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Abstract

The constraint in sharing the same physical learning envi-
ronment with students in distance learning poses difficulties
to teachers. A significant teacher-student interaction without
observing students’ academic status is undesirable in the con-
structivist view on education. To remedy teachers’ hardships
in estimating students’ knowledge state, we propose a Stu-
dent Knowledge Prediction Framework that models and ex-
plains student’s knowledge state for teachers. The knowledge
state of a student is modeled to predict the future mastery
level on a knowledge concept. The proposed framework is
integrated into an e-learning application as a measure of au-
tomated feedback. We verified the applicability of the assess-
ment framework through an expert survey. We anticipate that
the proposed framework will achieve active teacher-student
interaction by informing student knowledge state to teachers
in distance learning.

Introduction

The outbreak of the COVID-19 pandemic led to an un-
precedented shift of educational paradigm due to the school
closures, affecting all stages of public education (Estellés
and Fischman 2020). The primary education environment
migrated to distance learning, where teachers and students
do not share the same physical space (Kaplan and Haen-
lein 2016). Features of distance learning are asynchronous
teacher-student interaction, technology for active communi-
cation, and online learning resources to facilitate the learn-
ing process.

Asynchronous teacher-student interaction of distance
learning disadvantages students since teachers cannot
closely monitor students’ current knowledge states relative
to face-to-face learning. The addressed limitations of dis-
tance learning become a barrier to student learning from
the perspective of constructivism. Constructivism assumes
the learner’s construction of knowledge based on his or her
past knowledge and experience (Liu and Chen 2010; Hoover
1996). Constructivism regards teacher-student interactions
(e.g., teacher’s feedback) and the assignment of meaningful
and appropriate learning tasks as essential components of
learning (Greeno et al. 1996).
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Figure 1: A screenshot of a landing page of the Toc-Toc
Math Expedition e-learning platform (left). A screenshot of
the student analysis page (right). The predicted student test
scores and suggestions for learning are generated using our
framework.

While the ideal learning of constructivism advocates for
active teacher-student interaction, distance learning contra-
dicts constructivism with asynchronous teacher-student in-
teraction. The constraint impedes teachers from thoroughly
understanding the knowledge state of students. It may be
demanding for teachers to provide suitable assignments de-
pending on the students’ knowledge state, which creates dif-
ficulty in supporting students with meaningful feedback on
their academic performance.

There have been attempts to overcome the downside of
distance learning. However, these approaches are limited to
stimulating peer-to-peer interaction through online discus-
sions (Bates 2008) or supporting knowledge construction
of students through quality online instructions (Ally 2004).
These approaches provide measures to remedy distance
learning’s side effects but do not present student knowledge
to teachers. Since an immediate understanding of the stu-
dent knowledge state is restrained in distance learning due
to the limited teacher-student interaction time, it is necessary
to provide students’ current knowledge state for teachers to
apply in their teaching and learning methods.

We propose a Student Knowledge Prediction Framework
using Machine Learning models, and an eXplainable Artifi-
cial Intelligence (XAI) (Gunning 2017) method that models
and explains a student’s knowledge state. We used Machine
Learning models, the XGBoost (Chen and Guestrin 2016),
and the Deep Knowledge Tracing (DKT) (Piech et al. 2015)
to model the student’s current knowledge state and present
the predicted performance of the student to the teacher. We
applied the Shapley Value (Lipovetsky and Conklin 2001)
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Figure 2: The overall architecture and flow of the Student Knowledge Prediction Framework.

method to explain the prediction in an interpretable form.

The Student Knowledge Prediction Framework has two
educational contributions. First, it provides the current
knowledge state of a student to the teacher for students’ in-
dividualized learning. Second, the framework expedites the
learning of a student by facilitating teacher-student interac-
tion in distance learning.

The paper’s Section 2 describes our proposed framework
in detail. Section 3 reports on the training details and per-
formance of the framework. Section 4 discusses the evalua-
tion of the proposed framework. Section 5 presents related
works. Finally, we summarize and suggest the educational
implications of the framework in section 6.

