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Abstract

Health insurance companies cover half of the United States
population through commercial employer-sponsored health
plans and pay 1.2 trillion US dollars every year to cover
medical expenses for their members. The actuary and un-
derwriter roles at a health insurance company serve to assess
which risks to take on and how to price those risks to ensure
profitability of the organization. While Bayesian hierarchical
models are the current standard in the industry to estimate
risk, interest in machine learning as a way to improve upon
these existing methods is increasing. Lumiata, a healthcare
analytics company, ran a study with a large health insurance
company in the United States. We evaluated the ability of ma-
chine learning models to predict the per member per month
cost of employer groups in their next renewal period, espe-
cially those groups who will cost less than 95% of what an
actuarial model predicts (groups with “concession opportuni-
ties”). We developed a sequence of two models, an individual
patient-level and an employer-group-level model, to predict
the annual per member per month allowed amount for em-
ployer groups, based on a population of 14 million patients.
Our models performed 20% better than the insurance carrier’s
existing pricing model, and identified 84% of the conces-
sion opportunities. This study demonstrates the application
of a machine learning system to compute an accurate and fair
price for health insurance products and analyzes how explain-
able machine learning models can exceed actuarial models’
predictive accuracy while maintaining interpretability.

Introduction
The recent explosion of available electronic health record
(EHR) and insurance claims data sets, coupled with the de-
mocratization of statistical learning algorithms, has set the
stage for machine learning (ML) applications to fundamen-
tally transform the healthcare industry. Employer-sponsored
health insurance (ESI) currently covers 150 million Amer-
icans (Kirzinger et al. 2019). With numerous subsidies in
place to make ESI more affordable (Buchmueller, Carey,
and Levy 2013; White 2017), it is by far the most popular
option for obtaining health insurance in the United States
(Fritzsche and Emily Vreeland 2019). Since the passage
of the Affordable Care Act (ACA) in 2009, premiums for
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single and family ESI plans have increased 50% and de-
ductibles have doubled, making affordability of care a major
issue for many Americans. Thirty four percent of patients
on ESI plans are reportedly unable to pay for an unexpected
bill of $500 and over 50% skip or postpone medical care
and prescription fills due to cost (Claxton et al. 2019). By
making healthcare more affordable, it increases the chance
patients will receive needed medical care and refill medica-
tions in a timely manner. Increasing affordability improves
patient health outcomes and quality of life, reducing familial
strain of medical debt, postponing major household spend-
ing, and obviating the need to hold multiple jobs (Claxton
et al. 2019).

However, ESI premiums are the dominating source of rev-
enue for US-based health insurance companies, many of
which are among the Fortune 500 companies. As such, ac-
curate rate-setting is a crucial component of revenue and
membership growth for insurance companies; setting inad-
equate rates can mean the difference between profitability
and unprofitability (Steenwyk 2007). Traditionally, health
insurance companies set rates using a combination of ac-
tuarial science and underwriting judgement. Actuaries ap-
ply statistical modeling to claims data to set premiums for
each employer-group; underwriters use the actuary’s pre-
dicted rate alongside non-claims data (e.g. health question-
naires) to decide which groups to cover and what their rates
will be. Accurate rate setting is essential to balance cus-
tomer retention against business viability because the in-
surer needs to retain a group for several years before the
account becomes profitable. Hence, insurers are willing to
reduce rates in the near-term, in exchange for the chance of
a longer term relationship (i.e. greater persistency) (Lyons
et al. 1961). Good financial standing allows insurers to fo-
cus on growing their business, influencing patient health out-
comes, improving customer experience, and increasing ef-
ficiency (Schaudel et al. 2018). Reduced renewal premiums
can align patients’ financial interests and the insurer’s strate-
gic interests.

Within the ESI market, the <500 employer group seg-
ment (employer groups with fewer than 500 enrollees) is
highly transactional, particularly during peak season (near
January 1st of each year). The largest insurance carriers

1https://fortune.com/fortune500/2019/
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process tens of thousands of new and renewal business
quotes. For instance, the carrier in this pilot study aver-
aged 130 presale quotes and 70 renewal quotes per under-
writer. Some aspects unique to the <500 market are the: (1)
Complex array of funding arrangements, including: fully-
insured, level-funding Administrative Services Only (ASO,
i.e. self-insured), pay-as-you-go and monthly shared-risk
models (Finn et al. 2017) (2) high-risk, high-reward nature
of this segment: the <500 market comprises one third of
medical insurance customers but yields one half of earnings,
providing opportunities to yield higher profit margins, and
(3) lower persistency compared to larger clients (the average
account length is 5 years for the <500 market vs >7 years
for larger groups).

Due to the large volume of cases in the < 500 market, un-
derwriters could benefit from an additional highly-accurate
signal to increase the efficiency of their work. This signal
would need to be easily interpretable and broadly applied
for measurability. The unique circumstances of the <500
market provide an opportunity for improved renewal rate de-
velopment, driving price optimization and increasing persis-
tency in a risk-rich environment focused on strong, sustain-
able customer-base growth.

Although ML-based approaches on claims data are widely
applied in clinical contexts (e.g. Razavian et al. 2015;
Tamang et al. 2017; Rajkomar et al. 2018), few studies in-
corporate ML approaches for underwriting group health in-
surance. To our knowledge, there are no models of individ-
ual health risk used to form more competitive pricing for a
group. Here, we show that ML approaches in medical un-
derwriting can provide: (1) improved accuracy and broader
applicability, facilitated by modeling cost and risk at the in-
dividual and group levels; and (2) interpretability for non-
experts to use.

