
Opponent Hand Estimation in the Game of Gin Rummy

Peter E. Francis, Hoang A. Just, Todd W. Neller
Gettysburg College

{franpe02, justho01, tneller}@gettysburg.edu

Abstract
In this article, we describe various approaches to oppo-
nent hand estimation in the card game Gin Rummy. We
use an application of Bayes’ rule, as well as both sim-
ple and convolutional neural networks, to recognize pat-
terns in simulated game play and predict the opponent’s
hand. We also present a new minimal-sized construction
for using arrays to pre-populate hand representation im-
ages. Finally, we define various metrics for evaluating
estimations, and evaluate the strengths of our different
estimations at different stages of the game.

Introduction
In this work, we focus on different computational strate-
gies to estimate the opponent’s hand in the card game Gin
Rummy, i.e. to evolve probabilistic beliefs about an oppo-
nent’s hidden cards. Hand estimation in Gin Rummy is par-
ticularly challenging because of the little information avail-
able, the unknown strategy of the opponent, and the stochas-
tic nature of the game.

The origins of the melding card game Gin Rummy
(McLeod 2020) are debated: some believe the game
stemmed from 19th-century whiskey poker, while others dis-
agree and say the game Conquian makes more sense as its
ancestor. Although Gin Rummy was one of the most popu-
lar card games of the 1930’s and 1940’s (Parlett 2008, 2020)
and remains one of the most popular standard deck card
games (Ranker 2020; BoardGameGeek.com 2020), it has
received relatively little Artificial Intelligence (AI) research
attention.

We explore variations of previous strategies used on other
games, as well as develop some new approaches. These al-
gorithms differ in the way simulated game data was ab-
stracted to make future predictions. The application of
Bayes’ rule and the use of simple and convolutional neu-
ral networks allows us to see how different constructions
lead to different estimation powers. In the process of devel-
oping a useful image for convolution-based deep learning
and pattern recognition, we introduce the idea of an ambi-
superpermutation, as well as prove minimal length proper-
ties. We also introduce various metrics of evaluating the suc-
cess of a hand estimation, and show one way this estimation

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can make a difference in a game play strategy. We conclude
with a demonstration of a simple deterministic application of
our hand estimation that produces a statistically significant
advantage for a player.

Gin Rummy
Gin Rummy is one of the most popular 2-player card games
played with a standard (a.k.a. French) 52-card deck. Ranks
run from aces low to kings high. The object of the game is to
be the first player to score 100 or more points accumulated
through the scoring of individual hands.

The play of Gin Rummy, as with other games in the
Rummy family, is to collect sets of cards called melds.
There are two types of melds: “sets” and “runs”. A set
is 3 or 4 cards of the same rank, e.g. {3♣, 3♥, 3♠},
or {K♣,K♥,K♠,K♦}. A run is 3 or more cards
of the same suit in sequence, e.g. {5♣, 6♣, 7♣}, or
{9♥, T♥, J♥, Q♥,K♥}. Melds are disjoint, i.e. do not
share cards.

Cards not in melds are referred to as deadwood. Cards
have associated point values with aces being 1 point, face
cards being 10 points, and other number cards having points
according to their number. Deadwood points are the sum of
card points from all deadwood cards. Players play so as to
reduce their deadwood points.

For each hand of a game, the dealer deals 10 cards to each
player. (There are different systems for deciding the next
dealer; we will simply start with a random dealer and al-
ternate players as dealer across the entire game.) After the
deal, the remaining 32 cards are placed face down to form a
draw pile, and the top card is turned face-up next to the draw
pile to form the discard pile. The top of the discard pile is
called the upcard.

In a normal turn, a player draws a card, either the upcard
or the top of the draw pile, and then discards a card. The
player may not discard a drawn upcard but may discard a
card drawn face down. For the first turn, play starts with the
non-dealer having the option to take the first turn by drawing
the upcard. If the non-dealer declines this option, the dealer
is given the option. If both decline, the non-dealer must take
the first turn drawing from the draw pile.

In the event that the hand has not ended after a turn with
only 2 cards remaining in the draw pile, nothing is scored,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

15496

all cards are shuffled, and the hand is replayed with the same
dealer.

After a player has discarded, if that player’s hand has 10
or fewer deadwood points, that player may knock, i.e. end
the hand. (Often this is indicated by discarding face-down.)
The hand is then scored as follows: The knocking player dis-
plays melds and any deadwood. Next, if any deadwood was
displayed, the non-knocking player may reduce their dead-
wood by laying off cards, i.e. adding cards to the knock-
ing player’s melds. Then, the non-knocking player displays
melds and any remaining deadwood.