Student Knowledge Prediction Framework

The Student Knowledge Prediction Framework consists of
two modules, the exam score prediction module and the next
question prediction module. The input to the framework is
the student response on a diagnostic test on a subject’s es-
sential skill and the final exam score on the corresponding
subject.

The next question prediction module predicts the stu-
dent’s response to a question for the next time step. A stu-
dent’s learning trajectory and a knowledge concept relation-
ship are extracted using the predicted response. The exam
score prediction module predicts the final exam score and
explains a student’s predicted exam score. The overview of
our proposed framework is illustrated in Figure 2.

Our framework is integrated into a broader e-learning ap-
plication, the Toc-Toc Math Expedition' by the Korea Foun-
dation for the Advancement of Science and Creativity (KO-
FAC), which aims for skill mastery of elementary school stu-
dents in basic mathematics. Screenshots of the e-learning ap-
plication and student performance analysis generated from
our framework are shown in Figure 1. We note in advance
that the next question prediction module is not yet integrated
into the e-learning application.

'www.toctocmath.kr
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| Data | Grade I [ Grade 2 |
number of students 259 277
number of exercises 265 257
number of knowledge concepts 7 9
number of interactions 44,310 44,523

Table 1: Overview of the KOFAC data used for training of
the framework.

Data

We used the proprietary data provided from KOFAC to train
both of our modules. The KOFAC data consists of 259 first
grade students and 227 second grade students from 5 dif-
ferent elementary schools in South Korea, gathered from
March 2018 to February 2019. The students completed di-
agnostic tests at the beginning of the academic year? on pri-
mary mathematics. At the end of each semester, the final
exam scores of the students were also collected.

The first grade’s basic mathematics knowledge concepts
are comparing numbers, ordering numbers, counting num-
bers, composing numbers, decomposing numbers, addition,
and subtraction. For the second grade, the knowledge con-
cepts include comparing numbers, ordering numbers, count-
ing numbers, advanced addition, and subtraction. The ad-
vanced addition and subtraction each have three sections,
consisting of a total of nine concepts. The summary of the
data is provided in Table 1. We also note that we do not own
permission to release the data publicly.

Next Question Prediction Module

To serve the application’s need for acquiring skill mastery
in basic mathematics, the next question prediction module
aims to model students’ current knowledge state. The objec-
tive of skill mastery is to achieve a certain academic level.
To identify whether a student achieved a skill, estimating
mastery level is necessary than predicting future academic
performance. The next question prediction module estimates

2 Academic year of South Korea begins in March and ends in
February.
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Figure 3: An example of a student’s learning trajectory on a sequence of 50 questions, predicted by the DKT for each time step
on the KOFAC data. Each row indicates a question, and each cell’s color indicates a student’s estimated knowledge level of the
question. Darker the color, the higher the estimated knowledge level of the student. Best viewed in color.

students’ current knowledge state to teachers with a learning
trajectory and a knowledge concept relationship.

To model the knowledge state, we mainly adopted the
Deep Knowledge Tracing (DKT) network. DKT is a deep
learning approach to model the latent knowledge state with
the temporal information (Piech et al. 2015). As the stu-
dent progresses through online coursework, the student pro-
duces a series of interactions within the system. Given the
student’s response to particular coursework, the task of the
DKT is to predict the student’s response to an exercise ques-
tion of the next time step. DKT uses Long Short-Term Mem-
ory (LSTM) layers (Hochreiter and Schmidhuber 1997) to
model the sequence of students’ progress and predict the stu-
dent response of the future step. The DKT implemented in
the framework shares the same objective.

Problem Formulation We set the next question pre-
diction module as a supervised sequence prediction task.
Given the series of student responses of length ¢, x =
{x1,29,...,2:}, A student response consists of a question
and answer at time ¢, z; = (q¢,7¢), and the response is
binary variable 0,1 € r. The model outputs a probability
p(re41 = 1|ge+1, 2+) which is a prediction of the student
giving correct answer to the question ¢, in the ¢ 4- 1 time
step given the student’s past responses.

