Section 5.3.

With the results showing a similar growth pattern for both
considered ad values, we arbitrarily choose the parameter
values from the ad = 3 experiment that uses adjacency up-
dates. These values are fixed for the tuning experiments that
follow. While other state tracking parameter values may per-
form better against other (non-simple) players, such a con-
sideration is beyond the scope of this paper.

αt1
0 1 2 3 4 5 6 7 8 9

α
t0

1 0.48
2 0.50 0.45
3 0.51 0.46 0.430
4 0.50 0.45 0.40 0.40
5 0.50 0.47 0.41 0.40 0.36
6 0.52 0.45 0.43 0.39 0.37 0.33
7 0.51 0.49 0.44 0.44 0.40 0.35 0.33
8 0.54 0.50 0.45 0.43 0.39 0.34 0.33 0.32
9 0.54 0.53 0.47 0.45 0.41 0.37 0.36 0.34 0.32

10 0.57 0.53 0.50 0.48 0.43 0.39 0.38 0.34 0.33 0.32

Figure 2: In tuning the knock decider parameters, win rate
for each allowed αt0 and αt1 pair, for fixed αt2 = 6.

5.2 Grid Search to Decide When to Knock
To explore knocking strategies, we first consider a search
with a one-stage knock decider (Section 4.3). Specifically,
we set αt2 = 0 and vary αt1, so that the player always
knocks with hand h when d(h) ≤ αt1. In all other ways the
player behaves the same as the simple player: draw face-up
only to form a meld, discard only to lower deadwood.

In a preliminary experiment we consider every combina-
tion of two such players: 11 · 11 = 121 pairings correspond-
ing to the 11 possible values for each player’s αt1. Each pair
of players plays 2,000 games. Results follow a very clear
pattern. For any fixed αt1 value for player 1, player 0 per-
forms best with αt1 = 0, and mostly consistently worse for
each higher αt1 value. These results suggest that the best
one-stage knocking strategy is αt1 = 0: knock only on gin.

Having established that, we move on to the main knock
decider experiment: a search on a two-stage knock decider.
Recall that this means the player will use threshold αt0 to be
met for early-stage knocking and αt1 for late-stage knock-
ing, with αt2 representing the number of turns to transition
between the early and late stages. Again, two modified sim-
ple players are created: one using a two-stage knock decider,
and one knocking only on gin (αt2 = 0, αt1 = 0). For
the two-stage player we consider 825 different possibilities
by varying the integer parameters with αt2 ∈ [5, 19] and
αt0, αt1 ∈ [0, 10] subject to αt1 < αt0. Each pair of these
players plays 2,000 games.

Results and Discussion In this experiment, the highest
winning rate, 0.57, is found with (αt0, αt1, αt2) = (10, 0,
6). This corresponds to knocking as soon as possible (even
with 10 deadwood points) in the first 5 turns of the round,
and otherwise knocking only on gin (0 deadwood points).
This strategy makes intuitive sense, as early in the round a
sudden knock may catch the opponent unprepared, but later
in the round the knock-on-gin approach is preferable. Also
note that the best two-stage player is able to beat the best
one-stage player (knock-on-gin) 57% of the time, suggesting
that two-stage knocking with the correct parameterization is
more effective than one-stage knocking. For fixed αt2 = 6
as in Figure 2, for example, we observe that the two-stage
player’s win rate increases fairly consistently as αt0 reaches
10, and decreases fairly consistently as αt1 reaches 10, with
the best win rate at αt0 = 10, αt1 = 0.

We can also explore whether these (10, 0, 6) values are
ideal against a one-stage opponent with other αt0 knocking

15618

thresholds. When considering αt0 = 2, 4, 6, and 8, we find
that (10, 0, 6) is consistently the best, ±1 for αt2 (when to
change stages). Thus, we conclude that (10, 0, 6) are the
ideal two-stage knocking parameter values.

5.3 Tuning by Grid Search
We tune the remaining parameters in a series of grid
searches. To constrain the search space, we divide the pa-
rameters into subsets by system component: (1) meldability
{αm0, αm1, αm2, αm3}, (2) adjacency {αc0, αc1, αc2}, (3)
deadwood penalty by turn count {αts, αte}, (4) deadwood
penalty by opp cards known {αos, αoe}, and (5) ensemble
weights {αw1, αw2, αw3, αw4, αw5, αw6}.

