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Abstract

Devices like solar cells, batteries etc. often comprise of a host
of material types including organic, inorganic and hybrid ma-
terials. The fabrication procedures for these devices involve
screening or designing the right set of materials and then sub-
jecting them to a sequence of operations under very specific
conditions. The performance characteristics of a device criti-
cally depend on the materials used in its fabrication, the spe-
cific operations carried out, their operating conditions and the
specific sequence in which they are carried out. The space
of potential materials, operations and operating conditions is
vast, and selecting the right combination thereof to achieve
the desired characteristics is a knowledge intensive activity.
A large amount of such device fabrication knowledge is avail-
able in the form of publications, patents, company reports
and so on. In this paper, we present a system that system-
atically extracts this knowledge from materials science liter-
ature. The extracted knowledge is represented as knowledge
graphs conforming to an ontology that can be queried to make
informed decisions in device fabrication procedures. The sys-
tem first identifies the set of relevant paragraphs that contain
fabrication knowledge. It then employs state of the art entity
and relation extraction models to identify instances of oper-
ations, methods, materials, etc. and relations between them.
The system then applies an unsupervised algorithm to iden-
tify sequences of operations representing fabrication proce-
dures. We applied our system on solar cell fabrication knowl-
edge extraction and achieved good performance. We believe
our results provide much needed impetus for further work in
this area.

1 Introduction
Technologies like solar cells, lithium-ion batteries, light
emitting diodes etc. have benefited enormously as a result
of fundamental research in materials science. Traditional ap-
proaches for screening and design of these materials include
combination of tedious experimental and theoretical char-
acterization. Lately, in-silico techniques like computational
material science and machine learning based property pre-
diction models are being leveraged to help guide the materi-
als design process (Jain et al. 2019b,a). Although these tech-
niques have shown great promise in reducing time and effort
for materials design/screening, they still require excessive
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experimental validation in order to prove their correctness.
Moreover, it is not often known a priori that a promising ma-
terial screened via the above procedure when incorporated
with other materials during the device fabrication process,
shall result in expected device performance. Devices like
solar cells, batteries etc. often comprise of more than one
material, are subjected to various operations under very spe-
cific conditions, before finally being characterized for de-
sired performance (Chen et al. 2019; Kaur et al. 2019). A
large amount of such device fabrication knowledge is avail-
able in the form of publications, company reports, patents
and so on (Jena, Kulkarni, and Miyasaka 2019). However, as
this knowledge is present in textual form, it is usually frag-
mented and there is no consolidated structured view which
can be queried or analysed. A knowledge graph for device
fabrication along with suitable query and analysis tools can
greatly reduce time and efforts by providing good starting
points for fabrication design space exploration and guiding
the design process.

In this work, we present a system for automatically ex-
tracting device fabrication knowledge from materials sci-
ence literature. We first present a comprehensive ontology to
represent the device fabrication knowledge. It provides con-
structs to represent the sequence of operations, their param-
eter set points, materials used, device transformation, and
so on. The extracted knowledge is represented using knowl-
edge graphs conforming to this ontology. The system first
employs a relevance classifier to identify the set of para-
graphs that contain device fabrication knowledge. It then
employs state of the art models for entity and relation ex-
traction to identify domain entities i.e. instances of domain
concepts such as operation, material, method, etc. and rela-
tions between them. These algorithms extensively leverage
prior domain knowledge in the form of pre-trained word em-
bedding models and dictionaries. Finally, the system applies
an unsupervised algorithm to identify the sequence of oper-
ations that make up a device fabrication procedure. The ex-
tracted entities, relations and procedures are then combined
to create the knowledge graph. We used our system to ex-
tract solar cell fabrication knowledge from materials science
literature and achieved good performance.

