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Abstract

Extreme precipitation events, such as violent rainfall and hail
storms, routinely ravage economies and livelihoods around
the developing world. Climate change further aggravates this
issue (Gupta et al. 2020). Data-driven deep learning ap-
proaches could widen the access to accurate multi-day fore-
casts, to mitigate against such events. However, there is
currently no benchmark dataset dedicated to the study of
global precipitation forecasts. In this paper, we introduce
RainBench, a new multi-modal benchmark dataset for data-
driven precipitation forecasting. It includes simulated satel-
lite data, a selection of relevant meteorological data from the
ERA5 reanalysis product, and IMERG precipitation data. We
also release PyRain, a library to process large precipitation
datasets efficiently. We present an extensive analysis of our
novel dataset and establish baseline results for two bench-
mark medium-range precipitation forecasting tasks. Finally,
we discuss existing data-driven weather forecasting method-
ologies and suggest future research avenues.

Introduction
Extreme precipitation events, such as violent rain and hail
storms, can devastate crop fields and disrupt harvests (Vo-
gel et al. 2019; Li et al. 2019). These events can be locally
forecasted with sophisticated numerical weather models that
rely on extensive ground and satellite observations. How-
ever, such approaches require access to compute and data
resources that developing countries in need - particularly in
South America and West Africa - cannot afford (Le Coz and
van de Giesen 2020; Gubler et al. 2020). The lack of ad-
vance planning for precipitation events impedes socioeco-
nomic development and ultimately affects the livelihoods of
millions around the world. Given the increase in global pre-
cipitation and extreme precipitation events driven by climate
change (Gupta et al. 2020), the need for accurate precipita-
tion forecasts is ever more pressing.

Data-driven machine learning approaches circumvent
the dependence on traditional resource-intensive numerical
models, which typically take several hours to run (Sønderby
et al. 2020), incurring a significant time lag. In contrast, deep
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learning models deployed on dedicated high-throughput
hardware can produce inferences in a matter of seconds.
However, while there have been attempts in forecasting pre-
cipitation with neural networks, they have mostly been frag-
mented across different local regions, which hinders a sys-
tematic comparison into their performance.

In this work, we introduce RainBench, a multi-modal
dataset to support data-driven forecasting of global pre-
cipitation from satellite imagery. We curate three types of
datasets: simulated satellite data (SimSat), numerical re-
analysis data (ERA5), and global precipitation estimates
(IMERG). The use of satellite images to forecast precipi-
tation globally would circumvent the need to collect ground
station data, and hence they are key to our vision for widen-
ing the access to multi-day precipitation forecasts. Reanal-
ysis data provide estimates of complete atmospheric state,
and IMERG provides rigorous estimates of global precipita-
tion. Access to these data opens up opportunities to develop
more timely and potentially physics-informed forecast mod-
els, which so far could not have been studied systematically.

Most related to our work, Rasp et al. (2020) have devel-
oped WeatherBench, a benchmark environment for global
data-driven medium-range weather forecasting. This dataset
forms an excellent first step in weather forecasting. How-
ever, some important features of WeatherBench limit its use
for end-to-end precipitation forecasts. WeatherBench does
not include any observational raw data (e.g. satellite data)
and only contains ERA5 reanalysis data, which have limited
resolution of extreme precipitation events. Further, Weather-
Bench does not include a fast dataloading pipeline to train
ML models, which we found to be a significant bottle-
neck in our model development and testing process. This
gap prompted us to also release PyRain, a data processing
and experimentation framework with fast and configurable
multi-modal dataloaders.

To summarise our contributions: (a) We introduce the
multi-modal RainBench dataset which supports data-driven
investigations for global precipitation forecasting from satel-
lite imagery; (b) we release PyRain, which allows re-
searchers to run Deep Learning (DL) experiments on Rain-
Bench efficiently, reducing time and hardware costs and thus
lowering the barrier to entry into this field; (c) we intro-
duce two benchmark precipitation forecasting tasks on Rain-
Bench and their baseline results, and present experiments
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studying class-balancing schemes. Finally, we discuss the
challenges in the field and outline several fruitful avenues
for future research.