If the knocking player had no deadwood, they score a
25-point gin bonus plus any opponent deadwood points. If
the knocking player had less deadwood than their opponent,
they score the difference between the two deadwood totals.
Otherwise, if the knocking player had greater than or equal
to their opponent’s deadwood points, the opponent scores a
25-point undercut bonus plus the difference between the two
deadwood totals.

A player scoring a total of 100 or more points wins the
game.

Prior Work
There have been several approaches to estimate the oppo-
nent’s hand in imperfect information card games. We pro-
vide two works that differs completely in their complexity
of computation during the game.

• DeepStack Approach. DeepStack (Moravčı́k et al. 2017)
was used to solve Heads-Up No-Limit Poker (HUNL)
which, similarly to Libratus (Brown and Sandholm 2018),
was able to beat professional human poker players. The
DeepStack approach is to calculate Counterfactual Regret
Minimization (CFR+) to find a mixed strategy that ap-
proximates a Nash Equilibrium strategy in order to maxi-
mize the expected utility. First, it runs the CFR+ algorithm
for a limited moves ahead. Then, later in the game Deep-
Stack uses two different neural networks to approximate
the counterfactual value of the hand (one after the flop and
one after each turn), which were were trained beforehand,
so that it does not to re-run the CFR+ algorithm. Since the
counterfactual value of the hand is recalculated after each
turn, DeepStack does not need to save the whole strategy
throughout the game, and instead performs continual re-
solving. A similar implementation for Gin Rummy would
be too time intensive for our goals, since DeepStack’s na-
ture is to consider a new game state and recalculate a new
strategy after each turn.

• AI Factory Approach. This heuristic opponent hand es-
timation used in AI Factory Ltd.’s Gin Rummy Free app
was described online by Jeff Rollason (Rollason 2007) but
not fully specified. Since AI Factory needed to implement
a hand estimation for Gin Rummy in their mobile appli-
cation, it needed to have a fast hand estimator for the AI
bot in the game. Their model used the linear evaluation
which summed the value of a meld times the probability
that this meld can occur in the player’s hand, then that
sum was subtracted by the value of that meld times the
probability that it could happen in the opponent’s hand. If

the given card can be melded in more sets or runs, then
the value is increased, which means that there is a higher
chance of getting that specific meld. AI Factory hand esti-
mation also assumed that if the opponent discarded a card
or refused to pick up a face up card then all neighbour-
ing cards (cards of the same rank and cards of the same
suit with adjacent rank) are less likely to be in opponent’s
hand. Respectively, if the opponent picked up the face up
card, then the neighbouring cards are more likely to be in
opponent’s hand. Therefore, probability of each card start-
ing with a midpoint probability of 0.5 will be scaled up or
down accordingly to the opponent’s decision. For exam-
ple, when an opponent is discarding a 6♥, the probabili-
ties of adjacent cards 5♥ and 7♥ decrease. However, the
fact that the opponent might have a meld consisting of 7♥
is not taken into account. Thus, the AI Factory approach
does not provide flexibility for different player strategies.

Proposed Algorithms
There are multiple ways to approach opponent hand estima-
tion and we show three different models. What is common
between the algorithms is their data-driven design: each uses
play data from a large sampling of simulated games.

Bayesian Estimation from Abstracted Play Data
One of our novel approaches began as an attempt to take a
heuristic approach to opponent hand estimation and derive
a similar approach that is Bayesian and play data driven.
While the algorithm is not specified in (Rollason 2007), an
opponent drawing a face-up card increases the estimated
probability of having same rank or adjacent suit cards, and
similarly, an opponent discarding a card or refusing a face
up card decreases the probability.

Our approach begins with Bayes’ Rule and its simple pro-
portional form:

P (A|B) =
P (B|A)P (A)

P (B)

P (A|B) ∝ P (B|A)P (A)

Here A represents the atomic sentence that the opponent
holds a specific card, and P (A) is the probability that the
opponent holds that card. Event B is an observation of an
opponent’s draw and discard behavior on a single turn. Prior
to event B we believe the probability of the opponent hold-
ing card a specific card is P (A). After event B, our posterior
belief of P (A|B) is proportional to the frequency of observ-
ing such behavior of play data where the same draw/discard
event while holding that card P (B|A) times our prior P (A).