Learning Trajectory The DKT presents the current
knowledge state in the form of a learning trajectory, as
shown in Figure 3. The learning trajectory visualizes the
probability of giving the correct answer to each of the ques-
tions in the next step, given the history of student responses.
From the learning trajectory, a student’s changing knowl-
edge state is identified and presented to the teacher. The
learning trajectory precisely models each student’s academic
performance, providing an individualized analysis of the stu-
dent to the teacher.

Knowledge Concept Relationship The next question pre-
diction module provides an individual knowledge state of
a student and the global knowledge state of all students
through the knowledge concept relationship.

A trained DKT is used to derive relationships between
knowledge concepts. The strength of the relationship be-
tween questions is the probability of being correct on the
jth question given the correct student response on the ith
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Figure 4: An example of conditional influences between
knowledge concepts predicted by the DKT. Relationship
strengths below 0.166 are thresholded.

question. The resulting strength of the probability is not de-
pendent on an individual student but is global to all student
data that the DKT was trained on.

Figure 4 shows the knowledge concept relationship de-
rived from the KOFAC data with the DKT. The weights on
the arrows pointing to ‘C0’ to ‘C1’ indicate the strength of
the probability that students will get the ‘C1’ question cor-
rect given the correct response on ‘C0’. The teacher can then
assume that students are likely to understand the concept
‘C1’ better once they master the concept ‘CO’.

The next question prediction module models the current
knowledge state of an individual student with the learning
trajectory and the knowledge-concept relationship’s knowl-
edge state.

Exam Score Prediction Module

Once students accomplish skill mastery, we determine the
completeness of skill mastery with student evaluation. We
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Figure 5: An example of Shapley Values on a first-grade stu-
dent with a 74.19 predicted score. The numbers under the
number sense concepts indicate the actual score for each
concept. The true exam score of the student is 74. The con-
cept ‘decompose numbers’ mostly contributed to lowering
the predicted exam score.

consider performance a strong indicator of student learning,
and therefore, we set the objective of exam score prediction
to model student knowledge. To serve the purpose of the e-
learning application to achieve students’ skill mastery, the
exam prediction module predicts the student’s future perfor-
mance for verifying the completion of the skill mastery.

Problem Formulation The exam score prediction module
predicts the final exam score of a student given the results of
the diagnostic test. We set the exam score prediction task
as a supervised regression problem. The task of this mod-
ule is formalized as: given the student performance on N
number of knowledge concepts x = {xc,,Teyy -« Tey }
and the final exam score y € R', we aim to find a ma-
chine learning model f € F, F : {f|f : RY = R}
In other words, our objective is to find f that satisfies the
argmin . » RMSE(f(x),y)-

We used XGBoost to model this task. XGBoost is a
tree ensemble algorithm that uses the tree boosting method,
which demonstrates state-of-the-art results across diverse
machine learning challenges (Chen and Guestrin 2016). The
XGBoost is trained on the diagnostic test results and pre-
dicts the final exam score. Predicted scores are normalized
between the range of 0 and 100.

Shapley Value Explaining the expected performance of a
student to the teacher is necessary to employ machine learn-
ing models in education. Most machine learning models are
inherently black boxes, and they do not reveal the predic-
tion’s internal workings. Explaining increases transparency,
reliability as well as trust towards the prediction. With the
explanation, teachers function as an effective facilitator that
helps students in their self-regulated learning by providing
personalized learning guidance. In this sense, adopting a lo-
cal explanation method, which generates an explanation for
a single instance, is appropriate in that the focus is on as-
sessing an individual student.