We jointly ran our study between Lumiata, a healthcare
analytics company, and a large insurance company in the
US, referred to here with the pseudonym “Delphi”.

Materials and Methods
Participants and Setting
We drew from a 14 million member population represen-
tative of Delphi’s entire fully-insured employer-group cus-
tomer base (i.e. their book of business) from 2015 to 2017.
We used this population to train and tune our models and
then predicted the annual cost of groups in a separate “hold-
out” set. The holdout set consisted of 648 employer groups
(referred to here simply as “group”) with renewal dates vary-
ing from 05/01/2016 to 04/01/2017. There were a total of
349,715 members still actively enrolled as of their respec-
tive group’s renewal date. Using the holdout set, we evalu-
ated our model by its performance of predicted cost incurred
during the 12-month period starting from their group’s re-
newal date (the “projection period”).

In the holdout set, Delphi censored the data recorded
four months prior to the renewal date for each group (the

2Independence Blue Cross: Large Group Underwriting Guide-
lines
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Figure 1: Holdout set “dynamic time-slicing”. This picture
shows the way the holdout set groups are time-sliced accord-
ing to their renewal dates, and thus have different lengths of
historical data (shown as “Features”) and different projec-
tion periods (shown as “Targets”) with respect to each other.
Lumiata was blinded from the information in blackout and
projection periods before submitting predictions to Delphi.

“blackout period”); group underwriting is usually done sev-
eral months before the new contract year in order to create
the renewal quotes presented to employer groups. The 12
months before the blackout period comprise the “experience
period”, ending on the “slice date”. For example, if a group’s
renewal date was 05/01/2017, the experience period was the
entire 2016 calendar year and 05/01/2017 to 04/30/2018 was
the cost projection period (Figure 1).

For this pilot study, we sliced the training data to select
groups and members in a similar, but simpler way. Instead of
dynamically slicing the groups, we imposed a fixed renewal
date of 01/01/2017 and used only the data recorded until
08/31/2016 for feature extraction. Therefore, the members
and groups for which we predicted cost were those eligible
as of the 08/31/2016 slice date. After filtering the training
data for eligibility,∼ 7.4 million patients were enrolled as of
the slice date. In order to fine-tune and evaluate models, we
split these eligible groups and members into “train”, “test”,
and “evaluate” sets. The data were split using a 70:20:10 ra-
tio (Figure 2).

Data Sources

We built our models using medical, capitation and pharmacy
claims, and lab and eligibility tables for Delphi’s patients
and groups. The medical claims tables contained cost infor-
mation, International Classification of Disease (ICD-9 and
ICD-10) diagnostic codes, and Current Procedural Technol-
ogy (CPT) procedure codes at the claim-level. The capita-
tion tables contained only cost information. All tables re-
ported each claim’s care setting: inpatient, outpatient, ancil-
lary, emergency, primary care, or specialty care. The phar-
macy claims tables contained National Drug Code (NDC)
medication codes and cost for each drug prescribed to a
patient and the written and fill dates for the drug prescrip-
tions. The cost associated to claims were given as “allowed”
amounts (the amount paid by the insurer plus the member’s
cost share). Lab tables contained Logical Observation Iden-
tifiers Names and Codes (LOINC) lab test codes. Eligibility
tables captured each patient’s health plans, enrollment time
periods, and plan benefits.
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Figure 2: “Splitting” and “time-slicing” for the training
data. This figure shows how we split and sliced the data of
groups and members enrolled on 08/31/2016 to train and
validate our models. Groups were split using a 70:20:10
train:test:evaluate ratio.

Models
Actuarial Models To compare model performance be-
tween Delphi’s actuarial models and Lumiata’s ML models,
we followed the best practices of actuarial science. Actuar-
ial models estimate group cost on a per member per month
(pmpm) basis. The normalization unit is called a “member
month”, which is defined as one month of enrollment for one
member. We used member months to normalize cost because
predicted pmpm cost for a group translates to the monthly
premium charged to each member in this group. Actuar-
ial models estimate group-level cost, treating each member
month of medical history as independent across members
and within a member.

The following example shows the utility and limitation
of this perspective. Consider three hypothetical groups X,
Y, and Z, each having 100 members and costing $1 million
during the 2017 calendar year:

• Group X: each member is enrolled for 10 months - the
pmpm cost equals $1 million/(10 months × 100 mem-
bers) = $1,000 pmpm

• Group Y: each member is enrolled for five months - the
pmpm cost equals $1 million/(5 months × 100 members)
= $2,000 pmpm

• Group Z: each member is enrolled for five months and one
member costs $900,000, while the rest of the members
cost $100,000 total - the pmpm cost equals $1 million/(5
months × 100 members) = $2,000 pmpm

As a result of the pmpm formulation, two groups with the
same cost but different member months will have a differ-
ent pmpm cost (Group X vs Y or Z). If the group cost is
highly concentrated on one individual, versus being evenly
distributed amongst the members in the group, it does not

necessarily reflect in the pmpm cost, (Group Y vs Z). In con-
trast, a member-level cost prediction model views Group Y
and Z differently, therefore better modeling cost at the group
level.

