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Abstract

In poor data and urgent decision-making applications, man-
agers need to make decisions without complete knowledge of
the system dynamics. In biodiversity conservation, adaptive
management (AM) is the principal tool for decision-making
under uncertainty. AM can be solved using simplified Mixed
Observable Markov Decision Processes called hidden model
MDPs (hmMDPs) when the unknown dynamics are assumed
stationary. hmMDPs provide optimal policies to AM prob-
lems by augmenting the MDP state space with an unobserv-
able state variable representing a finite set of predefined mod-
els. A drawback in formalising an AM problem is that experts
are often solicited to provide this predefined set of models by
specifying the transition matrices. Expert elicitation is a chal-
lenging and time-consuming process that is prone to biases,
and a strong assumption of hmMDPs is that the true transition
matrix will be included in the candidate model set. We pro-
pose an original approach to build a hmMDP with a universal
set of predefined models that is capable of solving any 2-state
n-action AM problem. Our approach uses properties of the
transition matrices to build the model set and is independent
of expert input, removing the potential for expert error in the
optimal solution. We provide analytical formulations to de-
rive the minimum set of models to include into an hmMDP to
solve any AM problems with 2 states and n actions. We assess
our universal AM algorithm on two species conservation case
studies from Australia and randomly generated problems.

Introduction
In many computational sustainability domains such as con-
servation of biodiversity, epidemiology or natural resource
management, managers must adapt their decisions to the
state of the systems and account for future events. When
the dynamics are Markovian and the state-transition matri-
ces are known, Markov decision processes (Bellman 1957)
are a suitable model to help managers making sequential-
decisions under uncertainty (Marescot et al. 2013). Unfor-
tunately, for some of the most pressing problems in con-
servation, health and biosecurity, data is scarce and transi-
tion matrices are rarely available (Chadès and Nicol 2016).
In such situations, Adaptive Management (AM) or learn-
ing while doing is the recommended management practice
(Walters and Hilborn 1978; Keith et al. 2011). Decisions are
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selected to achieve a management objective while simulta-
neously gaining information to improve future management
success (Holling 1978; McCarthy, Armstrong, and Runge
2012; Walters 1986).

Several approaches have been developed to solve AM
problems (Chadès et al. 2017). Here, we focus on the class
of problems characterised by model uncertainty. AM under
model uncertainty assumes that the unknown true dynamics
of the system are close enough to a set of pre-defined models
that specify how the system dynamics function. AM tools to
reduce model uncertainty were first proposed in the fisheries
literature (Silvert 1978).

The key prerequisite for an optimal AM system designed
to reduce model uncertainty is that plausible alternative hy-
potheses about system function dynamics can be articulated.
Chadès et al. (2012) have shown that model uncertainty
AM problems can be cast as Mixed Observability MDPs
(MOMDPs), and under stationary assumptions as hidden
model MDPs (hmMDPs). This approach was used to in-
form conservation of migratory shorebirds under sea level
rise (Nicol et al. 2013, 2015) and is now being tested by the
New South Wales Saving our Species Program in Australia
(Potoroo case study in this paper).

A drawback of model uncertainty approaches is the as-
sumption that the real model is contained within the model
set. As well as making this strong assumption, current meth-
ods often rely on asking experts to parameterize the model
set, which is both time consuming and prone to human error
and biases (Martin et al. 2012). Point-based POMDP solvers
help us overcome the technical challenge of solving the hm-
MDP for a large set of models so that we have a greater like-
lihood of including the real model. However, in data-poor
systems, including many models makes it difficult to distin-
guish the real model as observations are few. Problems in
AM application domains often have limited observations. In
these situations, it is critical to only include a small model
set. We postulate the existence of a parsimonious set of mod-
els that spans the set of possible optimal solutions for AM
problems using as few models as possible. Finding this min-
imum, yet universal set of models is the objective of our
manuscript. We will focus on 2-state problems, where we
rely on statements of relativity (i.e. “good” and “bad” states)
to generate universal output.

Our approach explores the parameter space of the un-
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known state-transition matrices to derive a minimum but
empirically robust set of representative models for a 2-state
n-action universal AM solver. We demonstrate the useful-
ness of our approach on AM conservation problems of two
listed threatened species (Gouldian finch and Long-footed
Potoroo) and randomly generated problems. The code and
data is freely available at https://github.com/conservation-
decisions/Universal-Adaptive-Management-Solver.

We first introduce some related work and the necessary
background. We explain how AM problems can be modelled
as hidden Markov MDPs. We then define our problem and
propose a new algorithm MC-UAMS that takes advantage
of key properties and propositions to build a hmMDP for 2-
state n-action problem. Finally, we assess our approach and
discuss future research.