Related Work
Weather forecasting systems have not fundamentally
changed since they were first operationalised nearly 50 years
ago. Current state-of-the-art operational weather forecasting
systems rely on numerical models that forward the physi-
cal atmospheric state in time based on a system of physi-
cal equations and parameterised subgrid processes (Bauer,
Thorpe, and Brunet 2015). While global simulations typi-
cally run at grid sizes of 10 km, regional models can reach
1.5 km (Franch et al. 2020) . Even in the latter case, skilled
forecast lengths are usually limited to a maximum of 10
days, with a conjectured hard limit of 14 to 15 days (Zhang
et al. 2019). Nowcasting, i.e. high-resolution weather fore-
casting only a few hours in advance, is currently limited by
the several hours that numerical forecasting models take to
run (Sønderby et al. 2020).

Given the huge amounts of data currently available from
both numerical models and observations, new opportunities
exist to train data-driven models to produce these forecasts.
The current boom in Machine Learning (ML) has inspired
several other groups to approach the problem of weather
forecasting. Early work by Xingjian et al. have invested us-
ing convolutional recurrent neural networks for precipita-
tion nowcasting. More recently, Sønderby et al. from Google
proposed a “(weather) model free” approach, MetNet, which
seeks to forecast precipitation in continental USA using geo-
stationary satellite images and radar measurements as in-
puts. This approach performs well up to 7-8 hours, but in-
evitably runs into a forecast horizon limit as information
from global or surrounding geographic areas is not incor-
porated into the system. This time window has value though
it would not enable substantial disaster preparedness.

The prediction of extreme precipitation (and other ex-
treme weather events) has a long history with traditional
forecasting systems (Lalaurette 2003). More recent devel-
opments in ensemble weather forecasting systems surround
the introduction of novel forecasting indices (Zsótér 2006,
EFI) and post-processing (Grönquist et al. 2021). There has
also been other deep-learning based precipitation forecast-
ing models as motivated by the monsoon prediction prob-
lem, for example, Saha, Mitra, and Nanjundiah (2017) and
Saha et al. (2020) use a stacked autoencoder to identify
climatic predictors and an ensemble regression tree model,
while Praveen et al. (2020) use kriging and multi-layer per-
ceptrons to predict monsoon rainfall from ERA5 data.

WeatherBench (Rasp et al. 2020) is a benchmark dataset
for data-driven global weather forecasting, derived from data
in the ERA5 archive. Its release has prompted a number
of follow-up works to employ deep learning techniques for
weather forecasting, although the variables considered have
only been restricted to the forecasts of relatively static vari-
ables, such as 500 hPa geopotential and 850 hPa temper-
ature (Weyn, Durran, and Caruana 2019, 2020; Rasp and
Thuerey 2020; Bihlo 2020; Arcomano et al. 2020). Unlike
RainBench which incorporates the element of observational

input data from (simulated) satellites, WeatherBench’s data
comes solely from the ERA5 reanalysis archive, and thus
provides no route to producing an end-to-end forecasting
system.

RainBench
In this section, we introduce RainBench, which consists
of data derived from three publicly-available sources: (1)
European Centre for Medium-Range Weather Forecasts
(ECMWF) simulated satellite data (SimSat), (2) the ERA5
reanalysis product, and (3) Integrated Multi-satellitE Re-
trievals (IMERG) global precipitation estimates.

SimSat We use simulated satellite data in place of real
satellite imagery to minimise data processing requirements
and to simplify the prediction task. SimSat data are model-
simulated satellite data generated from ECMWF’s high-
resolution weather-forecasting model using the RTTOV ra-
diative transfer model (Saunders et al. 2018). SimSat emu-
lates three spectral channels from the Meteosat-10 SEVIRI
satellite (Aminou 2002). SimSat provides information about
global cloud cover and moisture features and has a native
spatial resolution of about 0.1◦ – i.e. about 10 km – at three-
hourly intervals. The product is available from April 2016
to present (with a lag time of 24 h). Using simulated satel-
lite data provides an intermediate step to using real satel-
lite observations as the images are a global nadir view of
Earth, avoiding issues of instrument error and large num-
bers of missing values. Here we aggregate the data to 0.25◦

– about 30 km – to be consistent with the ERA5 dataset.