Actuarial predictive models used for quoting renewal
business rely on dozens of rating factors (input variables) to
build a predicted rate for a given group. The factors rely on
pre-computed demographic, medical trend, pharmacy trend
and other actuarial coefficients derived from patients across
a large (usually exogenous) population using regression-
based methods. These rating factor “priors” are then used
to assemble a predicted trend value for a particular group
(called the “manual rate”, MR). Historical claims for the
group are used to create the “experience rate” (ER), which
is then blended with the manual rate to create the final pre-
diction. The proportion of blending between the two quan-
tities is called “credibility” (c, where 0 ≤ c ≤ 1; Atkinson
2019). Thus, the predicted total cost of a group can be ex-
pressed as:

predicted cost = c · ER+ (1− c) ·MR (1)

This formula is a linear Bayesian hierarchical model, and
is the optimal linear least-squares solution for estimating
the annual pmpm cost of an employer group, called the
Buhlmann-Straub method (Schmidli 2013). This approach is
the industry standard, underlying most models in production
at insurance companies; applications include pricing, plan
design, and reserve setting (Bluhm et al. 2007; Fuhrer 2015).
As a group becomes more credible, the actuarial model can
rely more on the medical claims history of the group as an
indicator of future expenses. In the absence of credibility,
the safer bet is to rely on population-level cost estimations
using only age and sex (the manual rate). Actuaries use a
group’s member months to parameterize credibility (Atkin-
son 2019; Chaney et al. 2018). A larger group enrolled for
a shorter period of time (e.g. 1000 members × 6 months =
6000 member months) can have the same number of mem-
ber months as a smaller group enrolled for a longer period
of time (e.g. 200 members × 30 months = 6000 member
months), making them equally credible.

The two equations below are examples of the type of ex-
perience rating and manual rating models used by Delphi:

ER = (TC − TSC)(1 +AT )
m
12 · xmxbxd+

nsxp +BCp(1 +ATL)
m
12 · xphxgpxdpxip ·mm

MR = [BCmed(1 +ATmed)
m
12 · xgmxdmximxudm+

BCcap(1 +ATmed)
m
12+

BCph(1 +ATph)
m
12 · xgphxdphxiphxudph] ·mm

The definitions of independent variables in these two equa-
tions are shown in Table 1. For example, xd is the average
of the group’s member’s age and sex factors, which are legal
and widely used for large group underwriting in the United
States. The experience rate is linear in terms of the total
claims (TC), and is combined with the manual rate and the
group’s member months (Eqn. 1).
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Variable Definition Comment
AT annual trend medical and pharmacy

trends combined
ATL leveraged annual trend adjusted for the effects

of pooling-point lever-
aging

ATmed medical annual trend
ATph pharmacy annual trend
BCcap base capitation claims pmpm cost of medical

claims during the expe-
rience period

BCmed base medical claims pmpm cost of capita-
tion claims during the
experience period

BCp base pooled claims pmpm cost of pooled
claims during the expe-
rience period

BCph base pharmacy claims pmpm cost of phar-
macy claims during the
experience period

TC total claims total cost during the ex-
perience period

TSC total shock claims total cost of claims over
the pooling level during
the experience period

m midpoint months number of months be-
tween the midpoints of
experience and projec-
tion periods

mm member months member months during
the experience period

ns number of shock claims number of claims over
the pooling level

xb benefit
xd demographic based on the experience

period
xdm demographic - medical based on census
xdp demographic - pooling based on census
xdph demographic - phar-

macy
based on census

xgm geographic area - medi-
cal

based on census

xgp geographic area - pool-
ing

based on census

xgph geographic area - phar-
macy

based on census

xim industry - medical
xip industry - pooling
xiph industry - pharmacy
xm maturation
xp pooling level the cost threshold defin-

ing a shock claim (typi-
cally $100,000)

xph pharmacy load
xudm utilization dampening -

medical
1.2e−0.8S , where S is
medical cost share

xudph utilization dampening -
pharmacy

determined from a ta-
ble using medical cost
share

Table 1: Definitions of all the independent variables in the
manual rate and experience rate equations. The most recent
census was used for lookups. All x variables are factors.

To improve accuracy, we modeled cost at both the indi-
vidual and group levels. We used a sequence of two mod-
els: (1) Individual-level model – predicting per month cost
for a given member and (2) Group-level model – predicting
per member per month (pmpm) cost for a given group. Our
approach contrasts with traditional actuarial methods which
are heavily focused on group-level cost and lack individual-
level information within each group.

Feature Engineering We reshaped the claims and eligi-
bility tables into longitudinal patient records per our propri-
etary data format, the “Lumiata Data Model” (LDM). From
the LDM, we created member-level features (input vari-
ables) using information before the blackout period, based
on techniques from the literature (e.g. Razavian et al. 2015;
Tamang et al. 2017). Our demographic features were age
and sex; all other features were time-dependent. Our time
windows to compute a variety of features (e.g. diagnosis,
medication, procedure, lab, and revenue codes, and cost and
coverage) were: “last three months”, “last six months”, “last
one year”, and “anytime” prior to the blackout date.