Related Work
In the Bayesian Reinforcement Learning (BRL) setting,
agents try to maximize the collected rewards while interact-
ing with their environment while using some prior knowl-
edge that is accessed beforehand. Many BRL algorithms
have already been proposed (Duff 2003; Dearden, Friedman,
and Russell 1998; Poupart et al. 2006). The most relevant
approach is described by Dearden, Friedman, and Andre in
1999. The authors model the unknown parameters using a
Dirichlet distribution which is updated by counting the num-
ber of successes and failures. Poupart et al. (2006) propose
to parameterize the optimal value function by a set of mul-
tivariate polynomials which are then used to derive an ap-
proximate policy optimization algorithm (BEETLE). BEE-
TLE is shown to be efficient and tractable for a small num-
ber of unknown parameters, which can grow inO(|X|2|A|).
Bayesian bandits (Ghavamzadeh et al. 2016) are a useful
framework to estimate the values of the outcome probabil-
ities P (.|a). However the framework does not incorporate
the influence of the current states and converges in a large
number of iterations.

AM problems share some similarities with BRL and Ban-
dits. However, an AM problem is solved as a planning prob-
lem i.e. the optimal policy is calculated off-line. This is be-
cause AM is applied in data-poor contexts which does not al-
low the extent of system exploration required by traditional
reinforcement learning approaches. AM requires thinking
ahead and calculating the consequences of all possible val-
ues of the unknown information before deciding the optimal
action.

MDPs and hmMDPs
Markov Decision Processes (MDPs) are a convenient model
to solve sequential decision-making processes under uncer-
tainty (Bellman 1957). Formally, a discrete MDP is defined
by a tuple 〈X,A, T, r,H, γ〉. X is a finite set of states. A is
a finite set of actions. T is the transition function between
states. T (x, a, x′) = P (xt+1 = x′|xt = x, aH = a) rep-
resents the probability that the state of the system transi-
tions from x to x′ when action a is implemented. r is the
reward function. r(x, a) represents the immediate reward re-
ceived when the current state of the system is x and the im-
plemented action is a. H is the (finite or infinite) horizon.

γ ∈ [0, 1] is a discount factor (γ < 1 if H is infinite). The
decision-maker aims to find a sequence of actions that max-
imizes a selected criterion (Sigaud and Buffet 2010). Here,
we will assume that the expected sum of discounted rewards
is an appropriate criterion E[

∑∞
t=0 γ

tr(xt, at)|x0]. A policy
π : X → A is a mapping from the set of states X to the
set of actions A. To a policy π corresponds the value of the
criterion, called the value function:

Vπ(x0) = E[
∞∑
t=0

γtr(xt, π(xt))|x0].

A policy π is optimal if it maximizes the value function
π∗(x0) = arg maxπ Vπ(x0). Many exact and approximate
algorithms have been designed to solve MDPs, including
policy or value iteration (Puterman 1995). One of the main
challenges of applying MDPs is the assumption that the tran-
sition function is readily available. A solution is to assume
that the dynamics of the system is partially observable.

hmMDPs

AM problems assume that the state of the system is com-
pletely observable, but the dynamics are uncertain. It is also
assumed that the real and unknown MDP belongs to a finite
set of predefined models. This problem can be solved using
hidden model MDPs (hmMDPs) (Chadès et al. 2012). A hm-
MDP is a defined as a special case of factored POMDP (also
known as as Mixed Observable MDP (Ong et al. 2010)).

A hmMDP is a tuple 〈X,Y,A,Z, Tx, Ty, O,R,H, b0, γ〉.
X × Y is the factored set of states: X is the set of com-
pletely observable variables; Y is the set of partially observ-
able variables. Y is a finite set of hidden models that could
represent the dynamics of the system as MDPs. It is assumed
that the real model of the dynamics of the system yr is an el-
ement of Y ; O = X is the set of observations. We assume
that the partially observable variables in Y are not observ-
able; Tx(x, y, a, x′, y′) = p(x′|x, y, a) gives the probabil-
ity that the value of the fully observable state is x′ at time
t + 1 when action a is performed in state (x, y) at time t
and has already led to y′. We assume the real model yr will
not change over time i.e. Ty is the identity matrix. As only
variables in X are observable, the observation function Z is
the identity matrix; R is the reward matrix of the immediate
reward R(x, y, a) that the policy-maker receives for imple-
menting a in state (x, y); b0 is an initial belief, a probability
distribution over partially observable states; γ, A and H are
defined as in the MDP case.

Because the state y is not perfectly observable, it is mod-
eled by a belief state b that is a probability distribution
among the elements of Y (Astrom 1965). The set of all be-
lief states is the belief space, denoted B.

A hmMDP policy is defined as π : X × B → A. A
policy π is optimal if it maximizes the selected criterion,
π∗ = arg maxπ E[

∑∞
t=0 γ

tR(xt, bt, π(xt, bt))|x0, b0] with
R(b, x, a) =

∑
y∈Y b(y)R(x, y, a). Any policy π can be

assessed through its value function Vπ defined as, for all
x, b ∈ X ×B:
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Vπ(x, b) = E[
∞∑
t=0

γtR(xt, bt, π(xt, bt))|x, b].

We then have π∗ = arg maxπ Vπ(x0, b0). The optimal
value function is denoted V ∗. hmMDPs have the same com-
plexity as POMDPs (Chadès et al. 2012), therefore hm-
MDPs are PSPACE-complete in finite horizon (Papadim-
itriou and Tsitsiklis 1987), and are undecidable in infinite-
horizon (Madani, Hanks, and Condon 1999). Approximate
POMDP solvers have been adapted to solve MOMDPs (Ong
et al. 2010), and hmMDPs (Péron et al. 2017).