The explanation for the predicted score is produced using
Shapley Value. We choose to use Shapley Value for predic-
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tion explanation because it is based on solid theory and gives
the explanation a reasonable foundation. Further, the Shap-
ley Value guarantees that the prediction is fairly distributed
among the features. Initially, Shapley Value determines the
order of significance of a player in multiplayer cooperative
game theory (Shapley 1953). The Shapley Value indicates
the amount of significance each player has over all possible
combinations of players. The application of Shapley Value
to the regression task extends to finding the magnitude of
contribution that each feature has over all possible combina-
tions of features.

In the exam score prediction module, the resulting Shap-
ley Value indicates how the student performance on each
of the diagnostic test’s knowledge concepts impacts the
model’s decision to produce the predicted exam score. The
knowledge concepts are considered as features and the Shap-
ley Value expresses the amount of the feature contribution to
the prediction. Therefore, the Shapley Value is viewed as the
degree of strength and weakness of the student on a particu-
lar knowledge concept. Teachers may use this information to
analyze student performance and provide appropriate feed-
back to the student.

The exam score prediction module is further utilized as
a personalized recommendation measure in the e-learning
application. As a student registers to the platform, the stu-
dent is required to take a one-time diagnostic test. After the
student finishes the diagnostic test, the recommended activ-
ity is presented to the student based on the Shapley Value.
The recommendation decision is based on the assumption
that the knowledge concepts with negative Shapley Value
are considered academic weaknesses of the student.

An example of the Shapley Value of a student is presented
in Figure 5. The student in Figure 5 receives learning advice
from the e-learning application based on the resulting Shap-
ley Value. The generated learning advice would suggest stu-
dents practice more in the order of ‘Decompose Numbers’,
‘Addition’, and ‘Count Numbers’. The learning advice is
then presented to teachers as a written text. An example of
learning advice is shown in the right screenshot of Figure 1.

The predicted exam score and the resulting Shapley Value
is hidden from students but presented to teachers in the e-
learning application. The Shapley Value helps teachers iden-
tify the student’s academic status and alter learning plans to
advance students’ overall skill development, such as provid-
ing more resources on the specified learning concept.

Experiment
Model Implementation

Data Preprocessing We preprocess the data in two dif-
ferent formats for our two modules. For the next question
prediction module, the input to the DKT is one-hot vectors
of the student response on a series of questions. We set the
maximum number of sequences to the maximum question
number of both data.

For the exam score prediction module, the input to the
XGBoost is the summed scores of each knowledge concept
of the diagnostic test, and the target is the final exam score
of the second semester. Min-Max normalization is applied



Data RMSE
Grade 1 6.48
Grade 2 | 13.81

Table 2: Performance of the XGBoost

Data Loss ACC | AUC
Grade 1 | 0.0741 | 98.10 | 91.10
Grade 2 | 0.1521 | 95.02 | 90.23

Table 3: Performance of the DKT

to all scores. We split the data into the train and test set with
an 8:2 ratio.

Training Details We train and evaluate our model in a sin-
gle machine with three GeForce GTX 1080 Ti GPUs. We
did not use GPUs when training the XGBoost. We present
the final result of the models from a single run of training.

For the exam score prediction module, we use the XG-
Boost with 1,000 estimators. The selected evaluation metric
is the root mean squared error (RMSE). The learning rate for
XGBoost is set to 0.01. We used XGBoost library for im-
plementation (Chen and Guestrin 2016). The Shapley Value
for this module is implemented using the SHAP framework
(Lundberg and Lee 2017).

For the next question prediction module, we use the DKT
with a single LSTM layer with 100 hidden dimensions. The
DKT is implemented using the PyTorch library and trained
with the distributed data parallelism method. We train the
DKT with ten epochs and with a batch size of 64. We
use Noam optimizer with the learning rate of 0.001, and a
warmup step of 4,000 (Vaswani et al. 2017). The network is
trained with the binary cross-entropy loss function. Evalua-
tion metrics for the DKT are accuracy and Area under the
ROC Curve (AUC).

