The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Topological Machine Learning Methods for Power System Responses to
Contingencies

Brian Bush,' Yuzhou Chen,>’ Dorcas Ofori-Boateng,’ Yulia R. Gel*>

! Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
2 Department of Statistical Science, Southern Methodist University, Dallas, TX 75275, USA
3 Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR 97201, USA
4 Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
3 Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{brian.bush@nrel.gov, yuzhouc @smu.edu, doforib2 @pdx.edu, ygl@utdallas.edu}

Abstract

While deep learning tools, coupled with the emerging ma-
chinery of topological data analysis, are proven to deliver var-
ious performance gains in a broad range of applications, from
image classification to biosurveillance to blockchain fraud
detection, their utility in areas of high societal importance
such as power system modeling and, particularly, resilience
quantification in the energy sector yet remain untapped. To
provide fast acting synthetic regulation and contingency re-
serve services to the grid while having minimal disruptions
on customer quality of service, we propose a new topology-
based system that depends on neural network architecture
for impact metrics classification and prediction in power sys-
tems. This novel topology-based system allows one to eval-
uate the impact of three power system contingency types,
namely, in conjunction with transmission lines, transformers,
and transmission lines combined with transformers. We show
that the proposed new neural network architecture equipped
with local topological measures facilitates both more accu-
rate classification of unserved load as well as the amount of
unserved load. In addition, we are able to learn complex rela-
tionships between electrical properties and local topological
measurements on the simulated response to contingencies for
NREL-SIIP power system.

Introduction

Power-system simulations require detailed technical data on
system components and involve significant non-linearities,
so it is unclear whether topological measurements alone
on an unperturbed power system (the “base case”) will be
highly correlated with the prediction of the impact of out-
ages upon the system’s operation, particularly the impact in
terms of customer load that is unserved due to the contin-
gency.

Oftentimes, resilience quantification involves the search
over high dimensional spaces of system configurations, re-
sponses, and impacts using technical models, simulations,
and analyses that typically are data and computation inten-
sive. The regularly used brute-force approaches that enu-
merate and simulate each potential configuration of inter-
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Figure 1: Illustration of training and applying contingency
screening.

est generally are not computationally efficient or even fully
viable. In turn, Al and ML offer an opportunity to move
beyond traditional techniques and to effectively explore the
high dimensional space of system configurations and to cre-
ate reduced-form approximations of complex power system
models or the non-linear simulations involved. A classic ex-
ample is the process of estimating the effect of contingen-
cies (i.e., component outages) upon a power system’s ability
to meet customer demand. Power-system modeling requires
detailed electrical data on the system and involves substan-
tial computational resources, limiting the number of contin-
gencies that can be routinely directly simulated. Machine-
learning methods that are able to accelerate either the search
or simulation of these models promise to substantially en-
large the number and interest of the contingencies that can
be analyzed, at a fraction of the traditional computational
burden.
The purpose of this study is to assess these questions:

. To what extent can basic graph-theoretic and topological
measurements be used to qualitatively and quantitatively
estimate the impacts of contingencies?

Which machine learning techniques are best suited for
this?

Which graph and topology measurements are most infor-
mative?



4. By how much can measurements of static electrical prop-
erties enhance predictive power of topology-based mod-
els?

Related Work

Power Systems and Their Resilience Generally, there ex-
ist two main interrelated approaches for resilience quantifi-
cation of power grid networks. The first direction is based
purely on the topological properties of a grid network, and
the second (hybrid) approach aims to incorporate electri-
cal engineering (EE) concepts, such as impedance or black-
out size into the complex network (CN) analysis. Both ap-
proaches offer important complementary insights on the
hidden mechanisms behind the power system functionality,
and neither approach can be viewed as a universally pre-
ferred method (Hines et al. 2010; Cuadra et al. 2015; Mo-
hamed et al. 2019; Abedi, Gaudard, and Romerio 2019;
Nakarmi et al. 2020; Bose, Chanda, and Chakrabarti 2020;
Vugrin, Castillo, and Silva-Monroy 2017). In the CN con-
text, the metrics for grid network vulnerability are mostly
built with either the giant component, average path length
or node degree distribution. The EE approach, on the other
hand, utilizes power-flow models to simulate the effects of
component failure or other forms of disruptions: a variety
of approximations to the power-flow equations have been
used (Abedi, Gaudard, and Romerio 2019). However, nearly
all currently deployed resilience metrics are based on the
global structure of power grid networks and tend to disre-
gard important local structure information of the grid in its
capacity to sustain adverse events.