Let α be a single parameter, and A the set of all parame-
ters. Let As ⊂ A be the subset of parameters that will have
values varied in a search s ∈ {1, 2, 3, 4, 5} as listed above.
In a search, each α ∈ As is varied within a given range ac-
cording to a given step size; the precise variations depend on
the parameter and are omitted here. Each possible combina-
tion of values for each α ∈ As is considered, except those
that violate any constraints on ordering (e.g. αc1 > αc2) or
total value (e.g. αc0 + αc1 + αc2 = 1). The total number of
parameter value combinations considered varies from hun-
dreds to thousands for each As, depending on s. Parameters
in A − As are held constant at values specified in bases,
defined below.

Finally, let v be an assignment of values to the parameters
inA, and let Vs be the complete set of assignments generated
for search s according to the procedure above.

To begin the search process, we form an initial set base1
of parameter values. We first fix the parameters related to
state tracking and the knock decider to the optimal results
found in Sections 5.1 and 5.2. We then initialize the remain-
ing parameters to intuitively-reasonable values.

Given this initialization of base1, we can describe the ex-
ecution of search s. The bases values and the variation of
values of each α ∈ As generates a set of value assign-
ments Vs. For each v ∈ Vs, a player playerv is created
and plays 5,000 games against the simple player (Section
2). This large number of games is used to reduce the influ-
ence of random chance according to cards dealt. (In our re-
sults for this experiment we also formally measure statistical
significance.) Denote the corresponding proportion of wins
for playerv as winRate(playerv). We seek the parameter
values that maximize this win proportion. These values be-
come the base values for the subsequent search s+1. That is:
bases+1 = arg maxv∈Vs

winRate(playerv) With this defi-
nition, the process repeats for search s+ 1.

Upon completing search s = 5, we then return to s = 1
again, and thus base1 = arg maxv∈V5

winRate(playerv).
In this way the searches are completed in sequence for mul-
tiple iterations. We allow for this due to the possibility that
the optimal values of parameters across various As are not
independent – that after adjusting one set of parameters, an-
other may benefit from further adjustment.

Results and Discussion Recall that at the start of the first
iteration, base1 represents the initial set of parameter values,
with the results from the state tracking and knock decider

tuning, and “reasonable” guesses for the remaining parame-
ter values. These values earn a win rate of 0.701. This fairly
high initial win rate likely comes from multiple factors: (1)
the inherent effectiveness of the combined two-stage draw
decider, 6-member ensemble discard decider, and two-stage
knock decider, (2) the benefit of the prior state tracking and
knock decider tuning, both essential for successful play, and
(3) the reasonableness of the guesses for the remaining pa-
rameter values. Thus it is not surprising to find only mod-
est improvements in this last set of tuning experiments. This
makes it particularly notable, then, when we do see a sig-
nificant effect on some parameter value changes. To clearly
identify these situations, we performed a chi-square test on
the win rate of the best parameter value assignment before
and after each search (1 through 5) through each iteration (1
through 3), with a strict α = 0.01 requirement for signifi-
cance. Space allows consideration of only the most statisti-
cally significant results here.

First, consider the results before and after the entire first
iteration of experiments, in which each experiment s from 1
through 5 is conducted. After completing iteration 1, the win
rate of the best parameter values is 0.739 – a statistically sig-
nificant improvement (χ2(1, N = 5000) = 34.4, p < .001)
over the 0.701 win rate using base1. It is also interesting to
note that after this first iteration, there were no additional
significant changes in win rates. This suggests that the pa-
rameter subsetsAs for each experiment s are fairly indepen-
dent – that finding the ideal values for one subset does not
then require a re-tuning of previously-tuned subsets. Thus,
in the discussion that follows, we explore the significant re-
sults of experiments within iteration 1.

In meldability parameter tuning (experiment 1), we obtain
a 0.720 win rate, which is significantly higher (χ2(1, N =
5000) = 8.0, p = .004) than the 0.701 win rate using
base1. This experiment found that the best values for αm2

and αm3 (the weight of rank and run melds; Section 3.2) are
0.4 and 0.6 respectively. Intuitively, the two types of melds
are equally important; however, a given card can be in more
distinct run melds (of length ≥ 3) than rank melds. Thus it
makes sense that the experimental results slightly favor run
melds.

Next, consider this experiment’s tuning of αm0 (Sec-
tion 3.1), in which we find that the value appears to have
little influence on win rate. Recall that αm0 determines the
obtainability of a card c when it has been drawn by opp
from the discard pile. But for opp to draw c from the discard
pile, self must first discard it (except in the first turn). Given
self’s prior discard decision, it is unlikely to want c again,
and therefore any estimate on the obtainability of c, whether
high or low, is inconsequential. Therefore it is not surprising
that the value of αm0 also appears to be inconsequential.