Model Performance

The performance of the implemented XGBoost is presented
in Table 2 and DKT is presented in Table 3. XGBoost
achieves 6.48 RMSE on the first-grade student data and
13.81 RMSE on the second-grade student data. Our imple-
mentation of the DKT achieves an AUC of 91.10% on the
first-grade student data and 90.23% on the second-grade stu-
dent data. Considering that our RMSE of XGBoost is small
and the AUC of DKT is over 90% out of 100%, our models
achieve adequate performance for providing teachers with
meaningful feedback.

Expert Evaluation
Participants

We surveyed nine experts in mathematics education in South
Korea to evaluate the Student Knowledge Prediction Frame-
work’s efficacy. Since the e-learning application was in a
closed beta test, we selected the expert survey as our eval-
uation method. All nine experts have master’s or doctoral
degrees in Education. Six of the nine experts are working

as elementary school teachers, two are professors of educa-
tional psychology, and the remaining one is a mathematics
education researcher. All of the experts have more than ten
years of experience in the field.

Method

We investigate whether both modules of our framework ful-
fill the function of informing the student knowledge state to
teachers and help with teacher-student interaction. The ques-
tions in the survey are:

1. The Shapley Value from the exam score prediction mod-
ule assists students to enhance their mathematical skills.

2. The Shapley Value is helpful in understanding the stu-
dent’s current knowledge state.

3. The Shapley Value is reliable.
4. The learning trajectory is reliable.

5. The concept map is helpful in providing feedback to stu-
dents.

We created a simulated student and provided arbitrarily
sampled instances for examination. We asked the experts to
respond to the usability and reliability of Shapley Values,
learning trajectories, and the related concept map. We also
provide how each output is generated and how to interpret
the output to assist with the expert’s understanding. The ex-
perts examined the instances and the above questions on a
Likert scale from 1 to 5.

We also consider observations of the experts. We col-
lected short-answer responses from the nine experts on their
opinions in using and applying the three outputs of the
framework to teaching methods.

The questions for short-answer responses are:

1. How can teachers use the Shapley Values in their teaching
method?

2. Are learning trajectories reliable and why?

3. How can teachers use the knowledge concept relationship
for their teaching method?

We specifically investigate the reliability of learning tra-
jectories, that there have been addressed limitations of DKT
(Ding and Larson 2019). The collected responses are trans-
lated from Korean to English by the authors.

Survey Result

The expert responses on both modules are summarized in
Figure 6. The label of each column represents the index
number of questions. Overall, we received positive feedback
on the two modules for educational purposes.

Most of the experts were positive towards the role of the
exam score prediction module, recognizing that it helps stu-
dents enhance their mathematical skills and helps under-
stand students’ knowledge state. On the survey question 1
and 2, seven of the experts responded ‘Strongly Agree’.
Based on the survey responses, experts view that the Shapley
Values provide meaningful information on students’ knowl-
edge state, supporting the teacher-student interaction.
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Figure 6: Expert responses on the usability and reliability of
the framework.

For survey questions 3, 4, and 5, the experts exhibited a
decrease in their certainty towards reliability. On the Shapley
Values’ reliability, five experts responded ‘Agree’ and on the
reliability of the learning trajectory, three experts responded
‘Neutral’, and four experts responded ‘Agree’.

We assume that the increased uncertainty originates from
the lack of a baseline to evaluate our framework’s reliabil-
ity. No framework implemented machine learning models
for practical use in public mathematics education in South
Korea to the best of our knowledge. The experts also do not
have prior knowledge of the students that they examined dur-
ing the survey. The instances are randomly sampled from a
simulated student, which contributed to growing uncertainty
towards the reliability.

Survey Comments on Application to Teaching
Method

On the application of Shapley Value, we asked how teach-
ers can implement the Shapley Value to their teaching meth-
ods. Expert A addressed the local explanation nature of us-
ing Shapley Values to estimate the knowledge state of an
individual student: “... able to predict individual student’s
learning performance and identify academic weaknesses”.
Expert B reflected on the framework’s usability: “...pro-
vides student’s relative strengths and weaknesses reliably
and straightforwardly”.