In ecology, a common practice is to build the set Y of pre-
defined models by asking experts to specify a set of possible
models (Chadès et al. 2012). The traditional way of solving
adaptive management problems under uncertainty relies on
the assumption that the true transition matrix is included in
the candidate model set. This is a common assumption in ap-
plied domains that use this approach such as conservation of
biodiversity (Nicol et al. 2013, 2015), natural resource man-
agement (Martin et al. 2009) and more recently epidemiol-
ogy (Shea et al. 2020). Assuming that the real model is one
of the experts’ models is a questionable assumption. In prac-
tice, if the real model yr is close to one of the models of Y ,
then the optimal policy of the hmMDP πY is still a good
policy to solve the problem. The purpose of our manuscript
is to build a hmMDP with a universal set Y ∗ of predefined
models, meaning that the resulting hmMDP is able to solve
any 2-state n-action AM problem.

A 2-state n-action Universal AM Solver
Problem Formulation and Notations
Let us define M as a 2-state X = {L,H} and n-action A =
{a1, ..., an} MDP with unknown stationary state-transition
probabilities T. and known reward function r. M is the real
MDP that decision-makers aim to solve.

The set of MDPs that are potential candidates to be the
true MDP is infinite. We define this set asM2

n. All MDPs in
M2

n have the same reward function r.
We parameterize M ∈ M2

n in the following way.
The transition probabilities depend on 2n unknown pa-
rameters (p1L, ..., p

n
H). For all k ∈ {1, ..., n}, T (ak) =(

pkL 1− pkL
pkH 1− pkH

)
. (p1L, ..., p

n
H) are assumed to follow a

known probability distribution µ on [0, 1]2n. µ is absolutely
continuous with respect to Lebesgue’s measure (λ). In sim-
ple terms this means that there exists a Lebesgue function
fµ that can be integrated (the probability density function)
on the real line such that µ([0, 1]2n) =

∫
[0,1]2n

fµdλ. We
write the values of the reward function as r(s, a) = ras .

Because most conservation problems aim to maintain or
increase a population from “Low” (L) to “High” (H) density,
we will assume that for all actions a, b, raL < rbH . This as-
sumption is true for our two case studies and reasonable for
the conservation AM literature e.g. McCarthy and Possing-
ham (2007). We discuss this assumption in the conclusion.

State π1,1 π1,2 ... πn,n−1 πn,n
Low a1 a1 ... an an
High a1 a2 ... an−1 an

Table 1: Possible optimal policies for a 2-state, n-action
problem

We define the probability distribution onM2
n as the prob-

ability distribution of its parameters (p1L, ..., p
n
H). Hereafter,

for sake of simplicity we will denote µ(M2
n) = µ([0, 1]2n)

the volume ofM2
n.

Our problem is to compute a set Y of models inM2
n such

that our solver is able to find a reliable optimal policy for
any real MDP inM2

n. We call this set Y a universal set.
Definition 1. Let M be an MDP of M2

n drawn using the
probability distribution µ. Let Y be a finite set of models
of M2

n, and H(Y ) the corresponding hmMDP. Let π∗Y be
the optimal policy of H(Y ). The expected cumulative dis-
counted rewards received when applying π∗Y to M is denoted

V YM . We define Gap(Y ) = Eµ[
V ∗M−V

Y
M

V ∗M
] the expected rela-

tive gap to the optimal.
Gap(Y ) represents the relative error induced by the set

of models Y , when managing any model M. Formally, the
problem we aim to solve is:

Y ∗ = arg min
Y⊂M2

n

|Y |<∞

Gap(Y )
(1)

To guide the calculation of our universal set of models,
we first need to present relevant properties.
Property 1. Let M be a discrete MDP with stationary tran-
sition matrices. Let the expected infinite sum of discounted
rewards be the optimization criterion of the problem. Then,
the set of possible optimal policies π : X → A is finite,
and denoted Π. In particular, for a 2-state n-action prob-
lem, there are n2 possible optimal policies, listed in Table
1.
Proof. As we are looking for optimal strategies in an infinite
discounted horizon and as the dynamics of the system are
stationary, the optimal policy is stationary, and can be writ-
ten π∗ : X → A. Considering that the set of statesX and set
of actions A are discrete and finite, there are |A||S| possible
optimal policies. �

Property 1 is important because although the set of MDPs
M2

n is infinite, the set Π of policies is finite. Using property
1, we can splitM2

n into distinct spaces of MDPs sharing the
same optimal policy.
Definition 2. We define Mπ the subset of MDPs in M2

n,
such that π is an optimal policy.
Mπ is defined by a subset of [0, 1]2n denoted Pπ that we

will define formally in the next section. Similarly, we denote
µ(Mπ) = µ(Pπ) the volume ofMπ i.e. the probability of
π being the optimal policy.