Finally, consider experiment 1’s tuning of αm1, influenc-
ing the estimated probability of obtaining an unknown card
(Section 3.1). Results show that this parameter’s value also
has little effect on the win rate. One could consider a high
αm1 value as reflecting consistent “optimism” about obtain-
ing an unknown card, and a low value reflecting consistent
“pessimism”. Recall, however, the considerable uncertainty
of any such prediction. In Section 5.1 we found that de-

15619

spite the demonstrated effectiveness of adjacency updates to
probabilities, predictions remain only modestly accurate un-
til late in a round. Whether self can obtain an unknown card
depends on what cards opp holds but will discard, how many
stock cards will be drawn in a round, and who will draw
which cards from stock. For each drawn stock card there is
a fairly equal chance that it goes to either player. Thus at
times optimism is rewarded significantly when the card is
drawn, and keeping adjacent cards was therefore wise. This
significant reward offsets the penalties that sometimes come
from keeping adjacent cards when the desired card is never
obtained. Similarly, pessimism will lead a player to drop ad-
jacent cards – perhaps a safer move if they have high dead-
wood value, but this may make it harder to form melds. So
optimism may be a high risk / high reward approach, and
pessimism low risk / low reward. So should a player keep
or drop a card adjacent to an unknown card? The mini-
mal effect of αm1 on win rate suggests that the decision is a
wash given the information the system has. This reflects the
dilemma each human Gin Rummy player faces a well.

This keep/drop dilemma ultimately may be made not by
obtainability predictions (as controlled by αm0 and αm1),
but by considering deadwood points. This hypothesis is
confirmed in experiment 5, tuning the discard decider en-
semble weights αw1 through αw6. The win rate of 0.739
is statistically significantly higher than the prior win rate
(χ2(1, N = 5000) = 9.7, p = .001), and the resulting pa-
rameter values are illuminating. Recall that hand evaluation
policies 2, 3, and 4 (Section 4.2) each aim to lower dead-
wood, under differing conditions. The hypothesized pre-
eminence of reducing deadwood is supported in these re-
sults, in which the combined weight of these three policies
αw2 + αw3 + αw4 = 0.6. This is not to say that probabil-
ity estimation is useless, however; despite the demonstrated
uncertainty, its effectiveness is again supported with the non-
zero weight of meldability (policy 1), αw1 = 0.2. In these
results we also find ideal weights αw5 = 0.1 for the ace-two
bonus (policy 5) and αw6 = 0.1 for in-hand adjacency (pol-
icy 6). In summary, given the uncertainty of obtaining de-
sired unknown cards and the comparative ease of reducing
deadwood, the factors that make cards desirable (meldabil-
ity, adjacency, etc.) have a minority but non-zero influence
compared to deadwood reduction.

6 Future Work
There are numerous opportunities for the continuation of
this work; unfortunately space allows only the briefest of
commentary here. The grid searches could be performed
with smaller or even variable step sizes, or a genetic algo-
rithm could be employed to consider the entire parameter
space at once. The draw decider could require a particular
amount of reduction in deadwood before drawing a card,
and could also consider meldability. A dataset of state infor-
mation and results from knocking could be created through
simulated games, and then fed to a machine learning sys-
tem, to attempt to predict the results of knocking. Ensem-
ble approaches could be employed for the draw and knock
deciders. Finally, the meldability of opp’s predicted cards
could be used in the discard decider, to attempt to provide

cards of lesser value to opp.

7 Related Work
There does not exist much prior work in Gin Rummy. One
exception is (Kotnik and Kalita 2003), which deals with op-
timizing a player’s performance through temporal difference
learning and co-evolutionary learning. Through self-play,
the system’s performance improves. This is in contrast to
our system, in which performance is based on the collection
of components and parameter tuning.

Gin Rummy is an imperfect information game – a broad
area in which much prior work exists. For example, (Brown,
Sandholm, and Amos 2018), (Seitz et al. 2019) (Billings
et al. 2004) describe various tree search approaches to im-
perfect information games. Such an approach could po-
tentially be combined with parts of our state tracking and
decision-making components, though this would greatly in-
crease the computational requirements. In contrast, (Brown
and Sandholm 2019) discusses performance optimization of
a poker player through self-play against five copies of the
player using a Nash equilibrium strategy and Monte-Carlo
counterfactual regret minimization.