Expert responses on the reliability of the learning trajecto-
ries confirmed the reliability or were uncertain in an applica-
tion for student assessment. Expert C mentioned “...conve-
nient to identify student’s performance.” and expert D com-
mented, “the student’s exercise progress corresponds to the
graph”. On the other hand, expert E pointed out the limita-
tion of DKT that “despite that learning trajectories are gen-
erally reliable, the change in a question’s probability looks
like they are affected by other exercises. It is difficult to iden-
tify the cause of the change”. Expert F also commented “it is
insufficient to evaluate a student only based on their correct
and incorrect responses”.

Although our framework does not aim to evaluate or as-
sess students, the expert’s comments provide meaningful in-
sight into the future research direction on evaluating student
performance with machine learning models.
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On the question of applying knowledge concept relation-
ship to teaching methods, expert F responded that the knowl-
edge concept relationship might be applied as “I) learn-
ing material recommendation algorithm, especially for math
subjects where the hierarchy among concepts are distinct,
2) development of curriculum and 3) help teachers to de-
termine what knowledge concepts that a student struggles
on”. Expert G suggested a potential application “...may be
employed to reconstruct curriculum” and expert G also ad-
dressed “...is useful when creating a new curriculum”.

Based on the expert’s comments, using Shapley Values,
learning trajectory, and the knowledge concept relationship
allows for the student knowledge estimation of teachers
and suggests a new approach to education, contributing to
teacher-student interaction in distance learning.

Related Work
Deep Knowledge Tracing

Knowledge Tracing (KT) is an attempt to model the chang-
ing students’ knowledge state during skill acquisition (Cor-
bett and Anderson 1994). The knowledge tracing model acts
as a tutor that tracks the current mastery level or knowledge
state of a student on knowledge concepts in probability. The
estimated knowledge state is beneficial for students’ individ-
ualized learning that teachers can effectively instruct appro-
priate topics depending on the student’s needs to improve
academic performance.

Bayesian Knowledge Tracing (BKT) is an approach to
model students’ knowledge state in a Hidden Markov Model
(HMM) with Bayesian inference (Yudelson, Koedinger, and
Gordon 2013). However, BKT suffers from the limitations
of assuming binary representation of student skill and inde-
pendence between the student’s skill.

Recently, deep learning models have been actively applied
to model the student knowledge state and show promising
performance. The first work to apply a deep learning model
to KT is Deep Knowledge Tracing, which uses the LSTM
network to predict a student’s response for the next time step
(Piech et al. 2015). Other works following the deep learning
approach include the use of Memory Networks (Zhang et al.
2017), and incorporation of Attention mechanisms (Pandey
and Karypis 2019).

These approaches demonstrate superior performance but
come with a limitation on explainability. To apply the deep
learning models in the domain of education, students’ com-
prehension of the model’s prediction is crucial because they
use the model’s prediction as a form of feedback for their
self-reflection in learning. (Conati, Porayska-Pomsta, and
Mavrikis 2018). Recent attempts that address explainability
augments a deep learning model with Item Response Theory
(Yeung 2019) or applies Layer-wise Relevance Propagation
(Lu et al. 2020).

eXplainable Artificial Intelligence

Many machine learning models are black-boxes, which the
internal workings of the model are opaque and obscure to
humans. As machine learning models are embodied in so-
ciety, understanding and trusting these opaque models’ pre-



diction is imperative. Especially for the sensitive domains
such as healthcare, military, and finance, the lack of explana-
tion of the model’s prediction becomes a restriction to apply
machine learning models in the process of decision-making
(Varshney 2016). Explaining the prediction increases trans-
parency, reliability, and trust towards the model in a real-
world application.