Logically, the set Y of hidden models must contain at
least one model per Mπ to guarantee that the best action
can be chosen. For example, for a 2-state 2-action problem,
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Notation Meaning
(p1L, ..., p

n
H)Set of parameters describing the state-transition

probabilities for a 2-state n-action MDP
µ Known probability distribution of the parameters

(p1L, ..., p
n
H)

Π Finite set of possible optimal policies of a 2-state
n-action AM problem

π Element of Π
M2

n Infinite set of 2-state n-action MDPs sharing the
same known reward function

Mπ Infinite set of 2-state n-action MDPs sharing the
same known reward function and having π as op-
timal policy

Pπ Subset of [0, 1]2n describingMπ

yπ Universal model of Mπ . Model minimising the
distance with all the other models ofMπ

Table 2: Notations guide

the set Y must count at least 4 hidden models yπ1,1 , yπ1,2 ,
yπ2,1 and yπ2,2 inMπ1,1 ,Mπ1,2 ,Mπ2,1 andMπ2,2 respec-
tively. While it is tempting to include a large set of hidden
models to discretize M2

n as precisely as possible, the con-
straint on the number of observations (data poor) reduces the
likelihood of identifying the real model. Besides, the more
models we include, the more difficult it is to solve the hm-
MDP. For these reasons, it is important that few models are
contained in the selected set.
Definition 3. Let M be the set ofMπ such that µ(Mπ) > 0.
A 2-state n-action Universal Adaptive Management Solver
(UAMS) is a hmMDP with one hidden model per element of
M such that the UAMS minimizes the expected relative gap
to the optimal (eq 1).

Our challenge is to find the parameters that characterize
the best set of hidden models Y ∗ of a UAMS. To approxi-
mate the hidden models of Y ∗, we propose to compute for
each π ∈ Π, the model that minimises the distance to all the
MDPs inMπ , hereafter called the universal model ofMπ .
Definition 4. Let π ∈ Π such that Pµ(Mπ) > 0. We de-
fine yπ the universal model of Mπ , with X = {L,H},
A = {a1, ..., an}, rax and state-transition probabilities de-
fined with the parameters (p1L

π, ..., pnH
π) minimising the dis-

tance with all the other MDPs ofMπ .

MC-UAMS
We now introduce our Monte Carlo UAMS algorithm (MC-
UAMS). MC-UAMS estimates the state-transition probabil-
ities of the universal models of Y ∗ using Monte Carlo sim-
ulations. This algorithm is based on theoretical results that
we will develop in the next sections.

MC-UAMS (Alg. 1) requires as input a reward function
r and µ a set of distribution functions over the parameters
(p1L, ..., p

n
H). Without loss of generality we will assume that

µ is uniform.
First, the algorithm computes a set Π of possible policies

using function PossiblePolicies(r). This function inputs a re-
ward function r, and returns a set Π of policies such that
∀π ∈ Π, µ(Mπ) > 0. We will see that we can reduce this

set by taking advantage of properties of the problem (propo-
sition 2).

Second, function DrawParameters(Π, µ,N) aims to
gather a large enough representative set of parameters
(p1L, ..., p

n
H) corresponding to each policy and according

to µ. This function randomly draws N sets of parameters
(p1L, ..., p

n
H). For each draw, it calculates and stores the op-

timal policy of the corresponding MDP.
Third, for each element π of Π, the function Univer-

salModel() computes the universal model of Mπ (line 5).
Proposition 3 (next section) states that the state-transition
probabilities of the universal model of Mπ are defined by
the expectation of the parameters (p1L, ..., p

n
H) in Pπ . Func-

tion UniversalModel() empirically computes this expected
value and returns the empirical universal model. The ob-
tained model is added to the current list of models Y .

Finally, the algorithm solves the hmMDP corresponding
to the tuple < X,Y,A, r,H, b0, γ > (line 8) by calling
point-based MOMDP solvers (Ong et al. 2010).

We note that the complexity of MC-UAMS is the same
as the complexity of a hmMDP (Chadès et al. 2012). The
complexity of Algorithm 1 for a 2-state n-action problem
comes from two functions. Function DrawParameters (Line
2) solves at least K ∗ n2 MDPs, with K a constant repre-
senting the number of draws for each policy (n2) to build
a reliable approximation of each universal model. In prac-
tice, we found that K = 30 draws was sufficient to ap-
ply the central limit theorem and approximate the set of
universal models. A MDP can be solved in a polynomial
time, for example using the policy iteration algorithm on a
2-state n-action problem, the optimal solution can be found
in a time O( n2

(1−γ) log( 1
1−γ )) (Littman, Dean, and Kaelbling

1995). Therefore, the complexity of the function DrawPa-
rameters is polynomial in time O( n4

(1−γ) log( 1
1−γ )). MDPs

are known to be P-complete (Papadimitriou and Tsitsik-
lis 1987). Function Solve hmMDP solves the resulting hm-
MDP. A solution with error epsilon can be found in time
O(|C|2 + |C|log[ (1−γ)ε2Rmax )]) where C is a proper delta cover
of the optimal reachable space of the initial belief state (Kur-
niawati, Hsu, and Lee 2008). The general problem of solving
a hmMDP is PSPACE-complete (Chadès et al. 2012).