Al for power systems Al tools are increasingly widely be-
ing used in power system analysis (Zhao et al. 2019; Jufri,
Widiputra, and Jung 2019; Ibrahim, Dong, and Yang 2020),
including, for instance, semi-supervised learning for load
monitoring and scheduling (Gillis and Morsi 2016), Sup-
port Vector Machine (SVM) and deep learning for fault de-
tection (Eskandarpour, Khodaei, and Arab 2017; Oh et al.
2017; Jenssen, Roverso et al. 2019), and Bayes networks
and meta-action for cascading failure propagation (Pi et al.
2018; Huang et al. 2019). Nevertheless, as noted by Shu-
vro et al. (2019); Jufri, Widiputra, and Jung (2019), AI and
ML algorithms remain underused in power system analysis.
Essentially, the application of Al tools for resilience quan-
tification of power grid networks is essentially in its infancy.

Topological Data Analysis (TDA) The recent decade has
witnessed a steep rise in implementation of TDA machin-
ery in diverse application settings including image detec-
tion (Asaad and Jassim 2017), system robustness analy-
sis (Li, Ryerson, and Balakrishnan 2019) and spatial classi-
fication (Feng and Porter 2020). Most recently, Islambekov
et al. (2018); Li et al. (2020) considered topological sum-
maries as alternative metrics for transmission grid resilience
assessment. However, studies that analyze the contribution
of topological measurements quantitatively and qualitatively
to contingency impact evaluation, or the study that harness
TDA machinery and Al algorithms for predicting the power
grid response to contingencies are yet to be explored.

15263

Modeling Power Grids as Complex Networks

We use the following power-system terminology: A bus is
a network node where lines, transformers, loads, and gen-
erators connect. The flow is the quantity of power passing
through a network component. The capacity is the maxi-
mum flow that a network component can support. The resid-
ual capacity is the difference between the capacity and the
flow. The base-case flow is the flow in the case where all
components are in service.

Power grid systems can be inherently viewed as graph
structure G = (V, E,w) where node set V represents buses,
transformers and generators, while edge set £ is formed
by transmission lines and transformers. To incorporate the
electrical properties (reactance, resistance, etc.) and power-
flow characteristics (real and reactive power through compo-
nents) of the grid, we use (edge)-weighted functionw : E
R>o such that each edge e,, € F has a weight w,,,,. Exam-
ples of weight functions for power grid networks include, for
example, geographical distances, admittance, average power
flow, and electrical conductance (Dorfler 2013; Sanchez-
Garcia et al. 2014; Xu, Gurfinkel, and Rikvold 2014). Quan-
tifying grid connectivity with w,,, = 1 for e,,, € E corre-
sponds to an unweighted graph G, and in order to distinguish
this from other weight kinds we relabel the variable w,,, as
winweighted Tn the weighted graph case, we work with the

following as edge weights:

Reactance weight: wfﬁcmnce = Xy, Where X, is the
per-unit reactance of the line or transformer between u
and v.

Capacity weight: wSPacity = C—1 where C,, is maxi-

mum flow rating (in MW) of the line or transformer.

0)

-1
, Where Féy is the

flow solution (in MW) across the line or transformer in
the base (i.e., no contingency) case.
) —1

~ (Cur -

Power grid networks are imperiled by many factors,
for example, extreme weather, human errors, and cyber-
physical attacks. Such adverse events result in contingen-
cies. Formally, a contingency / outage is a state where
some network components are no longer in service, and a
contingency set (O; C {uv} for scenario 7) is a list of
edges that are removed (outaged) from the graph in the
event of the contingency. Generally, we label the num-
ber of contingencies as N; = |O;|, and denote the types
of components in contingencies for scenario ¢ as t; C
{line, transformer}. By principle, the total edge-weight
lost in scenario iz L{) = > uveo, Win» Where w €
{unweighted, reactance, capacity, base, residue}.