ERA5 We use ERA5 as it is an accurate and commonly
used reanalysis product familiar to the climate science com-
munity (Rasp et al. 2020). ERA5 reanalysis data provides
hourly estimates of a variety of atmospheric, land and
oceanic variables, such as specific humidity, temperature
and geopotential height at different pressure levels (Hers-
bach et al. 2020). Estimates cover the full globe at a spatial
resolution of 0.25◦ and are available from 1979 to present,
with a lag time of five days.

IMERG IMERG is a global half-hourly precipitation es-
timation product provided by NASA (Huffman et al. 2019).
We use the Final Run product which primarily uses satellite
data from multiple polar-orbiting and geo-stationary satel-
lites. This estimate is then corrected using data from re-
analysis products (MERRA2, ERA5) and rain-gauge data.
IMERG is produced at a spatial resolution of 0.1◦ – about
10 km – and is available from June 2000 to present, with a
lag time of about three to four months.

To facilitate efficient experimentation, all data is con-
verted from thier original resolutions to 5.625◦ resolutions
using bilinear interpolation.

RainBench provides precipitation values from two
sources, ERA5 and IMERG, as both are widely used and
considered to be high-quality precipitation datasets. The
ERA5 precipitation is accumulated precipitation over the
last hour and is calculated as an averaged quantity over a
grid-box. We aggregated IMERG precipitation into hourly
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accumulated precipitation and should be considered as a
point estimate of the precipitation.

Figure 1 shows the distribution of precipitation for the
years 2000-2017 with both ERA5 and IMERG. IMERG is
generally regarded as a more trust-worthy dataset for pre-
cipitation due to the direct inclusion of precipitation obser-
vations in the data assimilation process and the higher spa-
tial resolution used to produce the dataset, which also result
in seen difference in data distributions. IMERG has signifi-
cantly larger rainfall tails than ERA5, and these tails rapidly
vanish with decreasing dataset resolution. The underestima-
tion of extreme precipitation events in ERA5 is clearly visi-
ble.

Figure 1: Precipitation histogram from 2000-2017 with
ERA5 and IMERG at different resolutions. Vertical lines de-
lineate convection rainfall types: slight (0–2 mm h−1), mod-
erate (2–10 mm h−1), heavy (10–50 mm h−1), and violent
(over 50 mm h−1) (MetOffice 2012).

PyRain
To support efficient data-handling and experimentation on
Rainbench, we release PyRain, an out-of-the-box experi-
mentation framework.

PyRain2 introduces an efficient dataloading pipeline for
complex sample access patterns that scales to the terabytes
of spatial timeseries data typically encountered in the cli-
mate and weather domain. Previously identified as a decisive
bottleneck by the Pangeo community3, PyRain overcomes
existing dataloading performance limitations through an ef-
ficient use of NumPy memmap arrays4 in conjunction with
optimised software-side access patterns.

In contrast to storage formats requiring read system calls,
including HDF55, Zarr6 or xarray7, memory-mapped files
use the mmap system call to map physical disk space directly
to virtual process memory, enabling the use of lazy OS de-
mand paging and circumventing the kernel buffer. While less
beneficial for chunked or sequential reads and spatial slicing,
memmaps can efficiently handle the fragmented random ac-
cess inherent to the randomized sliding-window access pat-
terns along the primary axis as required in model training.

2https://github.com/frontierdevelopmentlab/pyrain
3https://pangeo.io/index.html (2021)
4https://docs.python.org/3/library/mmap.html (2021)
5https://portal.hdfgroup.org/display/HDF5/HDF5(2021)
6https://zarr.readthedocs.io/en/stable/ (2021)
7http://xarray.pydata.org/en/stable/ (2021)

NetCDF PyRain Speedup

16 workers 40 2410 60.3×
64 workers 70 1930 27.6×

Table 1: Number of data samples loaded per second using
PyRain versus a conventional NetCDF framework. Typical
configurations assumed and performed on a NVIDIA DGX1
server with 64 CPUs.