We could naively collect play data to find the likelihood
of event B conditioned on A, but we may apply a help-
ful abstraction that enforces a rational symmetry concern-
ing (in)equality of the suits of the card in consideration,
the card drawn, and the card discarded. For example, we
have no reason to believe that the likelihood of the oppo-
nent drawing Q♣ face-up and discarding K♠ conditioned
on the opponent holding K♣ should be any different than

15497

that of drawing Q♥, discarding K♦, and holding K♥, re-
spectively. What matters is the suited/unsuited relationships
of the draw/discard cards to the potentially held card.

For this reason, we abstract the frequency data we collect
from play on draw/discard events for each card with respect
to:
• Whether or not a card was drawn face-up
• Rank of the face-up card
• Rank of the card discarded
• Whether the card was suited with the face-up card and/or

discarded card
Play data was collected from 10, 000 simulated games be-

tween two simple Gin Rummy players that (1) only drew
face-up when the card completed or extended a meld, (2)
discarded randomly from discards that would maximally re-
duce deadwood, and (3) knocked at earliest opportunity. Far
from optimal, this simple play nonetheless was adequate to
capture general statistics that adjusted probabilities similar
to the AI Factory Ltd. approach. In cases where fewer than
50 abstracted observations were observed, we opted not to
update our hand estimation. Cards known to (not) be in an
opponent’s hand are probability 0 or 1 and are not updated.

Given that each player starts with 10 cards of a 52 card
deck, our initial probability for a player holding a card is 0
for those cards in our own hand, and 10

42 for the 42 cards that
could be in the opponent’s 10-card hand. After each oppo-
nent turn, we checked our frequency data to see if we had
a minimum of 50 observations from which to form our ex-
pectation. If not, we conservatively do not revise our hand
estimation. If so, we multiply each unknown card estimate
by out frequency-based likelihood.

We then renormalize probabilistic estimates of unknown
cards so that the estimates sum to the number of unknown
cards in the opponent’s hand, and then fit the probabilities
through a logistic curve to ensure they are no more than 1.

Simple Neural Network
In this approach, we trained a multi-layer network on a few
features of the current game state to predict the opponent’s
hand. Figure 1 shows a diagram of the input array to the
network (OHE denotes “one-hot encoding” over the range
of indices).

The layers of the network are all Dense and are activated
with the sigmoid function. Each has size 100, 85, 60, and 52
(this layer has one node for each card), respectively. Batch
sizes and epochs were hand-tuned.

Since this network is trained on the current probability
distribution, multiple cycles (generations) of data-collection
and training were used to arrive at a final model.

Shankar CNN
This last model is largely influenced by Dr. Pramod
Shankar’s method of “Figuring the Opponent’s Hand” and
how he determines safe discards using a plug rule (Shankar
1994). First Shankar’s Plug Rule is used to create a 4 × 13
array. Then, the rows of the array are duplicated, permuted,
and ordered to create a 17 × 13 array using the (newly

Figure 1: Array Input to Simple Neural Network

coined) ambi-superpermutation on four elements. Finally,
the 17 × 13 array was processed through the Convolutional
Neural Network with ReLU activation functions, filter sizes
16, 32, and 64, each with kernel size 3× 3, and max pooling
with size 2× 2.

The Plug Rule The Plug Rule is used to inform the player
about which cards are safe discards and which cards are in
the opponent’s melds. We applied Shankar’s Plug Rule to
our hand estimator, since it assures the player about the cards
certain to be in the opponent’s hand or to be a conservative
safe discard. First, we will introduce the Plug Rule for safe
discards.
A given card A is considered a safe card if all of the follow-
ing conditions are satisfied:

• The opponent has discarded at least one card of the same
rank as card A, or the player knows that at least two cards
of the same rank as card A are not in the opponent’s hand.

• {A,B,C} is a run and at least one of B or C is known not
to be in the opponent’s hand. E.g. consider 6♣, for which
there are three possible containing runs: {4♣, 5♣, 6♣},
{5♣, 6♣, 7♣}, and {6♣, 7♣, 8♣}. The card 6♣ is safe if,
in each of these runs, at least one of the other cards is
known to not be in the opponent’s hand.