With D,, as the customer demand at vertex u, total de-
mand will be D¥**l = S~ D, the power-flow solution

Base-flow weight: wPas¢ = (EE?)

residue
uv

Residual capacity weight: w F 159;)

for consumption at vertex w in scenario ¢ as Sq(f), and
the unserved demand/load (i.e., the shortfall between de-
mand and actual consumption) in scenario i is U(®) =

Zu (Du — Sq(j’)). Armed with these notations, we de-



fine consumption (i.e., the amount of demand successfully
served) in scenario 7 as S(*) = > Sff), and make () =
17> the indicator variable for whether there is unserved
demand in scenario ¢. The unserved load is the amount of
customer load not being served in a contingency.

In this paper, contingencies are generated by removing
from service a specific fraction (f;) of the network edges
(i.e., lines and transformers) within a subgraph of a given
radius (r;) around a randomly selected vertex. The radius of
the subgraph is varied from O to 25 edges and the density of
out-of-service components in this class is varied from 1% to
100%. This contingency-subgraph approach makes it pos-
sible to explore the impact of clustering the out-of-service
components upon the operation of the power system. Note
that the case of r; of 0 and 100% outages simply correspond
to uniformly and randomly selecting a single outage edge,
whereas non-zero radii and less-than-complete selection of
outage components correspond to localized outages of vary-
ing size and intensity.

Again in our case study, the experimental design varies
the radius in integer increments up to 25 edges, considers the
outage fractions 1, 2, 5, 10, 20, 50, and 100%, and samples
5000 randomly-chosen vertices for the center of the con-
tingency subgraph. The dataset, which is available at Bush
(2020), contains 281,273 solved power-flow simulations.

Preliminaries on Topological Data Analysis

The systematic evaluation of patterns and dynamics of mul-
tiscale network topological and geometric properties can be
approached via an algebraic tool, based on the adaptation of
a homology theory to applied data analysis known as per-
sistent homology (Carlsson 2019). In brief, the idea is to
capture the cycle of features which are long-lived, or per-
sist over varying thresholds v; > 0. Such persistent features
are much likelier to significantly impact power grid network
functionality.

Let an edge-weighted graph (G,w) be a representation
of a power-flow network. If we select a certain threshold
v; > 0 and keep only edges with weights w,, < v;, we
obtain a graph G; C G with an associated adjacency ma-
trix Ay, = ]lwwguj. By varying the threshold values in
the order 1 < 1y < ... < v,, we obtain a hierarchi-
cal nested sequence of graphs G; C G2 C ... C G,
that is known as a network filtration. With this filtration,
we can associate each G;,j = 1,...,n with a combina-
torial structure called an abstract simplicial complex, and
this allows to quantify the underlying geometry of (G,w).
From standard literature, the Vietoris-Rips (VR) combina-
torial complex is the most popular complex choice in TDA
due to its simplicity and computational benefits (Carlsson
2009; Zomorodian 2010). In particular, if we view weights
Wyy as some “distance” measure between nodes u and v,
then a Vietoris-Rips complex at threshold v; is defined as
VR; = {u,v € V]wy, < v;}. That is, VR; contains all
the sets of k node features, &k = 1,..., K, which are pair-
wise connected by an edge to form simplices of dimension
k — 1 (i.e., an edge for 2 nodes, a triangle for 3 nodes, etc).

Now, equipped with the associated VR filtration, VR, C
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Figure 2: Illustration of Betti number (3y, 51) estimation and
persistence diagram for VR-filtration.

VRy C ... C VR,, we can trace the incidence and sur-
vival of qualitative features of various shapes such as con-
nected components, triangles, tetrahedra, and higher-order
structures, in terms of when they appear and disappear with
an increasing threshold v;. In turn, analysis of evolution
and lifespan of such topological features provides a mul-
tiscale quantitative insight into network topology and its
role in network organization, functionality, and interactions
among network components under varying operating condi-
tions. We can quantify persistent features and their lifespans
in power grid networks using Betti numbers and persistence
diagrams (PD).