The major contributions of this work are: (1) A compre-
hensive ontology to represent device fabrication knowledge;
(2) A system for automatically extracting knowledge graphs
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conforming to the ontology from materials science literature
using state of the art entity and relation extraction models;
and (3) demonstration of our system on solar cell fabrication
knowledge extraction. The rest of the paper is organized as
follows. In the next section, we discuss the relevant related
work. Section 3 discusses the device fabrication knowledge
extraction problem in detail. We then present our knowledge
graph extraction system in section 4 and discuss our exper-
iments on solar cell fabrication in section 5. Section 6 then
discusses how the extracted knowledge can be used by our
framework for device fabrication. We finally conclude our
paper and discuss future work directions in section 8.

2 Related Work
With recent advancements in in-silico methods for material
design showing promising results (Gómez-Bombarelli et al.
2016), focus has now been shifted to computational synthe-
sis planning. Organic chemistry extensively leverages chem-
ical reactions databases and has been shown to achieve near
human accuracies at retrosynthesis routes prediction (Segler,
Preuss, and Waller 2017). On the other hand, inorganic ma-
terial synthesis knowledge is primarily present as natural
language text in scientific articles. Recently, Kim et al. have
proposed a framework for extracting synthesis parameters
of oxide materials from unstructured sources (Kim et al.
2017b,a). Efforts have also been initiated to explore meth-
ods for structured representation of synthesis routes of inor-
ganic materials (Mysore et al. 2017; Kuniyoshi et al. 2020).
All this infrastructure is eventually being used to develop
a digital counterpart for planning inorganic materials syn-
thesis (Kim et al. 2020), which would help accelerate the
material discovery-design cycle. In this work, we attempt
to address a much broader issue, that of device fabrication
knowledge extraction, which entails additional complexity
due to involvement of multiple materials and operations and
their effect on device performance.

AI applications have long been using various knowl-
edge representation formalisms such as semantic networks,
frames, ontologies etc. for explicit domain modelling. Re-
cently, knowledge graphs have emerged as a standard way
to store domain entities and relations as they facilitate
advanced analytics and query support. These knowledge
graphs are either manually created or automatically pop-
ulated using various information extraction techniques (Ji
et al. 2020). Recurrent neural network based models such
as BiLSTM, GRU, etc. in deep learning are extensively used
for this purpose. Recently, transformer (Vaswani et al. 2017)
based models have emerged as a strong alternative. In this
work, we experiment with variants of these models.

3 Device Fabrication Knowledge Extraction
Device fabrication typically involves identifying the right set
of materials and then subjecting them to various operations
under very specific conditions. The final performance char-
acteristics of the device depend not just on the parameter set
points, methods, etc. of the individual operations but also on
the sequence in which these operations are performed.

We present a comprehensive ontology for representing

device fabrication knowledge. An ontology provides a for-
mal mechanism to model the domain of interest in terms of
the concepts occurring in the domain and relations between
them (Gruber 2009). Figure 1 shows the concepts and re-
lations present in the device fabrication ontology. The class
Device represents the products that are being developed. A
device has an associated fabrication process which captures
the procedure involved in its fabrication in the form of a
sequence of operations (using next relation). The class Op-
eration represents an atomic process performed on a mate-
rial and/or device with a particular set of parameters. A pa-
rameter is a measurable factor like time, temperature, speed
etc., required for the operation. An operation may use one or
more materials and apply a specific method using an appara-
tus to achieve the desired state of the device and/or material.

The class Material represents materials used in an opera-
tion. A material may be a chemical compound, a chemical
element, a solution or a mixture. Different materials may
play different roles depending on how they are used in an
operation. A material that is used as an input to the opera-
tion is referred as an inMaterial (e.g. reactants in a synthesis
operation). Similarly, a material which is the outcome of an
operation is referred as an outMaterial (e.g products of syn-
thesis operation). Whereas, a material that is necessary to
carry out the operation in an efficient manner but not trans-
formed chemically is referred as a secondary material (e.g.
materials such as catalyst and promoter).

The class Characterization describes the performance of
the device, which is a measure of the property the device
exhibits when subjected to specified conditions. The condi-
tions here refer to the set of operating parameters used dur-
ing characterization.

