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Abstract

Tandem mass spectrometry is an indispensable technology
for identification of proteins from complex mixtures. Accu-
rate and sensitive analysis of large amounts of mass spec-
tra data is a principal challenge in proteomics. Conventional
deep learning-based peptide identification models usually
adopt an encoder-decoder framework and generate target se-
quence from left to right without fully exploiting the global
information. A few recent approaches seek to employ two-
pass decoding, yet have limitations when facing the spectra
filled with noise. In this paper, we propose a new paradigm for
improved peptide identification, which first retrieves a similar
mass spectrum from the database as a reference and then re-
vise the matched sequence according to the difference infor-
mation between the referenced spectrum and current context.
The inspiration of design comes that the retrieved peptide-
spectrum pair provides a good start point and indirect access
to both past and future information, such that each revised
amino acid can be produced with better noise perception and
global understanding. Moreover, a disturb-based optimiza-
tion process is introduced to sharpen the attention for dif-
ference vector with reinforcement learning before fed to de-
coder. Experimental results on several public datasets demon-
strate that prominent performance boost is obtained with the
proposed method. Remarkably, we achieve new state-of-the-
art identification results on these datasets.

1 Introduction
Proteins are key actors in all cellular processes and path-
ways (Bantscheff et al. 2007). Moreover, almost all diseases
are linked to perturbations of proteins. Consequently, the
fundamental study of proteins is underlying most biological
questions (Yates III 1998; Mann, Hendrickson, and Pandey
2001; Venable et al. 2004). Mass spectrometry (MS) is ap-
plied to obtain sequential information of proteins, such as
amino acid sequence, composition, and modifications (Yates
et al. 1995). Among these, determining the protein subse-
quence, named peptide, to each produced mass spectrum is
the workhorses in the entire identification pipelines and has
attracted much research attention recently (Shao and Lam
2017). The advances in deep neural networks (DNNs) have
demonstrated promising performances in peptide identifica-
tion tasks (Tran et al. 2017; Qiao et al. 2019; Tran et al.
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2019; Fei 2020c,b). Most existing deep learning-based iden-
tification methods learn a neural network in a supervised
learning manner based on elaborately designed peptide-
sequence matches. The essential practice of such models
follows encoder-decoder frameworks. In between, convo-
lutional neural network (CNN) is utilized to encode an in-
put mass spectrum, and recurrent neural network (RNN) is
adopted as a decoder to generate target peptide sequences
(Tran et al. 2017). During inference, the peptide identifica-
tion models usually generate the sequence through one-pass
decoding from left to right, that is, only conditions on the
extracted spectrum features and previously generated subse-
quence to determine the next target amino acid.

One major limitation of such a one-pass process is that the
next amino acid generation only uses partial information of
the previously generated incomplete peptide sequence rather
than considering the global information carried by a com-
plete target candidate. Meanwhile, the peptide fragments are
more likely to occur in the middle position in a practical bi-
ological experiment, which results in a lower abundance of
useful signal peaks on the sides of spectra and easy to be
concealed by noise peaks (Fei 2020b). Future information
of the target domain is intuitively beneficial for the current
sequence generation since each amino acid in the target pep-
tide has to be consistent with its surrounding subsequences,
i.e., both before and after it. Different approaches have been
proposed to leverage the global information, e.g., (Qiao et al.
2019) designs an order invariant network structure to encode
entire spectrum effectively. (Fei 2020b) introduces a hier-
archical multi-stage framework, which starts the inference
with a selected high-confidence guiding tag and provides
the complete sequence based on this tag. (Fei 2020c) train
a value network to estimate all possible sequence extensions
of reward to assist current decision. These approaches are of
relatively good quality, but inefficient to generate and train.

Inspired from (Zhang et al. 2018; Gu et al. 2018), we pro-
pose a new paradigm for peptide identification, which con-
sists of a similar spectrum retriever and a peptide sequence
reviser. In specific, given a mass spectrum, we first retrieve
a similar spectrum and its associated peptide sequence from
database, i.e., the original training data. Then, we concate-
nate both spectrum vectors weighted by attention module to
a difference vector. Finally, we revise the reference peptide
sequence condition on the difference vector. The proposed
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approach does not only benifits from the informativeness
advantages of the retrieval pair but also poses the flexibil-
ity of target sequence generation. Techniqully, it can allevi-
ate the noisy issue of one-pass generative models by lever-
aging existing information and is more efficient than multi-
stage models. In addition, we introduce a disturb-based op-
timization to force the model to attend the useful spectrum
features and explore more accurate peptide sequences with
reinforcement learning. To evaluate the effectiveness of the
proposed revised approach, we perform comprehensive ex-
periments with different baselines, including traditional and
deep learning-based identification tools, and demonstrate
strong superiority on different metrics.