In Table 1, we compare PyRain’s memmap data read-
ing capcity against a NetCDF+Dask 8 (Rocklin 2015) dat-
aloader. We find empirically that PyRain’s memmap dat-
aloader offers significant speedups over other solutions, sat-
urating even SSD I/O with few process workers when used
with PyTorch’s (Paszke et al. 2019) inbuilt dataloader.

Note that explicitly storing each training sample is not
only slow and inflexible for research settings, but it also
requires twenty to fifty times more storage and as a result
comes at a higher cost than constructing samples on-the-fly.
Thus, other options such as writing samples in TFRecord
format (Weyn, Durran, and Caruana 2019; Abadi et al. 2016)
would only be sensible for highly distributed training in pro-
duction settings.

PyRain’s dataloader is easily configurable and supports
both complex multimodal item compositions, as well as pe-
riodic (Sønderby et al. 2020) and sequential (Weyn, Durran,
and Caruana 2020) train-test set partitionings. Apart from its
data-loading pipeline, PyRain also supplies flexible raw-data
conversion tools, a convenient interface for data-analysis
tasks, various data-normalisation methods and a number of
ready-built training settings based on PyTorch Lightning9.
While being optimised for use with RainBench, PyRain is
also compatible with WeatherBench.

Evaluation Tasks
We define two benchmark tasks on RainBench for precipi-
tation forecasting, with the ground truth precipitation values
taken from either ERA5 or IMERG.

For each benchmark task, we consider three different in-
put data settings: SimSat, reanalysis data (ERA5), or both.
From the ERA5 dataset, we select a subset of variables as in-
put to the forecast model based on our data analysis results;
the inputs are geopotential (z), temperature (t), humidity
(q), cloud liquid water content (clwc), cloud ice water con-
tent (ciwc), each sampled at 300 hPa, 500 hPa and 850 hPa
geopotential heights; to these we add the surface pressure
and the 2-meter temperature (t2m), as well as static vari-
ables that describe the location and surface of the Earth, i.e.
latitude, longitude, land-sea mask, orography and soil type.
From the SimSat dataset, the inputs are cloud-brightness
temperature (clbt) taken at three wavelengths. We normalize
each variable with its global mean and standard deviation.

Since data from each source are available at different
times, we use the data subset from April 2016 to train all

8https://www.unidata.ucar.edu/software/netcdf/ (2021)
9https://pytorch-lightning.readthedocs.io/en/latest/ (2021)
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Figure 2: Model setup for the benchmark forecasting tasks.

models for the benchmark tasks, unless specified otherwise.
We use data from 2018 and 2019 as validation and test sets
respectively. To make sure no overlap exists between train-
ing and evaluation data, the first evaluated date is 6 January
2019 while the last training date is 31 December 2017.

We perform experiments with a neural network based on
Convolutional LSTMs, which have been shown to be effec-
tive for regional precipitation nowcasting (Xingjian et al.
2015). We structure our forecasting task based on MetNet’s
configurations (Sønderby et al. 2020), where a single model
is trained conditioned on time and is capable of forecasting
at different lead times.

The network’s input is composed of a time series {xt},
where each xt is the set of standardized features at time t,
sampled in regular intervals ∆t from t = −T to t = 0; the
output is a precipitation forecast y at lead time t = τ ≤
τL. In addition to the aforementioned atmospheric features,
static features (e.g. latitude) along with three time-dependant
features (hour, day, month) are repeated per timestep. The
input vector is then concatenated with a lead-time one-hot
vector xτ . In our experiments, we adopt T = 12 h, ∆t = 3 h
and forecasts at 24-hour intervals up to τL = 120 h. We note
that we do not include precipitation as an input temporal fea-
ture. An overview of our setup is shown in fig:approach.

We approach the tasks as a regression problem. Following
(Rasp et al. 2020), we use the mean latitude-weighted Root-
Mean-Square Error (RMSE) as loss and evaluation metric.
We compare the results to persistence and climatology base-
lines. For persistence, precipitation values at t = 0 are used
as prediction at t = τ . We compute climatology and weekly
climatology baselines from the full training dataset (since
1979 for ERA5 and since 2000 for IMERG), where local
climatologies are computed as a single mean over all times
and per week respectively (Rasp et al. 2020).