Our goal is to mine knowledge graphs corresponding to
this ontology. A knowledge graph consists of domain enti-
ties and relations between them. Ontology specifies the types
of entities and relations we are interested in. We apply state
of the art entity and relation extraction models for knowl-
edge graph extraction. In this work, we demonstrate our sys-
tem on solar cell fabrication knowledge extraction.

3.1 Perovskite Solar Cells
Perovskite solar cells (PSC) have recently emerged as one
of the most promising photovoltaic technology (Park 2020).
A typical PSC fabrication involves sequential deposition of
4 to 5 materials on the conductive substrate, where each ma-
terial serves a specific purpose. In the normal architecture,
the conductive substrate is coated with an electron transport
layer (ETL) followed by the light absorbing material (per-
ovskite in this case), a hole transport layer (HTL) and even-
tually an electrode (Kim et al. 2012). The amount of material
options available at each of these layers are enormous (bar-
ring maybe the electrodes), thus giving rise to several solar
cells, with varied performances (Fu et al. 2018). Even with
the same set of materials, there could be several fabrication
routes varying in operation specific details again giving rise
to solar cells with diverse characteristics. Thus, it is often a
daunting task for a human to process such scattered knowl-
edge to arrive at crucial decisions while fabricating such
devices. Figure 2 shows an example text fragment describ-
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Figure 1: Ontology for representing device fabrication knowledge
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Device fabrication and photovoltaic characterization:
First, a thin (about 5 nm) PT layer was deposited on ITO-
coated glass by electrochemical polymerization. Then the
PT film was infiltrated with PbI2 by spin-coating at 8,000
rpm for 60 s with a PbI2 solution in dimethylformamide
(DMF) (462 mg·mL–1, at 20 °C) in a N2 glove box. After
drying, the film was dipped in a CH3NH3I solution in 2-
propanol (10 mg·mL–1) at 70 °C for 90 s in air, then
rinsed with 2-propanol. After the CH3NH3I perovskite
was annealed at 100 °C for 40 min in air, C60 (30–50
nm)/BCP (5–15 nm) were deposited sequentially under
high vacuum. Finally, Ag (100 nm) was thermally
evaporated on top of the device to form the cell’s back
contact.

Figure 2: Text fragment from (Yan et al. 2015) describing solar cell fabrication and the corresponding knowledge graph

ing solar cell fabrication knowledge and the corresponding
knowledge graph we extract from the fragment.

4 Knowledge Graph Extraction System
Our extraction system takes research articles in text form as
input and first identifies the set of text fragments i.e. para-
graphs describing device fabrication knowledge. It then pro-
cesses these paragraphs to identify instances of domain en-
tities and relations. A knowledge graph is then created com-
bining the extracted instances. Our system applies the fol-
lowing three modules in a pipelined fashion.

• Relevance Classifier: The device fabrication knowledge
is generally present in the article in a few sections or
paragraphs such as Experimental methods, Materials and
methods, etc. This module identifies such paragraphs by
employing binary classification models. Our system pro-
vides support for three models: Logistic Regression (LR),
BiLSTM and Hierarchical Attention Network (HAN)
(Yang et al. 2016). The LR model builds a dictionary of
unique words present in the document corpus and applies
Bag of Words (BoW) to represent paragraph text. The
BiLSTM model on the other hand takes the sequence of
words into account. The individual words in a sequence

are represented using their dense embeddings and the last
hidden state of BiLSTM represents the paragraph text.
The HAN model treats this as a document classification
task. It first applies word level attention network to build
sentence representations. It then applies sentence level at-
tention to learn the paragraph representation. All the three
models compose softmax layer on paragraph representa-
tion and apply cross-entropy loss to learn model weights.