Second, we provide the Plug Rule for known cards in the
opponent’s hand. If the opponent picked up a face-up card
B, we mark B as known and assume that B is part of a set
(or run) if it is possible and if the player knows that B cannot
make a run (or set) in the opponent’s hand. The cards that B
melds with are assumed to be in the opponent’s hand and are
marked as known cards.

We implemented this Plug Rule and created a 4×13 array
with row and column corresponding to suit and rank, respec-

15498

tively. This Shankar array kept track of each card, where
each cell was numbered as follows:

• −2 if the card is in the players’ hand,

• −1 if the card is a safe discard or is not in the opponent’s
hand,

• 1 if the card is in the opponent’s hand or likely to be in the
opponent’s meld, and

• 0 if the card is unknown.

For example, if the player’s hand consists of
{A♣, A♠, 5♦, 6♣, 6♠, 7♠, 8♠, J♣, Q♦,K♠} and the
face-up card is K♥, the Shankar array for the opponent’s
hand is as follows:

A 2 3 4 5 6 7 8 9 T J Q K
C ♣ -2 0 0 0 0 -2 0 0 0 0 -2 0 0
H ♥ 0 0 0 0 0 0 0 0 0 0 0 0 -1
S ♠ -2 0 0 0 0 -2 -2 -2 0 0 0 0 -2
D ♦ 0 0 0 0 -2 0 0 0 0 0 0 -2 0

After, the opponent has declined the face up card K♥,
the table remains unchanged since we knew earlier that K♥
was not in the opponent’s hand. However, now the Plug Rule
comes to play. Let us observe that K♥ and K♠ are not in
the opponent’s hand and Q♦ is in our hand. Using, the Plug
Rule, we have that K♦ is a safe discard, so we can mark it
as safe. Similarly, using the same rule, we can conclude that
K♣ is also a safe discard. Thus, we get the following table:

A 2 3 4 5 6 7 8 9 T J Q K
C ♣ -2 0 0 0 0 -2 0 0 0 0 -2 0 -1
H ♥ 0 0 0 0 0 0 0 0 0 0 0 0 -1
S ♠ -2 0 0 0 0 -2 -2 -2 0 0 0 0 -2
D ♦ 0 0 0 0 -2 0 0 0 0 0 0 -2 -1

Then, the opponent discards an 8♣ and the player does not
pick it up, so 8♣ becomes−1 in the Shankar array, since we
know that the opponent does not contain it; afterwards, we
pick 7♣ up, and the table looks as follows:

A 2 3 4 5 6 7 8 9 T J Q K
C ♣ -2 0 0 0 0 -2 -2 -1 0 0 -2 0 -1
H ♥ 0 0 0 0 0 0 0 0 0 0 0 0 -1
S ♠ -2 0 0 0 0 -2 -2 -2 0 0 0 0 -2
D ♦ 0 0 0 0 -2 0 0 0 0 0 0 -2 -1

Then, the player discards 7♣, and the opponent picks it
up. Since we know that the opponent does not contain 6♣
and 8♣ and the player knows nothing about 7♥ and 7♦, then
using the Plug Rule, we assume that the opponent picks 7♣
to make a set of 7s, so we get the following table:

A 2 3 4 5 6 7 8 9 T J Q K
C ♣ -2 0 0 0 0 -2 1 -1 0 0 -2 0 -1
H ♥ 0 0 0 0 0 0 1 0 0 0 0 0 -1
S ♠ -2 0 0 0 0 -2 -2 -2 0 0 0 0 -2
D ♦ 0 0 0 0 -2 0 1 0 0 0 0 -2 -1

This is an excerpt of the use of the Plug Rule in the
Shankar array. These 4× 13 Shankar arrays are then passed
on to the Convolutional Neural Network.

Convolutional Neural Network We decided to use a
CNN in order to detect visual patterns on the Shankar ar-
ray that might correspond to melds. However, noting that
the order of the rows (i.e. suits) can obscure the detection of

Ambi-Superpermutations
Definition 1. An ambi-superpermutation on n ele-
ments (n-ASP) is a sequence of {1, . . . , n} that con-
tains each permutation of {1, . . . , n} as a continu-
ous subsequence (“subpermutations”) in some di-
rection.

For example, 12312 is a 3-ASP, since it contains
123, 132, and 213 as subpermutations. It is useful
to draw a diagram that marks each time a character
in an ASP is used in a subpermutation. The “star-
diagram” for the ASP 12312 follows.

* * *
* * *

* * *
1 2 3 1 2

Observe that

12341231423124312

is an 4-ASP of length 17 and has the following star-
diagram.