Results
In this section, we first present our data analysis of Rain-
Bench. We then describe models’ performance on the bench-
mark precipitation forecasting tasks, which highlights the
difficulty in forecasting precipitation values on IMERG. Fi-
nally, we present an experiment on same-timestep precipita-
tion estimation to investigate class balancing issues.

Data Analysis
To analyse the dependencies between all RainBench vari-
ables, we calculate pairwise Spearman’s rank correlation in-
dices over latitude band from −60 to 60◦ and date range
from April 2016 to December 2019 (see Figure 3). In con-

Figure 3: Spearman’s correlation of RainBench variables
from April 2016 to December 2019 in latitude band
[−60◦, 60◦] at pressure levels 300 hPa (about 10 km) (up-
per triangle) and 850 hPa (1.5 km) (lower triangle). Leg-
end: lon: longitude, lat: latitude, lsm: land-sea mask, oro:
orography (topographic relief of mountains), lst: soil type,
z: geopotential height, t: temperature, q: specific humidity,
sp: surface pressure, clwc: cloud liquid water content, ciwc:
cloud ice water content, t2m: temperature at 2m, clbt:i:
ith SimSat channel, tp: ERA5 total precipitation, imerg:
IMERG precipitation. All correlations in this plot are sta-
tistically significant (p < 0.05).

trast to Pearson’s correlation coefficient, Spearman’s cor-
relation coefficient is significant if there is a, potentially
non-linear, monotonic relationship between variables, while
Pearson’s considers only linear correlations. This allows
to capture relationships between variables such as between
temperature and absolute latitude. Comparing correlations at
altitude pressure levels 300 hPa (about 10 km) and 850 hPa
(1.5 km), we can see that they are almost identical, save
for a few exceptions: Specific humidity, q, and geopotential
height, z, correlate strongly at 300 hPa but not at 850 hPa,
cloud ice water content, ciwc, generally correlates more
strongly at higher altitude (and cloud liquid water content,
clwc, vice versa). A careful examination of the underlying
physical dependencies results in the realisation that all of
these asymmetries stem mostly from latitudinal correlations
or effects related to cloud formation, e.g. ice and liquid form
in clouds at different temperatures/altitudes.

As we are particularly interested in variables that have
predictive skill on precipitation, we note that all SimSat
spectral channels moderately anti-correlate with both ERA5
and IMERG precipitation estimates. Interestingly, SimSat
signals correlate much more strongly with specific humid-
ity and cloud ice water content at higher altitude, which
might be a consequence of spectral penetration depth. ERA5
state variables that correlate the most with either precipita-
tion estimates are specific humidity and temperature. Cloud
ice water content correlates moderately strongly with pre-
cipitation estimates at high altitude, but not at all at lower
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Inputs 1-day 3-day 5-day

Persistence 0.6249 0.6460 0.6492
Climatology 0.4492 (1979-2017)
Climatology (weekly) 0.4447 (1979-2017)

SimSat 0.4610 0.4678 0.4691
ERA 0.4562 0.4655 0.4677
SimSat + ERA 0.4557 0.4655 0.4675
ERA (1979-2017) 0.4485 0.4670 0.4699

Table 2: Predicting Precipitation from ERA

Inputs 1-day 3-day 5-day

Persistence 1.1321 1.1497 1.1518
Climatology 0.7696 (2000-2017)
Climatology (weekly) 0.7687 (2000-2017)

SimSat 0.8166 0.8201 0.8198
ERA 0.8182 0.8224 0.8215
SimSat + ERA 0.8134 0.8185 0.8185
ERA (2000-2017) 0.8085 0.8194 0.8214

(a) Predicting Precipitation from IMERG

Table 3: Precipitation forecasts evaluated with Latitude-
weighted RMSE (mm). All rows except where otherwise
stated show models trained with data from 2016 onwards.

altitudes (where ice water content tends to be much lower).
Further, a number of time-varying ERA5 state variables cor-
relate more strongly with IMERG precipitation than ERA5
precipitation, as do SimSat signals. Conversely, a number
of constant variables, such as land-sea mask, orography and
soil type are significantly anti-correlated with ERA5 precip-
itation, but not at all correlated with IMERG. Overall, we
find that all variables that are significantly correlated or anti-
correlated with both ERA5 tp and IMERG are also corre-
lated or anti-correlated with SimSat clbt:0-2, suggesting that
precipitation prediction from simulated satellite data alone
may be feasible.