In addition to ICD-9, ICD-10, CPT, NDC, and LOINC
codes, we transformed the codes into their grouped coun-
terparts based on organ-type (SNOMED), condition cate-
gories (HCUP, CMS-HCC and HHS-HCC), drug molecule
(RxNorm and ATC), and our proprietary clinical grouper
(Lumiata disease code). We derived features from these
codes by calculating the log count of every unique code in
each time window, and the summary statistics of each sys-
tem (total count, unique code count, minimum count, maxi-
mum count, mean count, etc) in the “anytime” window. The
presence of revenue codes (binary) was computed in the
“anytime” window.

We computed features using their observed lab interpreta-
tions or values from the LOINC codes. These include (1) log
counts of interpretations, i.e. “high”, “low”, “abnormal”, and
“normal”, (2) whether the value was increasing, decreasing
or flat across time points for the same test (one-hot encoded),
and (3) if the interpretation was fluctuating across time (bi-
nary). For (2), the calculation was based on a t-test’s p-value
of a simple linear regression’s slope.

Cost features are the most powerful features to predict
future cost. In addition to the cumulative allowed cost in
different time windows, we computed cost attributed to dif-
ferent care settings. The length of coverage was computed
for all time windows. In total, we constructed more than 5
million possible features per patient. The resulting feature
matrix was very sparse; most of the columns had no val-
ues at all. We reduced the dimension of the feature space
before training a model using feature selection techniques
discussed below.

Individual-Level Model We regressed our first model on
the allowed amount per month during the projection period
for each member. We trained a gradient boosting tree that
optimized the mean squared error (MSE) using the Light-
GBM package (Ke et al. 2017) in the Python programming
language (Guttag 2016). We chose LightGBM over linear
regression and XGBoost due to its better performance. To
speed up training time and reduce over-fitting, we tested a
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feature type value type count
age numeric 1
gender binary 1
cost numeric 28
coverage numeric 4
revenue code binary 70
ATC log count numeric 31
ATC summary stats numeric 7
CMS-HCC log count numeric 11
CPT log count numeric 771
CPT summary stats numeric 6
HCUP log count numeric 337
HCUP summary stats numeric 7
HHS-HCC log count numeric 6
ICD10 log count numeric 40
ICD10 summary stats numeric 7
ICD9 log count numeric 12
ICD9 summary stats numeric 6
LOINC log count numeric 115
LOINC summary stats numeric 7
LOINC interpretation log count numeric 117
LOINC interpretation fluctuation binary 4
LOINC value trend binary 88
NDC summary stats numeric 4
RxNorm log count numeric 230
RxNorm summary stats numeric 6
SNOMED log count numeric 2082
SNOMED summary stats numeric 7
Lumiata disease code log count numeric 91

Table 2: A summary of features used by the individual-level
model. Note that only the “anytime” window is used for rev-
enue code and all the summary statistics. For LOINC value
trend, each code corresponds to three one-hot encoded bi-
nary features, i.e., “increasing”, “decreasing”, “flat”, given a
time window.

variety of feature prevalence thresholds to reduce the fea-
tures set to ≤100,000. We defined the prevalence of a feature
as the fraction of non-zero values for this feature across pa-
tients in the training set. The model implicitly selected use-
ful features to split on; the typical number of features was ∼
4000 (see Table 2).

We ran the model recursively, using a different thresh-
old (thus a different number of features) in each iteration.
Evaluating on the test set reached a performance plateau at
a threshold of ∼ 0.001, which we used for all subsequent
models. We used the test set data for hyper-parameter tuning
and early-stopping. Using the trained model, we made cost
predictions for all the individuals in the train, test, evaluate,
and holdout sets.

Members enrolled as of 08/31/2016 were included in our
train, test, and evaluate sets. Members who dropped out dur-
ing the blackout period were filtered out before training; we
did not train on a member’s data if this member was not
enrolled in a group on 01/01/2017. We only omitted these
members during training, not during inference.

Aggregation Our individual model predicts the per month
cost in the projection period for the members who were en-
rolled in groups at the end of experience period. For our
train, test, and evaluate sets, this date was 08/31/2016. For
the holdout set, the slice date depended on the group’s re-
newal date. We then aggregated these predictions based
on the members active on this date to obtain the mean of
member-level cost predictions for each group. This quantity
has a unit of pmpm and became the input of our group-level
model described below.

Group-Level Adjustment The aggregated mean predic-
tion of a group can be thought of as predicted pmpm cost.
However, this quantity only considers the members enrolled
at the end of the experience period and assumes enrollment
remains constant throughout the projection period. In re-
ality, a group can grow or shrink during the blackout and
projection periods, affecting the true pmpm. We regressed
a second model on the true group-level pmpm cost to ad-
just the aggregated predictions. We experimented with dif-
ferent group-level features in this model and use the follow-
ing (per group): (i) mean cost of member-level predictions,
(ii) mean member age, (iii) total number of member months
for the group during the experience period, (iv) “growth”
feature, defined as the change in the number of members
during the experience period divided by the total number
of member months, (v) average length of member cover-
age, (vi) fraction of experience period costs that were in-
curred during the final four months, before the blackout pe-
riod (vii) fraction of high-cost members, defined as some-
one whose cost falls within the top 10% of all members in
the training set. We then trained a LightGBM model that
optimized pmpm Mean Absolute Error (MAE) and used
the test set to perform hyper-parameter tuning and early-
stopping. The mean of member-level cost predictions for
each group highly correlates with the overall target pmpm
cost for the group. With the additional features, the group-
level model improved pmpm MAE by ∼ 10% compared to
the individual-level model alone.