The scope of explaining an opaque model is divided into
interpreting the entire model behavior or comprehending a
single prediction (Adadi and Berrada 2018). Explaining a
specific decision of a model indicates an explanation is gen-
erated locally. Prominent local interpretability approaches
use saliency masks (Xu et al. 2015), class activations (Zhou
etal. 2016), game theory (Lipovetsky and Conklin 2001) and
backpropagation (Bach et al. 2015) to explain a prediction
on an input. The Shapley Value (Lundberg and Lee 2017)
employs game theory to draw the comparative importance
of variables to the model. This method has been applied to
the domains of healthcare (Lundberg et al. 2018) and the
environment (Stoji¢ et al. 2019).

Teacher-Student Interaction of Constructivism

The proposed Student Knowledge Prediction Framework
has its base on constructivism learning theory (Kanselaar
2002). Constructivism learning theory articulates how stu-
dents construct knowledge during a process of learning.

Cognitive constructivism by Jean Piaget regards a student
as a being who actively acquires knowledge rather than pas-
sively accepting knowledge from the environment (Piaget
and Cook 1952). This notion opposes the traditional learning
theory, where knowledge is delivered from a teacher to stu-
dents. Cognitive constructivism also emphasizes students’
current knowledge as a prominent element for the active
construction of knowledge (Liu and Chen 2010). The pro-
cess of using current knowledge to construct new knowledge
is considered as a critical aspect of cognitive constructivism
(Hoover 1996).

In cognitive constructivism, teachers play a central role
in the active knowledge construction of their students. Con-
structivist teachers guide through examining the compe-
tence of their student’s current knowledge state (Hoover
1996). Teachers should aid students’ active learning through
authentic tasks, experiences, collaboration, and assessment
(Christie 2005). In the same sense, constructivism also con-
siders teachers’ role as examining the student’s knowledge
and assisting them to apply the newly acquired knowledge.
(Mvududu and Thiel-Burgess 2012).

Social constructivism is strongly influenced by the the-
ories of Vygotsky (Vygotsky 1980). The social construc-
tivism suggest that knowledge is first constructed with social
learning of environments, then it is embodied and utilized
by students (Bruning, Schraw, and Ronning 1999). Social
constructivism emphasizes the process of sharing individual
perspectives through collaboration elaboration and encour-
aging students to construct knowledge together (Van Meter
and Stevens 2000).
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Conclusion

We propose a Student Knowledge Prediction Framework
that predicts and explains students’ current knowledge state
for teachers in distance learning. The framework consists of
two modules, the exam score prediction module and the next
question prediction module, which both present modeling
of a student’s current knowledge state. We used DKT and
XGBoost to model the knowledge state and utilized Shap-
ley Value to explain the prediction. Our implementation of
the model demonstrates adequate performance and received
positive evaluations from the expert survey.

The proposed Student Knowledge Prediction Framework
has two educational implications that reflect the construc-
tivism’s emphasis on the teacher’s role in the teacher-student
interaction in distance learning.

First, the framework operates as a pedagogical tool for
the significant learning of students. The assessment frame-
work’s main educational functionality is providing students’
knowledge state to teachers in distance learning. With the
framework’s current knowledge, teachers may adjust their
teaching methods to provide personalized academic guid-
ance tailored to the student’s knowledge state.

Second, we adopt the constructivist view of ideal learning,
emphasizing teacher-student interaction in distance learn-
ing. Presenting the individual knowledge state allows teach-
ers to estimate students’ current mastery level, which serves
as a basis for teachers to connect with students through tai-
lored feedback. The framework proposes an opportunity to
expand Al application that contributes to teaching and im-
proves student learning.

The framework will be implemented in public mathemat-
ics education and used by 700,000 elementary school stu-
dents of South Korea. We plan to investigate whether our
framework effectively enhances students’ academic perfor-
mance and interest in mathematics for future work. We hope
to advance our framework by implementing memory net-
works with an explainability feature. Further, we aim to ex-
plore implementing a reinforcement learning approach for
dynamic and adaptive student feedback in the e-learning
platform.
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