• Entity Extraction: This module extracts instances of do-
main entities from the paragraphs identified by the rel-
evance classifier. It first splits the paragraph into a se-
quence of sentences. It then applies entity extraction at
sentence level by treating this as a sequence labelling
task. Our system supports two deep learning models: BiL-
STM; and BiLSTM-CRF. The BiLSTM model takes the
sequence of tokens in a sentence as input and predicts la-
bels for each token. The BiLSTM-CRF model (Huang,
Xu, and Yu 2015) extends it by appending a linear-chain
conditional random field (CRF) layer to the output labels
thereby taking output label dependencies into account. It
then uses Viterbi decoding to collectively predict the out-
put label sequence as opposed to predicting tags for each
token independently in BiLSTM. Both the models rep-
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resent each token in the input sequence using following
set of features: word embedding; character embeddings;
Parts of Speech (PoS) tag; casing (features such as first
character capital, all character capital, etc.); and concept
type if present in the domain dictionary.

• Relation Extraction: This module identifies relations
between extracted entities. This is performed in two
stages. The module first identifies relations between en-
tities present within a sentence. We use both deep learn-
ing and pattern based models for this task. The deep neu-
ral network based model first extracts Natural Language
Processing (NLP) based features for the source (e1) and
target (e2) entities. These features1 include: next/previous
words and their PoS tags; sequence of tokens in e1 and e2;
dependency path between e1 and e2; their common an-
cestor in the dependency path, and so on. These features
are then suitably represented: embeddings for words, one-
hot vectors for PoS tags, BiLSTM for encoding token se-
quences (e.g. dependency path), etc. Finally, these fea-
tures are passed to a deep feed forward neural network
followed by a soft-max layer with cross-entropy loss. The
pattern based model on the other hand uses regular ex-
pressions over token sequences and dependency relations
to extract relation instances. We use TokensRegex (Chang
and Manning 2014) and Semgrex (Chambers et al. 2007)
from Stanford for this purpose. The regular expressions
support various NLP features such as words, lemmas, PoS
tags, entity types and dependency relations.

In the next stage, we process the operation entities ex-
tracted from across the sentences to identify operation se-
quences that make up fabrication procedures. We apply a
sequential model similar to (Mysore et al. 2017) for this
purpose which links operations in the order in which they
are mentioned in the paragraph. We also extract device
characterization as a set of performance characteristics
and their values. We use a dictionary based approach to
locate instances of characteristics and then employ pat-
tern based model to identify their values.

Our algorithms use domain specific knowledge in the
form of pre-trained embeddings and domain dictionaries. In
our deep learning models we use pre-trained word embed-
dings learned from a large materials dataset and fine tune
them in a transfer learning setting. We support three types of
embeddings: embeddings learned using word2vec objective:
Mat-word2vec (Kim et al. 2017b) and mat2vec (Tshitoyan
et al. 2019); embeddings with sub-word information: Mat-
fasttext (Kim et al. 2020); and contextualized word embed-
dings: Mat-ELMo (Kim et al. 2020) and SciBERT (Beltagy,
Lo, and Cohan 2019). A partial list of entities for various
concepts such as operation, method, etc. are often available
for a given application domain. Our system uses these con-
cept dictionaries as features in the extraction models. It also
supports patterns to extract task specific features.

1refer (Pawar, Bhattacharyya, and Palshikar 2017) for the com-
plete list of features

5 Experimental Results
This section describes our experimental results on solar cell
fabrication knowledge extraction.

5.1 Dataset
We downloaded 250 research articles containing solar cell
fabrication knowledge from renowned journals. We used
keywords such as perovskite, solar cell, fabrication, etc. and
combinations there of to identify these articles. We then con-
verted these PDF articles into text using Cermine (Tkaczyk
et al. 2015). The xml tags present in Cermine output were
used to demarcate paragraphs. These paragraphs were then
manually annotated by domain experts. This resulted in a
dataset of 412 instances for positive class containing device
fabrication knowledge and 3884 instances for negative class.
To create a dataset for learning entity and relation extraction
models, we selected device fabrication paragraphs from 132
research articles (2916 sentences). These paragraphs were
then manually annotated with entities and relations using
brat annotation toolkit (Stenetorp et al. 2012). In total, we
had 18683 and 15798 annotations for entities and relations
respectively. We divided all of our datasets into train (70%),
dev (10%) and test (20%) set. The results are reported in
terms of precision, recall and F1-score.