Algorithm 1 Monte Carlo UAMS
Require: < X,A, r,H, b0, γ >, µ: distribution of the parameters

(p1L, ..., p
n
H)

1: Π← PossiblePolicies(r)
2: MatParPol← DrawParameters(Π, µ,N)
3: Y ←list()
4: for π ∈ Π do
5: yπ ← UniversalModel(π,X,A, r, µ,MatParPol)
6: add yπ to Y
7: end for
8: π∗ ← Solve hmMDP (X,Y,A, r,H, b0, γ)
9: return π∗

Our algorithm requires defining two key functions: Possi-
blePolicies and UniversalModel. To do so, we will first re-
call essential properties of the optimal value function of an
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MDP. Then, we will use these properties to generate for each
π in Π the set of MDPsMπ . Finally, we will use the explicit
formulations and the properties ofMπ to derive Y ∗.

Properties of Optimal Value Function and
Expected Discounted Cumulative Rewards
The setMπ is defined using the following properties of the
expected discounted cumulative rewards.

Property 2. For a given MDP M in M2
n, V πM (x0) =

E[
∑∞
t=0 r(xt, π(xt))|x0], the expected discounted cumula-

tive rewards of a policy π : X → A, is fully determined by
the transition probabilities between states (p1L, ..., p

n
H). Let

(i, j) ∈ {1, ..., n}2:

V πi,j (L) =
raiL (1− γ + γpjH) + r

aj
H (γ − γpiL)

(1− γ)(1− piLγ + pjHγ)

V πi,j (H) =
r
aj
H (1− piLγ) + raiL p

j
Hγ

(1− γ)(1− piLγ + pjHγ)

(2)

Proof. (Sketch) To each policy πi,j , corresponds a state-

transition matrix Tπi,j =

(
piL 1− piL
pjH 1− pjH

)
and a reward

matrix Rπi,j =

(
raiL
r
aj
H

)
. Let x0 be a vector indicating if

the initial state is ”L” or ”H” i.e. if the initial state is
”L”, x0 = [1, 0], and x0 = [0, 1] otherwise. V πi,j (x0)
rewrites V πi,j (x0) =

∑∞
t=0 γ

tx0.(T
πi,j )t.Rπi,j where ”.”

is the inner product. Using the eigenvalues of Tπi,j , one
can diagonalize Tπi,j = P∆P−1, with P an invertible ma-
trix and ∆ a diagonal matrix. Then (Tπi,j )t = P∆tP−1,
and V πi,j (x0) =

∑∞
t=0 γ

tx0.P∆tP−1.Rπi,j . V πi,j (x0) be-
comes a geometric sum, and can be rewritten into the pre-
sented equations (2).�

Property 3. The optimal policy π∗ of an MDP verifies
V π
∗
(x) ≥ V π(x) for all x ∈ X and all π ∈ Π.

Proof is given by the definition of an optimal policy (Bell-
man 1957; Sigaud and Buffet 2010).�

Properties 2 and 3 mathematically define the setMπ us-
ing the parameters characterising the state-transition proba-
bilities of a model (p1L, ..., p

n
H).

Mathematical Characterization of the SetMπ

Recall that we aim to explicitly define the MDP set Mπ

to derive the best set of hidden models Y ∗ that builds our
UAMS. As a consequence of properties 2 and 3, for a given
π ∈ Π we can characterizeMπ as:

Mπ =


m ∈M

s.t. V πm(x) ≥ V π′m (x)
∀x ∈ X and ∀π′ ∈ Π

 . (3)

This definition states thatMπ is an infinite set of MDPs that
share the same optimal policy π. DespiteMπ being infinite,
we will exploit this formulation to show that it is defined
by a finite set of equations. This definition can be rewritten

using the parameters (p1L, ..., p
n
H) that define the transition

probabilities as follows:

Mπ =

{
m ∈M

s.t. (p1L, ..., p
n
H) ∈ Pπ

}
(4)

with :

Pπ =

 (p1L, ..., p
n
H) ∈ [0, 1]2n,

s.t. V π(p1L, ..., p
n
H , x) ≥ V π′(p1L, ..., pnH , x)

∀x ∈ X and ∀π′ ∈ Π


(5)

Intuitively, the sets Pπ divide [0, 1]2n into subsets, that
guarantee that π is the optimal policy of the corresponding
MDP. The next section presents some properties of sets Pπ ,
that we use to derive the best parameters of the set of hidden
models Y ∗. We will show that depending on the values of
the rewards r, Pπ can be empty.

Properties of Sets Pπ

Proposition 1. Let π be in Π. The set Pπ is convex and
fully defined by 2(n − 1) linear relationships between the
parameters (p1L, ..., p

n
H). Let (i, j) ∈ {1, ..., n}2,

Pπi,j =


(p1L, ..., p

n
H) ∈ [0, 1]2n,

s.t. ∀k ∈ {1, ..., n}, k 6= i, k 6= j :

pkL >
r
ak
L (1−piLγ+p

j
Hγ)−r

ai
L (1+pjHγ)+r

aj
H piLγ

(r
aj
H −r

ai
L )γ

pkH >
r
ak
H (1−piLγ+p

j
Hγ)−r

aj
H (1−piLγ)−r

ai
L p

j
Hγ

(r
aj
H −r

ai
L )γ


(6)

Proof.(Sketch) Using property 2 and the definition of
Pπi,j in equation 5, we derive equations 6. Pπi,j is convex
because it intersects convex sets. Note that we used strict
inequalities to avoid having sets with µ(Pπi,j ) = 0.�

Proposition 2. Recall that raL < rbH . Linear relationships
between the values of the reward function r predict the
emptiness of the sets of parameters Pπ , and thus of the sets
of MDPsMπ . For given (i, j) ∈ {1...n}2, πi,j ∈ Π, Pπi,j
is not empty if for all couples (k, l) ∈ {1...n}2, k 6= i, l 6= j
one of the relationships in table 3 is verified.