Formally, the p-th Betti number 8,, p € Z7T, of a
simplicial complex (in our case the VR complex) is the
rank of the associated p-th homology group. Informally,
Betti numbers represent counts of connected components
and p-dimensional holes. For instance, 3y is the number
of connected components; 3; references the count of 1-
dimensional holes, etc. Another visual tracker of the lifes-
pan of topological structure is the persistence diagram (PD),
and in this diagram each topological feature is denoted by a
point (x, y). The x, y coordinates correspond to the birth and
death times of the topological feature, respectively. Hence,
features with a longer lifespan , i.e. a stronger persistence,
are denoted by points that are far from the main diagonal.
Figure 2 illustrates 3y and ; estimation and the subsequent
PD that is generated by the VR-filtration.

Numerically, two PDs D, and Dy, can be compared via a
similarity measure known as the bottleneck distance, which
is defined as: b; = inf,sup,cp, |7 — 7(2)| 0. Where
n ranges over all bijections from D, U A to D, U A,
counting multiplicities, with A = {(z,z)|x € R} and
[|z]lc0 = max, |2z,| (Wasserman 2018). Note that the pro-
posed methodology is built with two kinds of bottleneck dis-
tances (i.e., b}, and b} for scenario 7).

Methodology

We introduce a new model Multi-Channel Deep Portfolio
Networks (MCDPNet). The MCDPNet has two main parts:
autoencoders for reducing the total information to an infor-
mation subset and this is applied to a large number of graph-
ical, topological, and electrical features, i.e., X = {graph :
r; topology : Bo, 51, bo, b1, f;electrical : L., t}, and convo-
lutional neural network (CNN) that (i) classifies whether or
not any customer load is lost because of component outages



and (ii) predicts how much customer load is lost because
of those outages. Note that the dependent variable for the
classification problem is I, and that for the regression (pre-
diction) problem is U. Now, we will present the MCDPNet
architecture in details and then elaborate on its implementa-
tion.

Autoencoder for feature learning With the graphical and
topological features served as input, we use an autoencoder
that has a fully-connected encoding layer with ReLU acti-
vation and a fully-connected decoder layer with linear acti-
vation. After auto-encoding the features in the original in-
put, we consider the £2-norm difference between every fea-
ture and its auto-encoded version (ie., ||[X — X]||, such

that X represents the original features and X represents the
auto-encoded version) and rank the features by this measure
(communal information) from the lowest to the highest. The
less £2-norm difference a feature has, the more important
role it plays in the functionality of the power grid network.
Since there is minimal to no benefit to include multiple fea-
tures contributing the same information, we choose features
based on ¢2-norm differences and fit them into CNN for the
classification/regression tasks.

Convolutional neural network for optimal feature com-
bination selection Through autoencoders, we obtain dif-
ferent feature combinations by using the & most commu-
nal features plus (-number of most non-communal features
which we use to avoid adding unnecessary communal infor-
mation, thus leading to { feature combinations. Let X" =
{af, a8, xf, .} € RET™ denote the r-th feature com-
bination, where x € {1,2,...,(}. That is, the set of fea-
ture combinations X is {X L. ¢ most communal features
+ the most non-communal feature}, X2: {£ most com-
munal features + 2 of most non-communal features}, . . .,
X¢: {&€ most communal features + (-number of most non-
communal features} }.

Since CNN models naturally accept image data, we con-
struct image data before feeding the feature combination to
the CNN model. First, we convert the k-th feature combina-
tion into image data by calculating the normalized distance
matrix such that the element in the matrix is the normalized
difference between two features, i.e.,

- i)

€T =
Pq T
Zng exp (zf — xf)
. Then, we obtain the corresponding feature distance ma-
trix X* € RE+HR)X(E+5) which is the input data that will

exp (z, — x

Figure 3: Map of the ACTIVSg2000 synthetic power sys-
tem (Birchfield et al. 2017).
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Figure 4: Scatterplot matrix of the relationship between the
total weights of outaged components for the unweighted and
four weighting schemes.

be given to the CNN model. After converting the ( feature
combinations X into ( feature distance matrices X, we fit
these feature distance matrices into a CNN separately to esti-
mate the impact of the contingencies on power systems and
obtain the corresponding accuracy/ coefficient of determi-
nation (R?). Objectively, the purpose of using CNN in the
MCDPNet is (i) we do not need to model the underlying
joint dependencies of the features via systematic conversion
of non-image features into image forms and (ii) the input
has two dimensions and CNN is faster at “deep learning”
than the fully connected multilayer perceptron (MLP).