5.2 Relevance Classifier
The relevance classifier models are trained using the an-
notated paragraphs. In addition to the features described
in section 4, we also leverage dictionary and pattern
based features. We created partial dictionaries for vari-
ous concepts such as operation, method, apparatus, etc.
in the solar cell domain. We also created a dictio-
nary of section header names by applying patterns (e.g.:
ˆ(\d.)?([A-Z](\S+\s*){1,3})[.:\n]) to each
paragraph in the training set. A set of binary features are
designed to indicate presence of a token in a given dictio-
nary. These dictionary features are concatenated with token
features for model training. Our dataset contains only 9.5%
of instances for the positive class that we are primarily in-
terested in. To account for this data skewness, we updated
our loss function such that the cost for misclassifying pos-
itive class instance is considerably higher than the negative
class. Table 1 reports our results on identifying fabrication
paragraphs. The baseline logistic regression model achieves
F1-score of 0.79. The recurrent neural network models in
BiLSTM and HAN improve precision by about 5% result-
ing in overall improvement in F1-score. Contrary to what is
reported in literature, the hierarchical model in HAN did not
improve beyond standard BiLSTM in our case.

Model Precision Recall F1
LogisticRegression 0.8819 0.7152 0.7879
BiLSTM 0.9286 0.7143 0.8075
HAN 0.9403 0.6923 0.7975

Table 1: Results on relevance classifier models
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Strict Matching Relaxed Matching
PreTrained BiLSTM BiLSTM-CRF BiLSTM BiLSTM-CRF
Embeddings Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Mat-word2vec 0.650 0.688 0.668 0.687 0.711 0.699 0.672 0.715 0.693 0.719 0.753 0.736
mat2vec 0.650 0.688 0.668 0.655 0.689 0.672 0.672 0.714 0.693 0.681 0.723 0.701
Mat-fasttext 0.672 0.694 0.683 0.676 0.699 0.687 0.689 0.719 0.704 0.694 0.725 0.709
Mat-ELMo 0.681 0.696 0.688 0.733 0.703 0.718 0.708 0.732 0.719 0.765 0.744 0.754
SciBERT 0.681 0.723 0.702 0.668 0.725 0.695 0.709 0.760 0.733 0.696 0.762 0.727

Table 2: Entity extraction results on BiLSTM and BiLSTM-CRF models

Type Prec Rec F1
operation 0.828 0.753 0.789
method 0.634 0.662 0.648
material 0.649 0.628 0.638
device 0.588 0.617 0.603
apparatus 0.802 0.786 0.794
parameter 0.488 0.385 0.430
paramVal 0.923 0.938 0.930
property 0.609 0.483 0.538
propVal 0.685 0.768 0.724
unit 0.873 0.943 0.907
condition 0.662 0.613 0.636
conditionVal 0.333 0.154 0.211
matQuantity 0.400 0.105 0.167
matQuantityVal 0.804 0.860 0.831

Table 3: Entity type level results using BiLSTM-CRF with
Mat-ELMo embeddings

5.3 Entity Extraction
We evaluate our entity extraction models with two settings:
Strict matching; and Relaxed matching. In strict matching,
an extracted entity spanning multiple tokens is considered
true positive only when both the predicted label as well as
the entity span match with the annotated data. In the relaxed
matching setting, we moderate the definition of true positive
to practically evaluate our models. Consider a tagged entity:
pre-cleaned FTO glass substrate. A trained model partially
identifying this entity as FTO glass or FTO glass substrate
is still useful from practical usage standpoint. We devised a
set of partial matching rules by analysing the training set.
An extracted entity is then considered true positive when the
predicted label matches with the annotated data and the en-
tity span satisfies the partial matching rules. We use BIO
encoding for representing entities spanning multiple tokens.