Note that a regression model optimizing MSE estimates
the true mean of y at a given x, while optimizing MAE
is equivalent to estimating the true median. Thus, in order
to make the aggregated individual-level predictions unbi-
ased estimators for the group pmpm costs, we must optimize
MSE instead of MAE at the individual level, even though we
are pursuing MAE at the group level.

Similar to the individual model, we trained the group
model on groups still active during the projection period be-
cause only the groups that remained active will be included
when evaluating the results. This operation was only done in
model training and was not performed when doing inference
using the trained model.

Model Evaluation
ML Metrics Evaluation We adapted the standard metrics
R-squared (R2), MAE, and Gini index (Frees, Meyers, and
Cummings 2011) to predicted pmpm cost; evaluation met-
rics are measured by comparing “true pmpm cost” and “pre-
dicted pmpm cost”. Lumiata received claims data at the al-
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lowed amount level to preserve Delphi’s pharmaceutical and
provider reimbursement rates, whereas Delphi’s production
models predict the “paid amount” for employer groups. As
a result, Delphi and Lumiata modeled two different types of
cost, which are not directly comparable because the allowed
amount is usually greater than the paid amount (though they
are highly correlated; see Hileman and Steele 2016). For
business purposes, to make the predictions comparable, both
teams agreed on two solutions. First, we computed “normal-
ized” pmpm MAE, which equals pmpm MAE divided by
the “global pmpm cost”. The global pmpm cost is the to-
tal (allowed or paid) amount divided by the total number
of member months across all groups. Second, we computed
the “trend” versions of our predictions. The “allowed trend”
was defined as the pmpm allowed amount in the projection
period divided by the pmpm allowed amount in the experi-
ence period; the “paid trend” was defined similarly. Trend
calculations are ubiquitous in actuarial science (SOA 2017).
ML and actuarial metrics used in this context provide strong
directional support for one model over another, as we will
see.

Lift Plot and Concession Opportunities While ML per-
formance metrics like MAE and R2 are ubiquitous in the
tech industry, they often lack direct connection to concrete
business-level Key Performance Indicators (KPIs) in other
fields (Henke, Levine, and McInerney 2018). To address this
gap, we computed a KPI called a “lift plot”, illustrating the
implications of Lumiata’s model in a production context.
The lift plot is made using the following steps: (1) com-
pute Lumiata’s predicted allowed trend divided by Delphi’s
predicted paid trend (the “trend ratio”), (2) rank groups ac-
cording to the trend ratio, (3) segment the ranked groups
into deciles, (4) compute the actual-to-expected (A/E) ratios
within each decile, where “A” is the true paid amount of a
given decile, and “E” is Delphi’s predicted paid amount of
the same decile, (5) normalize the A/E of all the ten deciles
by the global A/E of the holdout set, and (6) plot the “ora-
cle” model (a model that perfectly predicts pmpm allowed
trend). The predicted paid amount of a given decile is the
sum of the predicted pmpm paid amount times the projected
member months for all groups in this decile. The projected
member months of the projection period is 12 months times
the number of members at the end of the experience period.

A group is considered to be a “concession opportunity at
the 5% level” if the group’s rates can be reduced by 5%
while maintaining profitability (A/E remains <1). In other
words, the true paid trend ratio (true pmpm paid trend di-
vided by Delphi’s predicted pmpm paid trend) is < 0.95.
We used precision and recall to evaluate concession oppor-
tunity identification performance (Powers 2008). In order to
identify concession opportunities at the 5% level, we ap-
plied a decision rule of < 1 using a predicted “trend ra-
tio” (Lumiata’s predicted pmpm allowed trend divided by
Delphi’s predicted pmpm paid trend). That is, if Lumiata’s
predicted pmpm allowed trend was lower than Delphi’s pre-
dicted pmpm paid trend for a group, we asserted that group
was a concession opportunity at the 5% level. We used a de-
cision rule of < 1 instead of < 0.95 in order to achieve a

model MAE R2 Gini index
Delphi 0.239 0.265 0.600

Lumiata 0.192 0.334 0.588

Table 3: Performance metric results for Lumiata vs Delphi
on a normalized pmpm basis. Bold indicates higher perfor-
mance for that metric.

Lumiata Trend 
Greater Than 
Delphi Trend

Lumiata Trend 
Equal To 

Delphi Trend

Lumiata Trend 
Lower Than 
Delphi Trend

UW 
Concession

No UW 
Action

No UW 
Action

Actual Greater 
Than Expected

Actual Equal 
To Expected

Actual Lower 
Than Expected

Push ProfitableUnprofitable

Figure 3: Flow-chart of the “stop-light” process implement-
ing Lumiata’s model output. “UW” stands for underwriting.

higher recall.

Results
Model Performance Lumiata’s model was 20% better in
normalized pmpm MAE, 26% better in pmpm R2 than Del-
phi’s model, and 2% lower in Gini index than Delphi’s
model (Table 3). Lumiata correctly identified 84% of the
groups in the holdout set that had concession opportunities
at the 5% level.