In summary, our contributions are listed as follows:
• We propose a novel framework, retrieve and revise, for

mass spectrum data analysis, which combines the input
spectrum as well as retrieval reference. To the best of our
knowledge, it is the first work to combine retrieval and
generation for improved peptide sequence identification.

• We introduce a disturb-based optimization reinforcement
learning to help the peptide reviser focus on the effective
difference features and discriminate against noise.

• Extensive experiments are conducted on various mass
spectra datasets. The results show that our proposed
model outperforms all the baseline in a large margin and
achieves a new state-of-the-art performance.

2 Background
Mass spectrometry has become a powerful tool in life sci-
ence research and is nowadays an integral analytical method
in proteomics (Aebersold and Mann 2003; Patterson and Ae-
bersold 2003). For example, MS-based peptide identifica-
tion is the key to increase our understanding of cell biol-
ogy and human disease, which has numerous applications
such as peptide drugs designing for 2019-nCoV (Zhang
et al. 2020) In a standard approach in MS-based proteomics
(Domon and Aebersold 2006), the biological sample is first
lysed, and proteins are extracted followed by proteolytic
cleavage into peptides. The peptides are often further frac-
tionated to reduce sample complexity or to enrich for cer-
tain subsets of peptides. The first MS stage measures the
accurate mass of the entire peptides. In the second stage, re-
ferred to as tandem mass spectrometry (MS/MS), peptides
are fragmented, and the masses and intensity of the result-
ing fragment ions are detected. MS spectra usually contain
charge-to-mass ratio and relative intensity information, and
the identity of the peptides can be deduced by matching the
MS/MS spectra against a sequence candidate (Taylor and
Johnson 1997; Aebersold and Mann 2003).

In this work, our goal is to model the amino acid sequence
of a peptide according to the given spectrum. The major
obstacle lies that: (1) The exponential peptide candidates
need to be considered when matching with a given spectrum.
Most sequence models employ a common decoder mecha-
nism using a greedy or beam search to release this issue (Fei
2020c), while such a mechanism can miss correct peptides
at early steps. (2) There are multiple types of ions that have
quite different intensity values when the peptide is digested

by the enzyme. Meanwhile, the fragmentation rule is criti-
cal but remains understudied (Tran et al. 2017). (3) A large
number of noise peaks blending with the real useful ions that
limit the determination of correct sequences.

There is already a substantial literature on computational
proteomics. These algorithms assign a peptide sequence to
each tandem mass spectrum (MS/MS) by integrating graph
algorithms and dynamic programming to reduce the task
complexity (Elias et al. 2004; Zhang 2004; Dasari et al.
2010). Although traditional mechanism learning plus hu-
man design features work well, there remains substantial
room for improvement. Specially, these methods set strong
assumptions, and there are many limitations in practical ap-
plication. Encouragingly, deep learning technology was in-
troduced to peptide sequencing (Tran et al. 2017; Zhou et al.
2017; Tran et al. 2019; Fei, Wang, and Chi 2020). These
methods exploit the encoder-decoder paradigm that firstly
utilizes CNN to encode spectrum and then adopt an RNN-
based decoder to generate the output sequence, leading to
promising results for this task. Nevertheless, such a one-
pass framework has encountered a performance bottleneck
when facing a seriously noisy filled spectrum. In contrast,
our retrieve-and-revise framework incorporates indirect ac-
cess to global information to compensate such conditions as
well as avoid a decoding time punishment.

3 Approach
3.1 Model Overview
The entire workflow of our approach is displayed in Fig-
ure 1, consisting of a similar mass spectra retriever and
a peptide sequence reviser. In specific, to analyze an in-
put mass spectrum S, we first utilize the similar spec-
trum retriever to search a reference peptide-spectrum match
(Si, Pi) ∈ D, where a peptide-spectrum matched database
is denoted as D = {(Si, Pi)}Ni=1, comprise a sequence of
mass spectrum Si and its corresponding peptide sequence
Pi = {a1, . . . , aL}, where al represents the l-th amino acid
letter of peptide sequence Pi. Then, the peptide sequence re-
viser builds a difference vector vdiff = f(Si, S) to encode
the information about the difference context between refer-
ence spectrum Si and target spectrum S. Finally, we gen-
erate a target peptide sequence according to the conditional
probability of p(P |vdiff , Pi). In the following, we will in-
troduce how to design the similar mass spectrum retriever
and the peptide sequence reviser in detail.