Proof. (Sketch) For a given Pπ , we explored the conditions
on the values of the reward function such that equations
defining Pπ have a non empty solution set, and are com-
patible with each other. �

Id. Relationship
Ak,l r

aj
H ≥ r

al
H and raiL > rakL

Bk,l r
aj
H ≥ r

al
H , raiL ≤ r

ak
L and

rakL ≤ (1− γ)raiL + r
aj
H γ

Ck,l raiL > rakL , rajH < ralH
and rajH ≥ r

al
H (1− γ) + γraiL

Dk,l r
aj
H < ralH , raiL ≤ r

ak
L

rakL ≤ (1− γ)raiL + r
aj
H γ

and rajH ≥ r
al
H (1− γ) + γraiL

Table 3: Linear relationships between rewards ensuring that
Pπi,j is not empty.
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Building on proposition 1, proposition 2 shows that we
can reduce the number of possible optimal policies in Π
given some linear relationships between values of the reward
function by investigating conditions under which a givenPπ
is not empty. In practice, this proposition will speed-up the
derivation of the UAMS (function DrawParameters line
2 of Alg.1).

Our next challenge is to derive the transition probabilities
of the hidden models of the set Y ∗.

Universal Model ofMπ

Proposition 3. Let π be in Π such that µ(Pπ) > 0. The
state-transition probabilities of the universal model yπ are
parametrized by the expectancy of the parameters of Pπ .
Formally,

(p1L
π, ..., pnH

π) = E[(p1L, ..., p
n
H)|(p1L, ..., pnH) ∈ Pπ].

Proof.(Sketch) We solve the optimization problem

min
P=(p1L,...,p

n
H)∈Pπ

∫
x∈Pπ

(P − x).(P − x)T dµ(x)

= min
P∈Pπ

∫
x∈Pπ

(p1L − x1L)2 + ...+ (pnH − xnH)2dµ(x)

The solution P ∗ = (p1L
∗, ..., pnH

∗) obtained without con-
straints is: P ∗ = E[P |P ∈ Pπ]. P ∗ is the center of mass of
Pπ . Using proposition 1, we know that Pπ is convex. There-
fore, P ∗ the center of mass of Pπ is included in Pπ . Thus,
the solution of the optimization problem is P ∗. �

In practice, proposition 3 shows that for a given π ∈ Π,
we can compute the state-transition probabilities of yπ the
universal model ofMπ using Monte Carlo simulations (line
5 of Alg. 1).

Experiments
Baseline Algorithm and Settings
We compared MC-UAMS with PUBD (Parameter Uncer-
tainty Beta Distribution) – a well known algorithm for solv-
ing AM problems under parameter uncertainty (Chadès et al.
2017) and Bayesian RL (Dearden, Friedman, and Andre
1999). PUBD has been applied to AM of wildlife harvest,
threatened species translocation and conservation of meta-
populations (Hauser and Possingham 2008; Runge, Grand,
and Mitchell 2013; Southwell et al. 2016). PUBD solves a
planning MDP problem by assuming that the unknown pa-
rameters follow Beta distributions with parameters (α, β).
The distributions are updated at each timestep according
to the outcomes. While this approach does not require ex-
perts’ opinion, the number of hyper-states (number of pa-
rameters (α,β) needed to fully describe the current state of
the system) grows exponentially with the time horizon H
(|X|2|A|)H (and is therefore limited to short time horizons
(see algorithm in supp. material).

We assessed MC-UAMS on different types of problems
(2-state n-action problems denoted 2XnA): two conserva-
tion problems (Goudian Finch 2X4A, Long-footed potoroo
2X6A) and 5 randomly generated problems (2X2A, 2X4A,
2X6A, 2X10A and 2X100A). For all experiments, we set
γ = 0.9. We assume a uniform b0 (no priors on the

model sets) and a uniform distribution on the parameters
(p1L, ..., p

n
H) on [0, 1]2n (no priors on the parameters sets).

We allowed MC-UAMS and PUBD to run for one hour
before evaluating their performances via simulations. Only
for the problem 2X100A, we allowed MC-UAMS to run
for 6 hours due to the large number of possible optimal
policies, PUBD ran out of memory for an horizon larger
than 2. Performances were evaluated using the empirical
expected relative difference to the optimal value function
Ĝap(.) = 1

|M|
∑
M∈M

V ∗M−V
.
M

V ∗M
and the relative expected

difference between instant rewards (inst. diff.) at the final
time step (H=50) D̂iff = 1

|M|
∑
M∈M

r∗H−r
.
H

r∗H
(r∗H is the

optimal expected instant reward at time H and r.H is the ex-
pected instant reward at time H, for MC-UAMS or PUBD).