Lumiata’s predicted pmpm allowed trend had a 65% pre-
cision and 84% recall in identifying concession opportuni-
ties at the 5% level, and a 56% precision and 85% recall in
identifying concession opportunities at the 10% level. For
comparison, an “oracle” model had an 84% precision and
96% recall at the 5% level, and a 73% precision and 97% re-
call at the 10% level. This similarity in precision and recall
indicates Lumiata’s model was near optimal for predicting
concession opportunities at the 5% level.

Practical Application Operationalizing Lumiata’s model
relied on the “stop-light principle” to make the model out-
put interpretable to non-data scientists. The decision process
derived from Lumiata’s model is: (1) If Lumiata’s predicted
trend is less than Delphi’s predicted trend, then the model
suggests an underwriter give a concession of at least 5% on
that group’s renewal quote (Green). (2) If Lumiata’s pre-
dicted trend is equal to or greater than Delphi’s predicted
trend, no action is taken (Yellow or Red, see Figure 3).

The lift plot in Figure 4 shows the result of using Lumi-
ata’s predicted pmpm allowed trend in this decision process.
The average A/E per decile of Delphi’s model varies with
the decile of Lumiata trend ratio (Lumiata’s predicted al-
lowed trend divided by Delphi’s predicted paid trend) and
true allowed trend ratio (true allowed trend divided by Del-
phi’s predicted paid trend), respectively. The A/E of the bot-
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Figure 4: Lift plot for the holdout set using Lumiata (pur-
ple) and true allowed (blue) trend ratios. The trend ratio of
a model is defined as its predicted trend divided by Delphi’s
predicted trend. The solid black line indicates A/E = 1. The
dotted black lines indicate where the A/E = 1.05 or 0.95.
Concession opportunity groups are in deciles below the 0.95
dotted line.

tom five Lumiata trend ratio deciles are below 0.95, meaning
Lumiata’s trend ratio can select groups for a rate drop of ≥
5% with good accuracy. The median trend ratio was 0.89
which yielded higher precision than a decision rule of 1.0.

Had Delphi implemented our model for this pricing pe-
riod, their underwriters could have dropped the renewal
quote 5% or more for approximately half of the groups while
retaining profitability. An “oracle” model (blue line in Fig-
ure 4) identified the same number of decile concession op-
portunities at the 5% level as our model (five deciles). In this
application, our model acts as a decision-support tool to give
efficient guidance to underwriters.

Deployment
The goals of Lumiata’s pilot study with Delphi were to prove
Lumiata’s (1) ML could improve over an established indus-
try methodology, and (2) tech stack could deliver monthly
predictions for Delphi’s renewal business groups. We de-
signed a Kaggle-style competition between the two compa-
nies, with two holdout sets - a preliminary holdout set (658
groups) and a final holdout set (which we call “holdout set”
throughout this paper - 648 groups). We had one chance to
compare our predictions to Delphi’s on the final holdout set;
the success or failure of the pilot study was predicated on
whose model had the best group-level cost predictions.

Quality Assurance Due to several delicate calculations
needed to assemble the predicted/true allowed trend predic-
tions, we computed non-prediction fields to rule out non-
data science confounding factors before running the results
analysis. These fields included (per group): (i) number of
members enrolled at the end of experience period, (ii) num-
ber of member months in the experience period, (iii) true

2https://www.kaggle.com/

allowed amount in the experience period, and (iv) predicted
allowed amount in the projection period. After receiving the
censored information, we computed the: (i) number of mem-
bers at the beginning of projection period, (ii) number of
member months in the projection period, and (iii) true al-
lowed amount in the projection period. Due to a strong data
model built off of FHIR and solid compute infrastructure,
we were able to iterate and fix bugs quickly, until our cal-
culations of the experience period non-prediction columns
matched Delphi’s within 5%. Completion of this analysis
allowed quick and self-evident comparison of Lumiata’s
and Delphi’s models’ performance metrics. Additionally, the
non-prediction fields found their way into roll-out plan be-
low.

Data Challenges For model comparison, we had to ad-
dress discrepancies between Lumiata’s and Delphi’s claims
data sets. Two major differences in the claims data were:
(1) Delphi’s models used paid amount and Lumiata used
allowed amount, and (2) Delphi used the “paid date”, but
requested Lumiata use the “encounter date” for allowed
amounts (Delphi felt “encounter date” was more appropri-
ate for patient-level cost predictions). To solve these is-
sues, we computed the “allowed trend” compared to the
“paid trend” (Figure 4). Calculating the “allowed trend” re-
quired we compute three other quantities per group (“num-
ber of members at the end of experience period”, “member
months in the experience period”, and “allowed amount in
the experience period”), and the predicted allowed amount
for the group. Accurately computing these quantities was
more difficult than expected due to the consequences of dual
paid/allowed conventions and time-dependent patient enroll-
ment:

(i) Calculating the “allowed amount in the experience
period” differs depending on whether “paid date” or “en-
counter date” is used. Using the paid vs encounter date seg-
mented claims differently into a group’s experience, black-
out, and projection periods. For example, some claims were
denied or paid claims could be reversed. Hence, claims data
filtered on encounter date in the holdout set experience pe-
riod were sometimes absent from the unblinded holdout set’s
experience period.

(ii) The number of members enrolled in a group at the
end of the experience period could change during the black-
out and projection periods. For example, members can shift
between different groups due to job or spousal health plan
changes. Also, enrollment was updated on the 15th of the
month, but we calculated “number of members at end of ex-
perience period” and “member months in the experience pe-
riod” for the first of each month, making our enrollment data
two weeks out of date.