Table 2 reports our results on entity extraction models.
The BiLSTM-CRF model using contextualized embeddings
in Mat-ELMo achieves highest performance with F1-score
of 0.72 for strict matching and 0.75 for relaxed match-
ing. These scores are better than the corresponding human
F1 score2 of 0.68 and 0.72 for strict and relaxed match-

2Human F1 is a practical way of quantifying the difficulty of a
given classification task (similar to inter-annotator agreement). F1
score for a pair of annotators A1 and A2 is computed by consider-
ing the annotations from A1 as the output of a classification algo-
rithm and the annotations from A2 as the gold annotations. Human

ing respectively. Overall, we observe that: (1) the output la-
bel dependencies captured by the CRF layer help improve
the model performance in BiLSTM-CRF; (2) The contex-
tualized embeddings perform better than the embeddings
learned using word2vec objective. Table 3 shows detailed
results for all entity types. The model extracts operation,
method and apparatus entities with good accuracy. The de-
vice and material entities look quite similar and appear in
similar contexts. Consider a text fragment: The glass sub-
strate was heated at 70 C to form the perovskite film with
300m thickness. Though perovskite is generally considered
a material, the fragment here discusses perovskite film as a
device. This results in some amount of loss in extraction ac-
curacy for material and device. The entities for types such as
parameter, property etc. are not specified explicitly in text.
Consider a phrase: spin-coating the solution at 2000 rpm for
60s. Here, both the parameters speed and time are not ex-
plicitly mentioned. This results in insufficient annotations
for these entity types resulting in low extraction accuracy.
However, parameter values are extracted with a high degree
of accuracy as values have well defined patterns.

5.4 Relation Extraction
The relation extraction models take source and target enti-
ties along with the sentence as input and predict a relation
label between them (if it exists). We evaluate our models
with three settings: Gold-ER; Strict-ER; and Relaxed-ER.
Being a pipelined system, errors from entity extraction mod-
els directly affect relation extraction performance. Gold-ER
setting avoids this by considering gold (manual) entity an-
notations as input. This helps us in evaluating our relation
extraction models as a separate system. The other two set-
tings are similar to the ones in entity extraction and evaluate
relation extraction models in an end-to-end scenario. In the
Strict-ER setting, a relation classification instance is consid-
ered as true positive only when 1) the labels of the source
and target entities are correct and their spans completely
match with the annotated data; and 2) the relation label is
correct. The Relaxed-ER setting on the other hand relaxes
the first condition by applying partial matching rules (refer
section 5.3) in place of exact span matching for the source
and target entities.

We applied deep neural network based model for rela-
tions involving material and device (total 6 relations in fig.

F1 is then defined as the mean of the F1 scores from all pairs of
annotators.
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opApparatus
1. {ner:/operation/}=operation </.*/

(
{word:/carried/} >/nmod:in/ {ner:/apparatus/}=apparatus

)
2. {ner:/operation|method/}=operation >/nmod:through/ {ner:/apparatus/}=apparatus)
hasValue
1. ([{tag:CD}]) [word:/:/] ([{tag:CD}]) [{ner:/unit/}] [word:/solution|suspension/] [word:/of/] ([{ner:/solvent
|material/}]) [word:/in|:/] ([{ner:/solvent|material/}])

2. [{tag:CD}|ner:/conditionVal|paramVal|propVal|matQuantityVal/=value] </.*/
(
{ner:/unit/} >/nmod:of/

{ner:/material|method|operation|parameter|property|solute|solvent/}=entity
)

hasUnit
1. ([{tag:CD}|{ner:/conditionVal|paramVal|propVal|matQuantityVal/}]) ([{ner:”unit”}])
hasProperty
1. {ner:/property/}=prop >/nmod:of|amod/ {ner:/device|material|solute|solvent/}=device
2. {ner:/device|material|solute|solvent/}=device [>/nmod:(with|as|of)/ {ner:/property/}=prop | </nsubj.*/
{ner:/property/}=prop]

opMethod
1. {ner:/operation/}=operation </amod/

(
{tag:/NN.*/} </nsubj.*/ {ner:/method/}=method

)
2. {ner:/operation/}=operation >/nmod:(agent|by)/ {ner:/method/}=method
opCondition
1. {ner:/method|operation/}=method >/nmod:at/