We combine the two steps above to learn the optimal fea-
ture combination to obtain the highest accuracy or the high-
est R%. Equipped with the theory and structure of deep port-
folio (Heaton, Polson, and Witte 2016), the framework of
our proposed MCDPNet is able to select the final optimal
feature combination based on preliminary results generated
from multiple deep portfolios, and the deep portfolio theory
provides a self-contained procedure for portfolio selection
with deep neural networks. As our final step, we fit deep
neural networks to the optimal feature combination (i.e., op-
timal feature distance matrix) as the input training data for
classification and prediction tasks respectively.

Experiments

Dataset In this study we use the ACTIVSg2000 power-
system model (Birchfield et al. 2017), shown in Figure 3,
as a moderately complex, representative example of an elec-
tric power grid: it is a synthetic test system comprising
2000 buses, 544 generators, 1347 loads, 2345 lines, and 861
transformers. Static power-flow equations are solved using
the the PowerSimulations. j1 package of the Scal-
able Integrated Infrastructure Platform (SIIP) (Lara et al.
2018). This software, in turn, relies on the lossless DC load-
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Figure 5: Histograms of Betti numbers and bottleneck dis-
tances in the contingency dataset.

flow algorithm implemented in the DCPPowerModel algo-
rithm within the PowerModels. j1 package provided by
Los Alamos National Laboratory’s Advanced Network Sci-
ence Initiative (Coffrin et al. 2018). Graphical and topolog-
ical measurements are extracted from both unweighted and
weighted networks. For the weighted netwiorks, the follow-
ing four separate edge-weighting schemes are considered:
(1) electrical distance (Cotilla-Sanchez et al. 2013), repre-
sented by the per-unit reactance of the component, (2) ca-
pacity, expressed as the MW rating of the component, (3)
base flow, equal to the MW flow in the component in the
base case, and (4) residual capacity, the difference in MW
between the capacity and base flow. Therefore for each of
the four weighting schemes plus the unweighted network,
we compute the total weight of the outaged components and
each of the topological metrics. All metrics were computed
using Python code and are published in the aforementioned
case-study dataset (Bush 2020).

Baselines For the classification problem we consider 7 state-
of-the-art baselines: classification trees (CART), deep neu-
ral networks (DeepNets), logistic regression, random forest,
and support vector machine (a linear kernel [Linear SVM]
and a radial-basis-function kernel [RDF SVM]), but for the
regression problem we only consider DeepNets, ordinary
least squares (OLS), and random forest. We reserve 30% of
the dataset for testing and use sensitivity (true positives over
total positives) and specificity (true negatives over total neg-
atives) measures to score the classification problem and the
fraction of variance explained to score the regression prob-
lem.

Parameter setting We implement MCDPNet on Amazon
EC2 with 1 GPU (61 GB memory). With the autoencoding
procedure for feature learning, the weight decay is set equal
to 1 x 1072 and the dimension of latent space is 5; we set
the batch size to 256 (the mean training time per epoch is
1.27 seconds) and the autoencoder is trained for 500 epochs.
To efficiently learn the features, we set the fixed number of
the most communal features £ to 5 and the number of least
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Figure 6: Scatterplot of the relationship between dependent
variable (fraction of load not served, shown in the second
row and second column) and independent variables in the
contingency dataset under the electrical-distance weighting
scheme.
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tingency, distinguished by how edges in the power-system
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communal features  is selected from {1, 2, ..., 5}. With the
CNN procedure of selecting optimal feature combinations,
the optimal feature combination consists of 8 features and
all convolution layers are followed by batch normalization,
ReLU activation and Max-pooling. The dropout rate is 0.5,
the weight decay is set to 0.01, and the number of hidden
units is 16; we set the batch size to 32 (the mean training
time per epoch is 17.6 seconds) and the CNN is trained for
a 500 epochs.