Roll-out Strategy Delphi requested Lumiata provide
monthly group-level cost predictions and concession op-
portunities for groups up for renewal within the next four
months (Delphi renews groups throughout the year). Delphi
asked for a seven day cost-prediction turn around time and
fixed model feature set each quarter. In response, we built a

3https://wiki.hl7.org/FHIR
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platform that can create LDMs for 1 TB of claims data in un-
der an hour and produce highly optimized group-level cost
predictions in under four hours.

To streamline deployment, we proposed the following
plan to Delphi: (1a) Each month, Delphi sends a moving
three year snapshot of their claims and eligibility tables. (1b)
Delphi sends their non-prediction field calculations and their
paid trend group cost predictions for groups up for renewal.
(2) Lumiata updates the existing patients’ LDMs and adds
new patients from the eligibility file. (3) Lumiata updates
the group cost prediction model, training using the prior 12
months as the projection period, four months prior as the
blackout, and prior 14 months as the experience period. (4)
Lumiata creates feature vectors including the new projec-
tion/blackout period claims information. (5) Lumiata applies
the updated member- and group-level models to the claims
data to produce group-level allowed trend predictions. (6)
Using Delphi’s paid trend predictions from 1b and the “stop-
light” principle (Figure 3), Lumiata recommends whether
to drop the rate by 5% for each group. (7) Lumiata sends
its non-prediction attributes and the allowed trend predic-
tions to Delphi with one recommendation per group up for
renewal. All non-prediction fields must agree within ≤ 5%
between Delphi and Lumiata’s calculations. (8) Delphi veri-
fies receipt of the data and the results are consumed by their
actuarial and underwriting teams. All files are transferred to
and from Lumiata’s platform (hosted on Google Cloud Plat-
form) using sFTP.

Transparent Rate Setting Actuarial models have an es-
sential property: they are “explainable” because a prediction
can be decomposed into discrete multiplicative factors with
an inherent interpretation. For example, “geographic area
factor” = 0.9 means people in a particular zip code cost 10%
less than the mean, so the base rate is adjusted (multiplied)
by 0.9 for members from this zip code. This degree of ex-
plainability is crucial because actuaries need to file rates an-
nually for individual/small group markets with the state in-
surance commissioner to ensure the factors used to produce
the rate are compliant with legal guidelines. Furthermore,
an underwriter needs to be able to explain how she arrived
at a particular rate to a customer. A critique of ML models
is that they lack explainability in terms of what input vari-
ables may have contributed to a particular prediction (Rudin
2019). However, explainable ML in healthcare is must-have,
touching upon fundamental issues of bias, transparency, and
reasonableness of ML model predictions.

Shapely values, a game theoretic algorithm, enable com-
mon ML algorithms to output feature weights specific to a
prediction (Lundberg and Lee 2017). We applied the Python
package SHAP to our LightGBM models to yield member-
level explanations. According to the algorithm, a model f
and a member feature vector x admit an additive decompo-
sition in terms of the mean value of the model E[f(x)] and
SHAP values φi (interpreted as dollar value pmpm amounts)
for the ith feature. For our member- and group-level models,

4https://github.com/slundberg/shap

f1 and f2 are:

f1(x) = E[f1(x)] +
3996∑
i=1

φi,1 (2)

f2(x) = E[f2(x)] +
7∑

i=1

φi,2 (3)

Given our member and group model sequence, our group
model (3) admits an additive decomposition in terms of
member-level φi,1 . The mechanics in (3) are similar to an
actuarial formula, in that SHAP values for a group’s mem-
bers’ features additively “adjust” the mean pmpm cost of the
model over all members and groups, while the actuarial fac-
tors for a particular group multiplicatively “adjust” the mean
pmpm cost of their entire patient population. We often found
that ≤500 features’ SHAP values account for 95% of a cost
prediction, for each group. However, the specific features in-
volved varied by group.

The transparency afforded by the group-level SHAP val-
ues provides the opportunity to explain a rate adjustment to
a customer in dollar pmpm amounts using the specific risk
drivers for that group and modify a rate given by the ML
model by the expected change in cost for specific drugs and
services. For instance, if the price of Glipizide, a drug to
treat type-2 diabetes, will drop for an insurer next year by
20%, imagine a world where the insurer can multiply the
SHAP values corresponding to Glipizide-related pharmacy
costs by 0.80 for all the members on Glipizide, thus lower-
ing the projected rate. These mechanics would be similar to
current actuarial methods, making them easy to implement.
Furthermore, greater model transparency could increase pa-
tient adherence to prescribed medications. As drug prices
rise and more patients purchase high-deductible plans, pa-
tients have to pay higher out of pocket costs for drug treat-
ment, and patient medication adherence declines (Callaghan
et al. 2019). Insurers could use the SHAP values from the
patient-level model to identify drugs driving up projected
cost for that group, and suggest the prescribing doctor of-
fer a lower cost alternative drug with similar efficacy. This
provides a win-win opportunity, lowering drug cost for the
payer, and improving patient adherence to the cheaper drug
through increased affordability.