(
{ner:/unit/} >/nmod:for/

(
{ner:/unit/} >/nmod:(under|in)|amod/

{ner:/condition/}=condition
))

2. {ner:/method|operation/}=method </.*/
(
{tag:/VB.*|NN.*/} >/nmod:(in|at|under)/ {ner:/condition/}=condition

)
Table 4: Patterns used in pattern based relation extraction model

1). It uses the set of NLP features described in section 4 to
represent inputs. Other relations were extracted using pat-
tern based model as they have well defined patterns. These
patterns are specified using regular expressions over token
stream and dependency paths. A few example patterns and
the corresponding extracted relation instances include,

• opMethod: {ner:/operation/}=operation >/nmod:(agent|
by)/ {ner:/method/}=method – example: Perovskite films
were deposited by spin-coating the CH3NH3PbI3 precur-
sor at 5000 rpm for 30s on the ITO glass substrate.

• opApparatus: {ner:/operation/}=operation >/nmod:(in|
with)/ {ner:/apparatus/}=apparatus – example: The re-
sulting layers were subsequently annealed at 150C for 10
min in a glove box.

The complete list of patterns are reported in table 4.
Table 5 reports our results3 for both deep learning as

well as pattern based models. Overall, the pattern based
model achieves F1-score of about 0.8 for all relations (ex-
cept hasValue) in Gold-ER setting. On the other hand, the
deep learning model for relations involving materials (inMa-
terial, secondary, outMaterial) achieves F1-score of about
0.6. The operations in solar cell fabrication utilize various
kinds of materials including precursors, secondary materi-
als, etc. Due to this, the problem of identifying relationship
type for a given operation-material pair is difficult resulting
in lower F1-score. In the end-to-end evaluation scenario, the

3Table 5 does not include a few relations from Figure 1. We are
not mining Structure and Composition since these can largely be
obtained from catalogues once the material is known. Hence the
corresponding relations are also not mined. MaterialSynthesis and
FabricationProcess stand for root entities that represent sequence
of operations, hence created implicitly.

performance of our algorithms decreases significantly com-
pared to the Gold-ER setting. This is primarily due to the
fact that misclassification of either the source or the target
entity, both affect the precision and recall of relation extrac-
tion. For relations such as hasProperty and hasParam, the
number of instances are quite low due to implicit mentions
of participating entities i.e. property and parameter, affect-
ing the quality of our models. The performance on these re-
lations degrades further in the end-to-end setting.

The sequential unsupervised model described in section
4 works well for the solar cell fabrication domain resulting
in F1-score of 0.86 for procedure extraction (i.e. operation
sequence extraction). As with sentence level relations, the
performance decreases in the end-to-end setting due to en-
tity extraction errors. We also extracted performance charac-
terization for identified fabrication procedures. We used dic-
tionary based matching to extract performance metrics such
as open circuit voltage (Voc), power conversion efficiency
(PCE), and so on. We then applied pattern based value rela-
tion extraction using patterns similar to the ones discussed
in (Shah et al. 2018). We achieved a precision of 0.91 and a
recall of 0.623. The recall can further be improved by adding
additional patterns for characterization value extraction.