Results Figure 4 shows the relationship between the un-
weighted and weighted schemes for the outaged component
contingency simulations, and that they are highly correlated.
The topological metrics computed are the Betti numbers
(Betti-0 (6p) and Betti-1 (/1)) and the bottleneck distances,
relative to the zero-contingency system. Figure 5 displays a
histogram of the topological measurements: the Betti num-
bers tend to peak around the zero-contingency case (i.e., low
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Figure 8: Confusion matrices of MCDPNet and CART (i.e.,
second-best baseline) for classification problem with un-
weighted edges and the full set of independent variables.

B and high [31), while the bottleneck distances are bi-modal,
with the underlying persistence diagram being either very
similar to or very different from the zero-contingency case.
Since in many situations the bottleneck distance becomes
extremely large (effectively infinite), we plot its arc-tangent
value instead of the value itself, in order to better display the
dynamic range of this variable.

Figure 6 shows scatterplots depicting the degree of cor-
relation between the dependent variable and the indepen-
dent variables (the fraction of components outaged, the to-
tal weight of outaged components, and the four topologi-
cal measurements), under the electrical distance weighting
scheme. Although the variables are clearly correlated, the
several diagonal trends indicate the presence of non-trivial
structure in the relationships. The relationships under the
four other weighting schemes are quite similar to that for the
electrical-distance weighting scheme presented in the same
figure.

Figure 7(a) indicates that supplementing topological mea-
surements with static electrical ones (i.e., the types of com-
ponents outaged and their total edge weight) improves the
predictions. Furthermore, Figure 7(b) demonstrates that us-
ing unweighted edges for the topological measurements sig-
nificantly outperforms the other weighting schemes.

The confusion matrices in Figure 8 quantify how much
the classifications tend to underestimate service disrup-

Problem Method Score
Classification| MCDPNet 92.51 £+ 0.50
(Accuracy) |CART 88.33 £ 0.11
DeepNets 87.24 + 0.47
Linear SVM 87.66 £ 0.18
Logistic regression|87.88 + 0.09
Random forest 88.23 +£0.20
RDF SVM 87.74 + 0.21
Regression |MCDPNet 92.13
(R?) DeepNets 87.31
OLS 70.61
Random Forest 65.68

Table 1: Classification and regression scores (in percent) on
the test set: accuracy (mean =+ std) for classification and R?

for regression.
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Figure 9: Score for amount of variance explained by two re-
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tions more than they overestimate non-disruptions. Figure 8
shows that MCDPNet outperforms the second-best baseline
(i.e., CART) with both its true positive rate (TPR) and false
positive rate (FPR) by a large margin for the classification of
unserved load.

The regression results in Figure 9 indicate that the pro-
posed MCDPNet outperforms all others. These results sug-
gest that the unweighted-edge scheme is adequate (although
weighting by electrical distance is better) and that supple-
menting the topological measurements with other indepen-
dent variables (in this case, the radius of the contingency re-
gion and fraction of components outaged, which is a graph
measurement) is sufficient.

Overall, we see that measurements of Betti numbers
and bottleneck distances are modestly sufficient to predict
whether load will not be served during a power-system con-
tingency, and that not weighting edge works best for pre-
diction. Under the MCDPNet, combining the topological
measurements with basic graph-theoretic and static electri-
cal ones supports coarse prediction of the quantity of load
not served if edges are weighted by reactance (a measure of
electrical distance), or they are left unweighted.

Lessons Learned on the Path to Deployment The case
study demonstrated that basic graph connectivity informa-
tion and topological measurements are sufficient to make
coarse predictions of results for the focused, edge-based
contingencies for a specific electrical network and that sev-
eral ML techniques are adequate for this task. The addi-
tion of electrical information and the choice of deep neural
networks improves predictability. Training the ML models,
however, requires computing the impact of the contingency
using power-flow simulation. Furthermore, the topological
measurements and ML model training together typically
take a similar amount of computation time as the power-



flow simulation, although the ML model training times vary
widely according to the specific algorithm.