Precipitation Forecasting
Table 3 compares the neural model forecasts in different
data settings when predicting precipitation from ERA5 and
IMERG. Using the ERA5 precipitation as target, Table 2
shows that training from SimSat alone gives the worst results
across the data settings. This confirms the difficulty in pre-
cipitation forecast from satellite data alone, which does not
contain as much information about the atmospheric state as
sophisticated reanalysis data such as ERA5. Importantly, the
complementary benefits of utilizing data from both sources
is already visible despite our simple concatenation setup, as
training from both SimSat and ERA5 achieves the best re-
sults across all lead times (when holding the number of train-
ing instances constant).

Figure 4 shows example forecasts from one random in-

put sequence across the different data settings for predicting
ERA5 precipitation. We observe that the forecasts can cap-
ture the general precipitation distribution across the globe,
but there is various degrees of blurriness in the outputs. As
we shall discuss later in the paper, considering probabilistic
forecasts would be a promising solution to blurriness, which
might have arisen as the mean predicted outcome.

We also see the importance in using a large training
dataset, since extending the considered training instances to
the full ERA5 dataset outperforms the baselines further in
the 1-day forecasting regime (shown in the last rows).

Table 3a shows the forecast results when predicting
IMERG precipitation. As before, the neural model’s fore-
casting skill based on both SimSat and ERA input outper-
forms the other input settings. The higher observed RMSEs
suggest that this is a considerably more difficult task, which
we believe to be closely tied to IMERG featuring more ex-
treme precipitation events (Figure 1). In the next section, we
investigate this issue further by considering a same-timestep
precipitation estimation task.

A key limitation in our current experimental setup is that
it requires all of ERA5, IMERG and SimSat channels to be
available at each time step, limiting the range of our train-
ing data to April 2016 and onward. Nevertheless, our neural
models significantly outperform persistence baselines. The
fact that local climatology trained over longer time periods
significantly outperforms our network model baselines sug-
gests the development of alternative modelling setups that
can make use of the full available datasets from each source.

Same-Timestep Precipitation Estimation
We now describe a set of experiments for same-timestep pre-
cipitation estimation on IMERG. This analysis is done in-
dependently from the precipitation forecasting benchmark
tasks, in order to provide an in-depth understanding of the
challenges in modelling extreme precipitation events.

We use a gradient boosting decision tree learning algo-
rithm (Ke et al. 2017, LightGBM) in order to estimate same-
timestep IMERG precipitation directly from ERA5 and Sim-
Sat. Our training set consists of 1 million randomly sam-
pled grid points/pixels within the time interval April 2016
to December 2019. We compare the (not latitude-adjusted)
RMSE for two pixel sampling variants: A) unbalanced sam-
pling, meaning grid points are chosen randomly from the
raw data distribution and B) balanced sampling, in which
we bin IMERG precipitation into the four classes defined in
Figure 1 and sample grid points such that we end up with an
equal amount of pixels per bin.

In Figure 4, we find that taking a balanced sampling ap-
proach reduces the per-class validation RMSE of moderate,
heavy and violent precipitation. This balanced sampling ap-
proach also has detrimental effects on the mean forecast-
ing performance but not the macro-mean performance, as
the ‘slight’ class dominates the dataset and is misclassified
more often. However, balancing the training set does result
in a lower macro RMSE.

Designing an appropriate class-balanced sampling may
play a crucial role toward improving predictions of extreme
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Figure 4: ERA5 Precipitation forecasts on one random sample.