* * * * * * * * * * * *
* * * * * * * * * * * *

* * * * * * * * * * * *
* * * * * * * * * * * *
1 2 3 4 1 2 3 1 4 2 3 1 2 4 3 1 2

Lemma 2. If P is a 4-ASP containing two adjacent
elements a and b that are both used in 4 subpermuta-
tions, then P contains the subpermutation bcdabcda,
where {a, b, c, d} = {1, 2, 3, 4}.

Proof. Without loss of generality, let a = 1 and as-
sume a precedes b. As a must be the first element
in a subpermutation, we can assume a 6= b = 2,
and that the following two elements are 3 and 4.
Since b must be the first element of a subpermuta-
tion, the next element after 4 is 1; a must be the sec-
ond, third, and fourth element of a subpermutation,
so the three elements before a are 2, 3, and 4. Thus
bcdabcda = 23412341.

Theorem 3. The smallest 4-ASP has a length of 17.

Proof. If we consider the star-diagram for the 4-
ASP above, we see that each of the 12 permutations
of 4 elements only appears once, and that there are 3
element’s columns that contain 4 stars; the diagram
has a total of 48 stars. It is sufficient to prove that
there is no 4-ASP of length 16, for this then proves
there is no 4-ASP of length less than 16.
Suppose P is a 4-ASP of length 16, so by the pigeon
hole principle, the star-diagram of P contains two
adjacent elements with 4 stars each. Then by Lemma
2, P contains two adjacent and repeating subper-
mutations, so its star-diagram must contain (exactly)
48 + 4 = 52 stars. Then without loss of generality,
P = 1234123412341234, contradicting that P is a
4-ASP.

15499

sets, we were motivated to try a novel approach of creating
an augmented representation that makes it possible to detect
shapes and patterns that may be relevant for set recognition
and related patterns. We compactly ensured that every per-
mutation of the four suits appeared in the order of the rows.
The notion of a “superpermutation” was helpful in guiding
our decision to modify and extend the Shankar array, but
since we only required that every permutation was included
in the row ordering in some direction, we modified the con-
cept, and developed the idea of an “ambi-superpermutation”
(ASP) to fit our needs.

We verified with brute force computation that the minimal
size of a 4-ASP is 17, which is about half the size of the min-
imal size superpermutation on 4 elements which has length
33. This consideration of symmetry reduced the complexity
of the array and the computation time.

Experiment Design
It is important to note that since there are many ways to play
Gin Rummy, without assuming some sense of how your op-
ponent makes decisions, it is not possible to gain any insight
into their hand. Therefore, when comparing the algorithms
outlined above, we study a simple player that follows three
rules:

• Pick a face-up card only if it makes a meld.

• Choose a discard card randomly from cards that maxi-
mally decrease deadwood points.

• Knock as soon as possible, i.e. deadwood points less than
or equal 10.

In order to judge the three methods of hand estimation,
we define five metrics that will evaluate their effectiveness
by comparing the predicted probability distribution and the
actual opponent’s hand (a probability distribution of 0s and
1s).

The estimators are used independently, but simultane-
ously, on 50,000 simulated games between two simple play-
ers. Clearly, as each game progresses, the estimators will
get more information about the opponent’s hand, so are ex-
pected to produce different metric scores. Therefore, we will
track each estimator’s metric scores over the course of each
game.

Metric Design
Mean Squared Difference The mean squared error
is simply the average coordinate value of the squared
coordinate-wise difference between the two arrays. This is
a considerably basic measure of correlation; the smaller the
mean squared error, the better the approximation.

Probabilistic Integrity Loss Since the opponent is always
holding 10 cards, the sum of the predicted probabilities
should sum to 10. The Probabilistic Integrity Loss measures
the percent difference the sum of the predicted probabilities
is from 10; the lower the Probabilistic Integrity Loss is, the
better the approximation.

Minimum Top Largest The Minimum Top Largest metric
counts the minimum number of highest probability entries in
the predicted probability opponent hand array so that the 10
cards that are actually in the opponent’s hand are included.
The minimum value of this metric is 10, and lower values
rank the estimation higher.

Top n Cards This metric counts the number of cards that
are in the opponents hand and have one of the ten largest
predicted probabilities. This metric gives an idea of how
well the estimator guesses the opponent’s hand in comple-
tion. The higher this metric is, the better the estimator is.
This is similar to “precision at n” for information retrieval
(Craswell 2009).