The process situation of preparing the training dataset re-
quires detailed electrical information and time-consuming
simulations, performing the training requires moderately in-
tense computation, but the prediction only uses minimal,
non-electrical information and proceeds quickly. Such a sys-
tem could be deployed in several ways:

* The holder of electrical data for a specific system could
invest computational resources to train the ML contin-
gency forecasting model that could later be used by them-
selves or a broader set of stakeholders to make rapid pre-
dictions of the impacts of hypothetical or impending con-
tingencies. This contingency screening deployment would
allow the stakeholders to focus computational resources
such as detailed power-flow simulations on the most im-
pactful contingencies identified by the coarse ML model.
It also makes it possible to disseminate a contingency-
prediction model to stakeholders without releasing infor-
mation on the system’s electrical properties—only the un-
weighted network graph and the ML model need be re-
leased. Hence, contingency screening can support rapid
planning for natural disasters and human-caused events.

If the methods of transfer learning could be successfully
applied to create a contingency-screening model that is
not tied to a specific system (see Cotilla-Sanchez et al.
(2012) for comparison of graph characteristics of power-
system networks in the U.S.), but instead applies to power
systems in general, then such a model could be deployed
to make coarse predictions of the impacts of contingen-
cies in cases where the underlying electrical data for the
system in question is not available to the user. One would
just need the unweighted graph and that general-purpose
model in order to estimate outages. Emergency-response
and similar organizations could deploy such a model to
make rapid assessments of potential or actual contingen-
cies where they have limited information about or are un-
acquainted with the details of the power system. Some
models could also be employed in the aforementioned
contingency-screening role.

In general, the performance requirement depends upon
the particular user’s computational budget and the value
that they assign to cells in the confusion matrix (in the
case of classification) or to mean-squared-error (in the
case of regression). For a user interested in identifying
contingencies involving loss of customer load, the tech-
nique must perform faster than the reciprocal of the sum
of fraction of true and false positives for load loss, about
2.5x for the case in the text; the prediction using our
machine-learning technique is at least 1000 x faster than
power flow-based contingency-analysis algorithms, so the
model clearly performs adequately for this type of deploy-
ment. It would only be in situations where the user is ex-
tremely averse to false negatives that the model would be
inadequate: here the figure of merit is the reciprocal of the
false negative fraction, about 15X in the case in the text,
so a user would have to be 15 times more averse to a false
negative relative to a true positive.
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Conclusion and Future Work

The major findings of this analysis are that basic topologi-
cal measurements such as Betti number and bottleneck dis-
tance are sufficient for coarsely predicting whether or not
customer load is lost during a power system contingency,
that a variety of deep learning and machining learning tech-
niques are adequate for the task and that the graph’s edges
do not need to be weighted. Secondarily, using electrical
properties in addition to the topological measurements al-
lows coarse prediction of the quantity of customer load lost
during the contingency, if the neural networks model is em-
ployed. These conclusions hold for contingencies generated
by selecting a random outages uniformly within a fixed ra-
dius of a randomly chosen node within the test network. Our
proposed MCDPNet model provides an optimal feature se-
lection in a self-contained manner and can successfully be
fine-tuned by incrementally enlarging the training dataset
with newly features. The results show the highly competi-
tive performance of our MCDPNet model in both classifi-
cation and prediction tasks. Future work needs to focus on
transfer learning and other aspects of generalizability, un-
der a much wider (perhaps parameterized) characterization
of contingency patterns (i.e., “attacks”).

Furthermore, the current research direction could bene-
fit from the systematic implementation of graph convolu-
tional networks (GCN). As recently shown by (Chen, Gel,
and Avrachenkov 2020), the Levy Flights Graph Convolu-
tional Networks (LFGCN) deliver a highly competitive per-
formance in node classification of power grid networks. In
the future we plan to expand the results of the current project
and explore utility of GCN coupled with TDA for power sys-
tem learning under contingencies.
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