L M H V Mean Macro

Unbalanced

ERA 0.20 4.08 16.2 63.1 0.65 20.9
SimSat 0.20 4.38 16.8 54.1 0.65 18.9
SimSat + ERA 0.20 4.03 16.5 53.0 0.65 18.4

Balanced

ERA 1.05 2.75 12.4 58.0 1.40 18.6
SimSat 1.17 3.10 13.3 50.1 1.26 16.9
SimSat + ERA 1.30 3.15 11.8 44.3 1.38 15.1

Table 4: Comparing RMSE Results with and without a
class-balanced training dataset. The modelling task is same-
timestep estimation of IMERG precipitation.

precipitation events. It is not quite clear how a per-pixel sam-
pling scheme may be translated into a global output context
approach such as in MetNet (Sønderby et al. 2020) where
each individual pixel’s input distribution should be kept bal-
anced, while training as many pixels per input data sample
as possible for efficiency. A possible way of navigating this
challenge would be to sample greedily, i.e. based on the cur-
rently most imbalanced pixel and combine this with learning
rate adjustments for other pixels trained on the same frame
based on how imbalanced these pixels are at that timestep.

Discussion
We outline the key challenges in global precipitation fore-
casting, our proposed solutions, we also discuss promising
research avenues that can build on our work.

Challenges
From our experiments, we identified a number of challenges
inherent to data-driven extreme precipitation forecasting.

Class imbalance Extreme precipitation events, by their
nature, rarely occur (see Figure 1). In the context of super-
vised learning, this manifests as a class imbalance problem,
in which a model might rarely predict extreme values. De-
signing an appropriate class sampling strategy (e.g. inverse
frequency sampling) can mitigate this imbalance, as shown
in our same-timestep prediction experiments. Further, we
believe that a mixture of pixelwise-weighting and balanced
sampling could be a potential solution.

Probabilistic forecasts. The current machine learning
setup produces deterministic predictions, which may lead
to an averaging of possible futures into a single blurry
prediction. This limitation may be overcome with proba-
bilistic modelling, which may take different forms. For in-
stance, Sønderby et al. made use of a cross-entropy loss
over a categorical distribution to handle probabilistic fore-
casts. Stochastic video prediction techniques (Babaeizadeh
et al. 2018) and conditional generative adversarial learning
(Mirza and Osindero 2014) have also been shown to pro-
duce realistic predictions in other fields. Other relevant tech-
niques that predict distribution parameters are Variational
Auto-Encoders (Kingma and Welling 2014) and normaliz-
ing flows (Rezende and Mohamed 2015).

Data normalisation. Feature scaling is a common data-
processing step for training machine learning models and
well-understood to be advantageous (Bhanja and Das 2019).
Our current approach normalizes each variable using its
global mean and standard deviation; This disregards any
local spatial differences, which is important for modelling
local weather patterns (Weyn, Durran, and Caruana 2019).
Previous work suggested that patch-wise normalisation may
be appropriate (Grönquist et al. 2021, Local Area-wise Stan-
dardization (LAS)). We suggest studying a refinement to
LAS, which adjusts the kernel size with latitude such that
the spatial normalisation context remains constant (Latitude-
Adjusted LAS) per-channel image-size normalisation.
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Data topology. Lastly, the spherical input and output data
topology of global forecasting contexts poses interesting
questions to neural network architecture. While a multi-
tude of approaches to handle spherical input topologies have
been suggested, see (Llorens Jover 2020) for an overview, it
seems yet unclear which approach works best. Our dataset
might constitute a valuable benchmark for such research.

Future Research Avenues
Apart from overcoming the challenges outlined above, we
have identified a variety of opportunities for further research.

Physics-informed multi-task learning. Apart from using
reanalysis data for model training, we do not currently ex-
ploit the fact that many aspects of weather forecasting are
well-understood from a physical perspective. One way of
informing model training of physical constraints would be
to train precipitation forecasting concurrently with predic-
tion of physical state variables, including temperature and
specific humidity, in a multi-task setting, e.g. through using
separate decoder heads for different variables (similarly to
Caruana (1997)). This approach promises to combine the ad-
vantages of data-driven learning with low-level feature regu-
larisation through a physics-informed inductive bias. Multi-
task learning can also be regarded as a form of data aug-
mentation (Shorten and Khoshgoftaar 2019), promising to
further increase forecasting performance using real or sim-
ulated satellite data without requiring access to reanalysis
data at inference time.