Unless stated otherwise, for each problem, we randomly
selected a setM of 100 MDPs according to a uniform dis-
tribution on the parameters (p1L, ..., p

n
H). Those MDPs rep-

resent the ”real” dynamics of the system. For each MDP
M ∈M, we computed the optimal value function V ∗M using
the R-package MDPtoolbox (Chadès et al. 2014). Then, we
simulated 100 trajectories of 50 time-steps of management
of the unknown system M , using the policies derived by
MC-UAMS and PUBD. We empirically computed V UAMS

M

(resp. V PUBDM ) the expected value of the resulting sum of
discounted rewards using the MC-UAMS (resp. PUBD).

Algorithms were implemented in R (version 4.0.2) (R
Core Team 2020). hmMDPs (line 8 Alg. 1) were solved
using MO-SARSOP (Ong et al. 2010) on Cygwin (ver-
sion 3.1.6(0.340/5/3), 64 bits). MO-SARSOP is imple-
mented in C++, and was compiled with g++(GCC) 9.3.0.
We ran all the experiments on a 230GHz Intel PENTIUM
CPU 3550M, and 4Go of RAM. Code, problems and re-
sults available at https://github.com/conservation-decisions/
Universal-Adaptive-Management-Solver.

Figure 1: MC-UAMS beats the original Gouldian Finch ex-
pert derived hmMDP (4 Experts) in all scenarios. For A and
B, Expert 3 is the true model. For C and D, the true model is
randomly drawn.
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Conservation Problems
2X4A, Gouldian finch: This problem is the conservation
problem studied in (Chadès et al. 2012). The aim of the de-
cision makers is to maximize the likelihood of persistence
of a population of Gouldian Finch birds in the Kimberley,
Australia. The population status (low or high persistence)
can be observed, but the response of the population to man-
agement actions is unknown. This problem is modeled as an
AM problem with 2 states and 4 actions (Do nothing, im-
prove fire and grazing management, control feral cats, pro-
vide nesting boxes). Originally, four experts in conservation
biology provided four plausible models of the response of
the population to management actions. Chadès et al. (2012)
solved this AM problem by building a hmMDP with X =
{Low,High} and Y4Exp = {Exp1, Exp2, Exp3, Exp4}.
We compared the results obtained with the hmMDP built
with the 4 experts against our MC-UAMS and PUBD (Table
4).

Our first evaluation 2X4A, Gouldian finch (EM) as-
sumes the true model is effectively one of the experts (i.e.
Exp3). Interestingly, both MC-UAMS and PUBD outper-
formed the 4-experts hmMDP for H=5 (timeout of PUBD)
(Figure 1 A and B). For horizons greater than 5, MC-UAMS
outperformed the 4-experts hmMDP for both performance
criteria (Ĝap= 4% diff. inst.= 10%). The poor performance
of the 4-experts hmMDP is not surprising because experts 1
and 2 favoured the same strategy (Fire and Grazing) while
Expert 3 (true model tested here) favoured providing nest-
ing boxes with an overall pessimistic outcome for the Goul-
dian Finch. The policy of the 4-experts hmMDP takes ad-
vantage of this information and attempts implementing nest-
ing boxes as a last resort. This is in contrast with MC-UAMS
that makes no assumptions on the performance of each man-
agement action. MC-UAMS increases its performance over
time.

Our second evaluation 2X4A, Gouldian finch assumes
that the true model is uniformly drawn. PUBD and MC-
UAMS outperformed the 4-experts hmMDP for H=5 (time-
out of PUBD) (Figure 1 C and D) and MC-UAMS largely
outperformed the 4-experts hmMDP for horizon greater than
5. Note that the expected MC-UAMS required 16 models,
and PUBD required 1910 hyperstates.
2X6A, Long-footed Potoroo: This problem is inspired by
a study of the expected impacts of fox predation on the
Long-footed Potoroo, a threatened Australian marsupial. We
model this problem with 2 states {Low,High} and 6 ac-
tions that relate to different intensities of baiting to re-
duce fox numbers. Data for relative cost estimates are ob-
tained from project annual outcome statements for fox con-
trol projects in New South Wales. MC-UAMS performed
almost as well as PUBD for H = 4 (Ĝap= 37%). Over-
all, MC-UAMS performed consistently for all criteria re-
ported (34 − 37% away from the optimal). This problem
is clearly more difficult to solve than the Gouldian Finch.
For this problem, we do not have expert models to compare
our results with. This is because for such large number of
actions, experts would struggle to provide 36 different mod-
els to cover as many alternative models as MC-UAMS. In

practice, for this problem we know a priori that some ac-
tions dominate others (e.g. p1L > p2L), but our evaluation
did not exploit this knowledge. Including this type of prior
information into MC-UAMS will likely improve its perfor-
mance because it will reduce the number of universal models
(|Y ∗|).