Other Monte-Carlo approaches include (Frank, Basin, and
Matsubara 1998), (Furtak and Buro 2013), (Lisỳ, Lanctot,
and Bowling 2015). The exploration/exploitation tradeoff of
such approaches is an alternative mechanism by which to
handle a large search space, as we dealt with in this paper
through grid search and genetic algorithms. Note that a sim-
ilar tradeoff occurs in genetic algorithms, in which explo-
ration and exploitation are balanced via the tournament size,
mutation rate, and crossover method.

8 Conclusion
This research presents an effective strategy for a computer
Gin Rummy player composed of three deciders: a draw de-
cider, discard decider, and knock decider. The draw decider
considers whether the face-up card is expected to be melded,
and in later turns, also whether the card would simply reduce
deadwood. The discard decider is an ensemble of hand eval-
uation policies, considering a wide range of factors includ-
ing deadwood points, expected melds based on the observed
state of the round, and adjacency of cards in hand. The knock
decider determines whether to end the round, based on a
deadwood point threshold that varies depending on whether
the round is in an early or late stage. Finally, three sets of
experiments were conducted to optimize the parameters that
govern these decisions: (1) a genetic algorithm for tuning the
state tracking parameters, (2) a grid search to find the thresh-
olds of deadwood points for knocking at both round stages,
and when to transition from early to late stage, and (3) a grid
search for the parameters of the hand evaluation policies and
their weights in the ensemble.

9 Acknowledgments
We express sincere thanks to Dr. Michael Roberts and Dr.
Naima Shifa for assistance in statistical analysis.

15620

References
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2004.
Game-tree search with adaptation in stochastic imperfect-
information games. In International Conference on Com-
puters and Games, 21–34. Springer.
Brown, N.; and Sandholm, T. 2019. Superhuman AI for mul-
tiplayer poker. Science 365(6456): 885–890.
Brown, N.; Sandholm, T.; and Amos, B. 2018. Depth-
limited solving for imperfect-information games. In Ad-
vances in Neural Information Processing Systems, 7663–
7674.
Frank, I.; Basin, D. A.; and Matsubara, H. 1998. Find-
ing optimal strategies for imperfect information games. In
AAAI/IAAI, 500–507.
Furtak, T.; and Buro, M. 2013. Recursive Monte Carlo
search for imperfect information games. In 2013 IEEE Con-
ference on Computational Inteligence in Games (CIG), 1–8.
Holland, J. H. 1992. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to Bi-
ology, Control and Artificial Intelligence. Cambridge, MA,
USA: MIT Press. ISBN 0262082136.
Kotnik, C.; and Kalita, J. 2003. The Significance of
Temporal-Difference Learning in Self-Play Training TD-
Rummy versus EVO-rummy. 369–375.
Lisỳ, V.; Lanctot, M.; and Bowling, M. 2015. Online monte
carlo counterfactual regret minimization for search in imper-
fect information games. In Proceedings of the 2015 inter-
national conference on autonomous agents and multiagent
systems, 27–36.
Mark, F. 2017. AI Learning Gin Rummy, Part I
URL https://towardsdatascience.com/learning-gin-rummy-
part-i-75aef02c94ba. Accessed: 2020-07-01.
McLeod, J. 2020. Gin Rummy. URL https://www.pagat.
com/rummy/ginrummy.html. Accessed: 2020-05-15.
Miller, B. L.; Miller, B. L.; Goldberg, D. E.; and Goldberg,
D. E. 1995. Genetic Algorithms, Tournament Selection, and
the Effects of Noise. Complex Systems 9: 193–212.
Seitz, D.; Kovařı́k, V.; Lisỳ, V.; Rudolf, J.; Sun, S.; and Ha,
K. 2019. Value Functions for Depth-Limited Solving in
Imperfect-Information Games beyond Poker. arXiv preprint
arXiv:1906.06412 .
Solutions, A. 2019. Gin Rummy Strategy and Tips.
URL https://medium.com/@Artoonsolutions/gin-rummy-
strategy-and-tips-631debf5fa82. Accessed: 2020-05-15.
Whitley, D.; and Sutton, A. M. 2012. Genetic Algorithms
— A Survey of Models and Methods, 637–671. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-540-
92910-9. doi:10.1007/978-3-540-92910-9 21. URL https:
//doi.org/10.1007/978-3-540-92910-9 21.

15621