Increasing spatial resolution. Data at higher spatial res-
olution tends to capture heavy and extreme precipitation
events better but poses a number of challenges. Large sam-
ple batch sizes may lead to network activation storage that
exceeds GPU global memory capacity even for distributed
training. Apart from exploring TPU or nvlink-based solu-
tions, another way would be to switch to mixed-precision or
half-precision or employ techniques that trade-off memory
for compute such as gradient checkpointing (Pinckaers, van
Ginneken, and Litjens 2019). PyRain’s dataloader efficiently
maximises total disk throughput, which may itself become a
bottleneck at very high resolutions. Storing all or part of the
training data memmaps on one or several high-speed local
SSDs may increase disk throughput a few-fold. Apart from
memory and disk throughput, there is also a lack of suitably
highly resolved historical climate data for pre-training (Rasp
et al. 2020). One possible way of overcoming this would be
to integrate high-resolution local forecasting model or sen-
sor data into the training process (Franch et al. 2020), an-
other exciting approach spearheaded in computational fluid
dynamics (Jabarullah Khan and Elsheikh 2019) is to em-
ploy a multi-fidelity approach, where hierarchical variance-
reduction techniques are employed to enable training to be
performed at lower-resolution data as often as possible, thus
minimising the need for training on high-resolution data.

Reducing IMERG Early Run lag time. While the final
IMERG product becomes available at a time lag of ca. 3-

4 months, a preliminary, Early Run, product based on raw
satellite data becomes available after ca. 4 hours. We pos-
tulate that this lag could be further reduced if, instead of
high-dimensional observational data, forecasting agencies
were exchanging their locally processed low-dimensional
embeddings derived from local encoder networks. Embed-
dings could then be feed into a late fusion network architec-
ture similar to Rudner et al. (2019, Multi3Net).

Multi-time-step loss function. Numerical forecasting
systems forward the physical state in time by following an
iterative setting, where the output of the previous step is fed
as input to the next step. As the update rules are identical for
each step, it in principle suffices for neural networks to learn
a single such update step and apply it multiple times during
inference depending on the prediction lead time, thus reduc-
ing the number of trainable weights and potentially increase
generalisation performance. To avoid instability issues in-
herent to iterative approaches (Rasp et al. 2020), model roll-
outs can be trained end-to-end (McGibbon and Bretherton
2019; Brenowitz and Bretherton 2018). Weyn, Durran, and
Caruana (2020) pioneer this approach but limit themselves
to just two time steps. To overcome device memory con-
straints in such a setting and to scale to a large number
of time steps tollouts, iteration layers could be chosen to
be reversible (Gomez et al. 2017) such that activations can
be computed on-the-fly during backpropagation and do not
need to be stored in device memory.

Conclusion

We presented RainBench, a novel benchmark suite for data-
driven extreme precipitation forecasting, and PyRain, an as-
sociated rapid experimentation framework with a fast dat-
aloader. Both RainBench and PyRain are open source and
well-documented. We furthermore present neural baselines
for multi-day precipitation forecasting from both reanalysis
and simulated satellite data. Despite our simple approach,
we find that our neural baselines beat climatology and per-
sistence baselines for up to 5 day forecasts. In addition, we
use a gradient boosting decision tree algorithm to study the
impact of precipitation class balancing on regression in a
precipitation estimation setting and present various forms of
data exploration, including a correlation study.

In the near future, we will augment RainBench with real
satellite data. We plan on also including historical climate
data for pre-training. Concurrently, we will explore various
directions for future research, as discussed above. In partic-
ular, we believe increasing the spatial resolution of our input
data is crucial to closing the gap to operational forecasting
models. Ultimately, we hope that our benchmark and frame-
work will lower the barrier of entry for the global research
community such that our work contributes to rapid progress
in data-driven weather prediction, democratisation of access
to adequate weather forecasts and, ultimately, help protect
and improve livelihoods in a warming world.
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