Ĝap (%) at
H (CI 95%)

Ĝap (%)
at ∞ (CI
95%)

diff. inst.
(%) at ∞
(CI 95%)

2X4A
Gouldian Finch
(EM)
4 Experts hmMDP
|Y | = 4

26± 6 28± 1 30± 15

MC-UAMS |Y | =
16

0 ± 7 4 ± 2 10 ± 15

PUBD |Z| = 1910,
H = 5

5± 8 NA NA

2X4A
Gouldian Finch
4 Experts hmMDP
|Y | = 4

86± 7 78± 6 75± 7

MC-UAMS |Y | =
16

29± 5 20 ± 2 6 ± 1

PUBD |Z| = 1910,
H = 5

27 ± 5 NA NA

2X6A
Long-footed Po-
toroo
MC-UAMS |Y | =
36

37± 5 36 ± 5 34 ± 5

PUBD |Z| = 1324,
H = 4

36 ± 4 NA NA

2X2A
MC-UAMS |Y | =
4

1.2 ± 1 3.3 ± 0.7 1 ± 1

PUBD |Z| = 6614,
H = 10

2± 5 NA NA

2X4A
MC-UAMS |Y | =
12

6± 1 5 ± 1 3 ± 1

PUBD |Z| = 6614,
H = 10

6 ± 1 NA NA

2X6A
MC-UAMS |Y | =
24

12± 2 9 ± 1 4 ± 1

PUBD |Z| = 6614,
H = 10

11 ± 2 NA NA

2X10A
MC-UAMS |Y | =
67

15 ± 2 12 ± 2 7 ± 2

PUBD |Z| = 376,
H = 3

15 ± 1 NA NA

2X100A
MC-UAMS |Y | =
574

21 ± 3 18 ± 1 10 ± 1

PUBD |Z| = 201,
H = 2

21 ± 3 NA NA

Table 4: Performance evaluation at different time horizon
and for different metrics. |Y | is the number of hidden mod-
els, H is the horizon reached by PUBD within one hour, |Z|
denotes the number of hyperstates included in PUBD for H .
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Randomly Generated Problems
To complete the assessment of our algorithms we also gen-
erated random problems (2-state n-action problems denoted
2XnA: 2X2A, 2X4A, 2X6A, 2X10A, 2X100A) for which
random reward functions were drawn (see supp. material).
Overall, MC-UAMS performed as well or almost as well
as PUBD for most problems where PUBD could be run
(H=[2,10]). This is an excellent result because MC-UAMS
can only update beliefs on Y ∗ models, while PUBD is ef-
fectively updating parameter values of the transition ma-
trices. For infinite time horizon, MC-UAMS performs rel-
atively well with expected gaps ranging from 3% to 35%.
while PUBD cannot compute a solution in reasonable time
or memory due to the curse of dimensionality (PUBD’s state
space grows exponentially as the time horizon increases).
The study of the rewards matrix (using table 3) enabled to
reduce the number of necessary hidden models (from 100 to
67 for 2X10A and from 100,000 to 574 for 2X100A).

Conclusion
By proposing a universal adaptive management solver, we
are finally addressing a long overdue problematic assump-
tion of existing AM approaches (Chadès et al. 2012) i.e. AM
problems are solved assuming that the real model is con-
tained within a predefined model set (Chadès et al. 2017).

In addition to addressing this strong assumption, we are
also tackling the reliance on experts to provide plausible
model sets, which is a time consuming practice sensitive
to human error and biases (Martin et al. 2012). Our new
approach and algorithm provide an alternative to existing
practices in conservation of biodiversity and natural resource
management.

Using the convex properties of the parameter sets, we
were able to derive the MC-UAMS algorithm to build a min-
imum set of models for 2-state n-action AM problems. MC-
UAMS performed as well as a common AM approach based
on parameter estimation (PUBD; tractable for short horizon
problems). Most importantly, MC-UAMS out-performed ex-
isting hmMDP with a hidden model set assessed by experts
(Gouldian Finch problem).

The assumptions we made to define a MC-UAMS are not
restrictive. Importantly, MC-UAMS can also address non-
stationarity of the model by changing the transition proba-
bilities of the partially observable states, and detection prob-
abilities can be defined to model the imperfect detection of
the states X .

Assuming that for all actions a, b, the values of the reward
function verify raL < rbH does not change the essence of
the properties demonstrated in this paper. Indeed, if this as-
sumption was not verified, the sets of parameters Pπ would
remain convex, the inequalities defining Pπ would be re-
versed. Simulations would be able to approximate the uni-
versal set of models. We have assumed a uniform distribu-
tion over the unknown parameters of the transition matrices.

We expect MC-UAMS will benefit from informative pri-
ors when available. Our research is the first to provide a gen-
eral approach to solve universal AM problems, and provides
the basis for future research in this area. In particular, there

would be value in generalizing our findings to n-state AM
problems. In the general case for a p-state n-action problem
the equations defining Pπ are no longer linear. Under spe-
cific assumptions, we might be able to recover the convexity.
We hope our research will inspire others to focus on explor-
ing properties of MDPs or POMDPs to derive algorithms
that are suitable for urgent decision-making and poor-data
problems (Chadès and Nicol 2016).
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