6 Knowledge Guided Decision Support
The knowledge graphs extracted by our system can be
queried to make informed decisions during device fabrica-
tion. Consider an example, suppose a designer wants to fab-
ricate a solar cell with Voc of 1.15 V among other standard
characteristics and decides to use MaPbBr3 perovskite. The
knowledge graphs can be queried to identify solar cells with
similar characteristics. Analysing these devices helps the de-
signer narrow down the design space of materials, opera-
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Relation Gold-ER Strict-ER Relaxed-ER
Type Prec Rec F1 Prec Rec F1 Prec Rec F1
Supervised relation extraction using deep learning with NLP features
secondary 0.5913 0.5074 0.5461 0.3873 0.3208 0.3510 0.3873 0.3208 0.3510
inMaterial 0.5646 0.6803 0.6171 0.2782 0.2759 0.2770 0.3140 0.3114 0.3127
outMaterial 0.5809 0.5865 0.5837 0.2448 0.2307 0.2376 0.2551 0.2403 0.2475
inDevice 0.7681 0.8502 0.8071 0.3677 0.4385 0.4 0.4215 0.5026 0.4585
outDevice 0.7088 0.6292 0.6666 0.2833 0.1910 0.2281 0.3 0.2022 0.2416
hasParam 0.7333 0.44 0.5499 0.25 0.0980 0.1408 0.25 0.0980 0.1408
Pattern based relation extraction
opApparatus 0.8901 0.7788 0.8308 0.6190 0.5 0.5531 0.6309 0.5096 0.5638
hasValue 0.8577 0.5540 0.6732 0.6003 0.3985 0.4790 0.6153 0.4084 0.4910
hasUnit 0.9953 0.8740 0.9307 0.8 0.7534 0.7760 0.8294 0.7811 0.8045
hasProperty 0.88 0.7586 0.8148 0.1875 0.1034 0.1333 0.25 0.1379 0.1777
opMethod 0.9109 0.9293 0.9199 0.6310 0.6565 0.6435 0.6504 0.6767 0.6633
opCondition 0.8667 0.7027 0.7761 0.5178 0.3918 0.4461 0.5357 0.4054 0.4615
Unsupervised fabrication procedure extraction
next 0.8493 0.8664 0.8578 0.5159 0.4699 0.4918 0.5159 0.4699 0.4918

Table 5: Relation extraction results for deep neural network and pattern based models

tions and operating conditions. Further to this, suppose the
designer wishes to carry out the fabrication in air as opposed
to the standard practice of using a glove box. This constraint
can be utilized to narrow down the design space further. The
knowledge graphs help in providing design decision support
of the kind described above using suitable query and analy-
sis tools.

7 Path to Deployment
Our company is developing a knowledge-guided, simulation
aided materials engineering platform to shorten lab to mar-
ket of new devices and materials. The platform contains a
pipeline of four modules: materials design and selection;
device characterization; knowledge engine; and simulation
framework. The materials design and selection module con-
tains models (physics/data based) for in-silico design of new
materials (Jain et al. 2019a; Ravikumar, Mynam, and Rai
2018). The device characterization module on the other hand
is used to define the desired device behaviour (e.g. Voc, Isc,
etc. in case of solar cells) for a given application (batter-
ies, solar cell, fuel cell, etc.). For the selected material, the
knowledge engine module then helps in identifying poten-
tial device fabrication procedures that can achieve the de-
sired device characterization. The decision support system
of the kind described earlier in section 6 makes up the pri-
mary component of the knowledge engine. The set of fab-
rication procedures shortlisted using the knowledge engine
are then put through the simulation framework to further nar-
row down the candidates for lab scale experimentation. Of
the four modules described above, two are already in place.
The extracted knowledge graphs form the core of the knowl-
edge engine module over which we are currently building a
decision support layer. Another team is parallelly working
on the simulation framework which is also nearing comple-
tion. Once these two modules are complete, we are ready to
deploy.

8 Summary and Future Work
We present a system to automatically extract device fabrica-
tion knowledge from materials science literature. It applies
entity and relation extraction models to construct knowledge
graphs conforming to an ontology that can be queried to
make informed decisions during device fabrication. We ap-
plied our system on solar cell fabrication knowledge extrac-
tion and achieved good initial results.

We are currently working on the decision support layer
that can provide querying and analytics over extracted
knowledge graphs. We then want to validate the end to end
savings in time and efforts our materials engineering plat-
form can provide in experimentally designing devices, solar
cells in our case. We also plan to work further on strength-
ening our extraction models. For instance some of the inac-
curacies reported in section 5.3 are due to missing details
in sentences. A domain expert can easily fill in these details
from prior knowledge. We want to explore how such domain
knowledge can be integrated into the models to improve the
accuracy.
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