Drift Area We use the Drift Area metric to encapsulate
how accurate an estimator’s prediction is of the k most prob-
able cards in the opponent’s hand, for all k ∈ {1, . . . , 10}.
The algorithm to compute the Drift Area d is as follows:

• Initialize i and d to 0.

• For each k ∈ {1, . . . , 10},
– while the number of the top i probability cards is less

than k, increment i by 1;
– add the area (11− i)(i− k) to d.

This metric penalizes for errors in predicting one of the
“best” guesses more than errors in predicting one of the
lesser certain probabilities. This is related to “discounted
cumulative gain” for information retrieval (Järvelin and
Kekäläinen 2009).

Experimental Results
The following plots show the data collected at each turn (af-
ter the turn decisions are made) from 50,000 games between
two simple players. The values of N that are shown along
the bottom of each plot are the number of samples averaged
for each data point (the number of times a simulated game
reached that turn).

The shaded region shows the standard error of each aver-
age and is generally only discernible towards the maximum
turn number. In each plot, red, blue, and green shows the
performance of the Simple Neural Network, Bayesian, and
Shankar CNN estimators, respectively.

Figure 2: Mean Squared Difference vs. Turn Number

15500

Figure 3: Probabilistic Integrity Loss vs. Turn Number

Figure 4: Minimum Top Largest vs. Turn Number

By the Mean Squared Difference metric, the Simple Neu-
ral Network and Bayesian estimators are nearly evenly
matched in the early game. Shankar CNN pulls ahead in mid
game and by late game, Bayesian narrowly beats the other
two (Fig. 2).

By the Probabilistic Integrity Loss metric, the Simple
Neural Network Hand Estimator is closer to 0 than other two
hand estimators until turn 10, after turn 10 Bayesian Hand
Estimator is closer to 0 than other two hand estimators. Af-
ter turn 16, Simple NN Hand Estimator and Shankar CNN
Hand Estimator are matched until the end of the game (Fig.
3).

By Minimum Top Largest metric the Simple Neural Net-
work Hand Estimator and Bayesian Hand Estimator are bet-
ter than Shankar CNN. After turn 12, Shankar CNN and
Cayesian are matched up with a little advantage for Shankar
up to turn 24 and with an advantage for Bayesian after
turn 24. The Simple Neural Network performs significantly
worse than both of the other estimators after turn 10 (Fig. 4).

By the Top n Cards metric, the Simple Neural Network
estimator is preferable in the early game; by the mid game
through the end, the Shankar CNN remains to be the better
estimator (Fig. 5).

By the Drift Area Metric, the Simple Neural Network is
the better estimator in the early game, and then the Shankar
CNN pulls ahead until the end of the game (Fig. 6).

We observe that each estimator has periods of the game
where it excels in one or more metrics for success. By pro-

Figure 5: Top n Cards vs. Turn Number

Figure 6: Drift Area vs. Turn Number

viding these various estimators, a player could switch be-
tween using the one expected to be most advantageous for
each situation in the game. In the early game (up to the
first 3 turns) we recommend a simple neural network or the
Bayesian hand estimator. Then, in the second stage of the
game, from turn 4 to turn 9, one should switch to the simple
neural network. In the middle game, between turn 10 and
turn 28, we recommend changing to the Shankar CNN es-
timator. Lastly, from turn 29 until the endgame, either stick
to Shankar CNN or change to the Bayesian hand estimator.
Since each of these estimators are time efficient, altering be-
tween them will not significantly increase the computation
time. Thus, with no one estimator consistently dominant, an
ensemble of estimators is recommended at this time.

Hand Estimation Application
There are multiple ways that hand estimation can be adopted
to the Gin Rummy player’s strategy; it can be used not only
to decide which card to discard safely, but it may also be
used to decide whether to pick up the face-up card or not.
Moreover, the hand estimation is able to help the player
judge the possibility of the opponent either going for a gin
or for a low deadwood score which further influences the
player’s knocking strategy. We selected a simple strategy for
deciding a safe discard to show the potential benefit of using
hand estimation in Gin Rummy.

We used a Simple Player against a modified a Simple
Player, which played with a modified discard rule:

15501

Among the top three safest discards, discard the card that
decreases the deadwood score the most.