Discussion
Here, we demonstrate that: (1) ML approaches can signifi-
cantly improve the accuracy and efficiency of group health
insurance underwriting and (2) ML models can offer com-
parable interpretability to traditional actuarial methods. Our
contributions provide clear direction for how to improve the
efficiency and predictive performance of underwriting for
employer-based insurance and how to lower the cost for
members in groups of any size. Our ML-based approach
improved MAE over actuarial models across the book of
business: >500-member groups showed an improved per-
formance.

Our model shows the most improvement over actuarial
models in situations where the group size is ≤500 and/or
the group claims experience is relatively short (<8 months).
In these situations, the groups are not yet credible, so actu-
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arial models perform sub-optimally. We believe the success
of our model was due to modeling costs: (1) at the individ-
ual level; by contrast, actuarial methods aggregate medical
history across group members, (2) with models that perform
well with skewed distributions; the cost of care in an insur-
ance population is often gamma distributed, making the ML
method of gradient boosting trees, like LightGBM, highly
effective (Zhou, Yang, and Qian 2018), (3) using a model-
agnostic approach to select features relevant for predictions,
and (4) by combining individual- and group-level models to
produce the final predictions.

We treated all members in the training set as if their
group’s renewal was 01/01/2017, with a four month black-
out period starting on 08/31/2016. However, patients often
try to “fit in” healthcare services before their next renewal
period because they are likely near or above their plan’s de-
ductible and hence will have these services fully covered by
the insurance company. When patient records were “sliced”
uniformly on 08/31/2016, there was a chance that this useful
information would be lost and negatively impact the model
performance. We found that dynamically “slicing” patient
records according to their group’s renewal date (instead of
all patients on 08/31/2016), and training the models with this
feature setup, the overall results on the holdout set remained
roughly the same in terms of MAE and R2. Model perfor-
mance likely didn’t improve because claims data are inher-
ently fuzzy with dates; claims can take variable amounts of
time to get paid, and hence a model that tries to learn precise
date information will add some but not meaningful value. To
account for fuzzy date information, we aggregated features
over 3 months, 6 months, etc (see Methods).

As ML models are increasingly compared to more tradi-
tional statistical techniques, the most appropriate study de-
sign and model evaluation metrics should be examined. For
example, the holdout set data was “out of sample” (i.e. us-
ing patients/groups unseen before by the model) but not “out
of time” (i.e. projecting costs for time periods subsequent
to 2017). Furthermore, claims data are not time-stationary
(e.g. new drugs and treatments will be developed), so the
expected model performance may not be perfectly realized
in practice, but the relative difference between the models
should hold. Also, we obtained a slightly worse Gini index
than Delphi, despite our much better R2, MAE, and lift plot
(Table 3 and Figure 4). This discrepancy can occur because
the Gini index is a ranking-based metric, whereas a regres-
sion model minimizes the prediction errors. One difficulty is
the Gini index is not a differentiable quantity. Future work
should develop algorithms to address this problem.

Data quality was crucial to our success. Alignment on
non-prediction fields between Lumiata and Delphi ruled out
errors in the data, pipeline, or output, improving communi-
cation across teams and increasing efficiency. These calcula-
tions must be automated for developing and productionaliz-
ing a medical underwriting ML application, due to the large
size of data sets and rapid turnaround of results.

Due to its highly applied nature, some operational reali-
ties limit our study’s evaluation. A challenge for validating
our predictions is the long feedback cycle (20 months). Also,
not all of Lumiata’s concession recommendations could be

granted due to a variety of quantitative and judgement fac-
tors under the underwriter and insurer’s discretion.

Additionally, we could not determine if our individual-
level model was racially biased, because we did not receive
patient ethnicity data. Avoiding racial bias is important as
previous studies have found evidence of racial bias in com-
mercial cost prediction models used for clinical manage-
ment (Obermeyer et al. 2019). Historically, poorer minori-
ties under-utilized healthcare services due to mistrust of the
system and confusion about how to navigate it (Obermeyer
et al. 2019). However, because our response variable is not a
clinical outcome but a financial one, we think this effect on
pricing may be less significant. More work will be needed
to better understand the effect of pricing insurance more af-
fordably for minority patients, predicated on their less fre-
quent utilization of the healthcare system.

In practice, ML approaches can help insurers be more
competitive, avoiding adverse risk. It can result in the design
of more “exotic” funding arrangements due to better predic-
tive power of patient health, following the industry trend to-
wards capitated payments (Lee, Majerol, and Burke 2019).

Unlike previous ML models in healthcare (Rudin 2019),
our model output is interpretable by a non-technical user,
simplifying operationalization (Figure 3). A user does not
need to understand the inner workings of our algorithm to
apply our output as a multiplicative adjustment factor to their
existing actuarial models and can output the most important
group-specific risk factors.

Conclusions

Machine learning on insurance claims data provides a pow-
erful tool to improve the efficiency and affordability of plans
and care offered to patients enrolled in employer-sponsored
health plans. With more accurate rate-setting, health insur-
ance companies can design nuanced plan attributes, reduc-
ing the cost of care for their members. Our ML model
achieved 20% improved accuracy in absolute predictive per-
formance over traditional actuarial methods and was able to
identify over 80% of new concession opportunities available
to Delphi. This allows underwriters to better price and retain
<500 employer group customers. This study can be used
by payers to give underwriters improved pricing guidance,
retaining business and giving a better and more affordable
experience to members.
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