In deciding the safest discard card, this modified player
used the Shankar CNN Hand Estimator, and after playing
against the Simple Player for 100, 000 games, it won ap-
proximately 55% of all matches. This small implementation
of hand estimation has shown already an advantage over the
Simple Player.

Future Work
Here, we have implemented approaches to opponent hand
estimation, and have applied it for one simple enhancement
to decision-making. However, hand estimation can be used
in more intricate and diverse strategies at each player’s de-
cision, i.e. whether to pick up a face up card, discard a card,
knock, or go gin. Moreover, we would like to improve the
hand estimator by improving adaptability: a player that dy-
namically learns which of the hand estimators performs bet-
ter against a given play style. A hand estimator that could
better estimate an opponent’s strategy could better predict
opponent card probabilities. However, as with the case of
DeepStack, this approach would require more computation.
Therefore, more work has to be done on how to reduce time
complexity of the hand estimation.

Furthermore, we limited our work to the study of a player
that makes relatively simple decisions. The same techniques
could be applied to train on, compete, and aid more ad-
vanced players. We predict that with a stronger player, the
CNN hand estimation especially could be more effective, as
it trains its estimation model from a better play.

The application of the estimation was not fully developed
here, so another avenue for continued work is to compare
the effectiveness of the player that uses the estimation. We
would like to see where our estimator falls between the ex-
tremes of a trivial “null” estimator with equiprobable esti-
mates and an “omniscient” estimator that can cheat and re-
port complete information of the opponent’s hand.

Conclusions
In this paper, we have introduced and evaluated some meth-
ods for opponent hand estimation. With the use of Shankar’s
Plug Rule, we have built a Convolutional Neural Network
that estimates the opponent’s hand through pattern recogni-
tion. To improve the readability, we developed the theory of
an ambi-superpermutation in order to efficiently pre-process
the input and represent the hand as a CNN image input with
the suit-rows of data in a Shankar Array. With a simple ap-
plication of such hand estimation to a simple player’s dis-
card decisions, we observed a statistical win-rate advantage
of 5% against the player without such hand estimation.

By comparing different approaches, we concluded differ-
ent estimators dominate at different turn ranges of the game.
Thus, we would recommend an ensemble of our estimators:
use a simple neural network or the Bayesian hand estima-
tor during the first 3 turns, use the simple neural network
between turns 4 and 9, between turns 10 and 28 use the
Shankar CNN estimator, and use the Shankar CNN or the
Bayesian hand estimator after turn 29.

Acknowledgments
This work was supported, in part, by the Cross-Disciplinary
Science Institute at Gettysburg College (X-SIG).

References
BoardGameGeek.com. 2020. Most popular standard deck
card games. URL https://tinyurl.com/bggstdcardgames. Ac-
cessed: 2020-12-12.
Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science 359(6374): 418–424. ISSN 0036-8075. doi:
10.1126/science.aao1733. URL https://science.sciencemag.
org/content/359/6374/418.
Craswell, N. 2009. Precision at n. URL https://doi.org/10.
1007/978-0-387-39940-9 484.
Järvelin, K.; and Kekäläinen, J. 2009. Discounted Cumu-
lated Gain. URL https://doi.org/10.1007/978-0-387-39940-
9 478.
McLeod, J. 2020. Gin Rummy - Card Game Rules. URL
https://www.pagat.com/rummy/ginrummy.html. Accessed:
2020-12-12.
Moravčı́k, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowl-
ing, M. 2017. DeepStack: Expert-level artificial intelligence
in heads-up no-limit poker. Science 356(6337): 508—-
513. ISSN 1095-9203. doi:10.1126/science.aam6960. URL
http://dx.doi.org/10.1126/science.aam6960.
Parlett, D. 2008. The Penguin Book of Card Games. Pen-
guin. ISBN 9780141037875. Accessed: 2020-12-12.
Parlett, D. 2020. GIN RUMMY “The game of the stars”.
URL https://www.parlettgames.uk/histocs/ginrummy.html.
Ranker. 2020. The Most Popular Fun Card Games. URL
https://www.ranker.com/crowdranked-list/most-fun-card-
games. Accessed: 2020-12-12.
Rollason, J. 2007. Predicting Game States in Imper-
fect Information Games. URL https://www.aifactory.co.uk/
newsletter/2007 02 imperfect info.htm.
Shankar, P. 1994. How to Win at Gin Rummy: Playing for
Fun and Profit. Brattleboro, Vermont, USA: Echo Point
Books & Media. ISBN 9781626541979.

15502