3.2 Similar Spectrum Retriever
Following the common practice (Zhou et al. 2017), we com-
bine Pearson Correlation Coefficient (PCC) and Spearman
Correlation Coefficient (SPC) jointly to compute the mass
spectrum similarity. Firstly, the spectrum is represented as
intensity vectors where each index of the vector represents
a small mass-to-charge m

z bin, and the value represents the
sum of intensities of all peaks which fall into that bin. In con-
crete, we utilize a spectrum resolution of 10, which means
every peak within a 0.1 Da m

z bin will be merged together
and represented as an element of the intensity. Then, both
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Figure 1: An overview of our proposed peptide identification model, which includes a similar spectrum retriever to search a
reference from the database and a peptide sequence reviser to generate the output peptide sequence conditioned on both the
difference vector and retrieved sequence.

PCC and SPC are linked linearly to score the similarity be-
tween two formalized spectrum vector as follows:

PCC =

∑
i(xi −X)(x′i −X ′)√∑

i(xi −X)2
√∑

i(x
′
i −X ′)2

(1)

SPC = 1−
6
∑

i d
2
i

Lv(L2
v − 1)

(2)

sim = λPCC + (1− λ)SPC (3)

whereX andX ′ represent the input spectrum vector and ref-
erence spectrum vector from the database, di denotes the dif-
ference between ranked vector pairs, Lv is the vector length,
and λ is the balancing factor.

For any (Si, Pi), our goal is to maximize the condi-
tional probability of Pi by retrieving a reference similar pair
(S′i, P

′
i ) ∈ D. In practice, we retrieve twenty similar mass

spectra and corresponding peptide sequence candidates
{(S′i,j , P ′i,j)}20j=1 based on similarity score, and then se-
lect the retrieved peptide-spectrum matches whose similarity
score are in the range of [0.3, 0.7]. Here, each sample in the
training dataset is processed with the above procedure, so
we can obtain enormous tuples {(Si, Pi, S

′
i,j , P

′
i,j)

M
j=0}Ni=0

after this step. The motivation behind filtering out instances
with a similarity score < 0.3 is that a neural reviser model
performs well only if reference PSM is similar to its ground-
truth and can provide sufficient useful global information.
Besides, we also hope the peptide reviser does not only copy
the reference peptide sequence, that is, hold the strong revi-
sion capability, so we discard instances where the reference
sequence and target sequence are nearly identical.

3.3 Peptide Sequence Reviser
Peptide sequence reviser aims to modify a reference pep-
tide sequence to adapt to the current input mass spectrum.
Formally, given a tuple (S, P, S′, P ′), a peptide sequence

reviser first forms a difference vector vdiff using spec-
tra S and S′, and then updates parameters of sequence
decoding model by maximizing conditional probability of
p(P |vdiff , P ′). Next, we will describe how to obtain the dif-
ference vector as well as the peptide generation.

Difference Information Encoding Here, we first encode
the difference context between input spectrum S and refer-
ence spectrum S′ before input to the decoder for revising
the reference peptide sequence P ′. Formally, reference pep-
tide sequence P ′ is firstly transformered to hidden vectors
through a biLSTM to consider the two-side context as:

hk =
←−
h k ⊕

−→
h k (4)

←−
hk = LSTM(

←−
h k−1, a

′
j);

−→
hk = LSTM(

−→
h k+1, a

′
j) (5)

where ⊕ denotes concatenation operation and a′j is the j-
th amino acid of reference peptide P ′. Then we compute a
difference vector vdiff with a dual attention mechanism fol-
lowing (Park, Darrell, and Rohrbach 2019), which act as a
difference information localizer between S and S′. Assume
V and V ′ are spectrum features of S and S′ respectively,
encoded by a pre-trained CNN (Qiao et al. 2019; Fei 2020a;
Park, Darrell, and Rohrbach 2019). Spectrum features are
then used to generate two separate spatial attention maps A
andA′. We utilize element sigmoid for computing our atten-
tion maps as:

A = σ(Conv2(ReLu(Conv1(V )))) (6)

A′ = σ(Conv2(ReLu(Conv1(V ′)))) (7)

l =
∑

A� V ; l′ =
∑

A′ � V ′ (8)

cdiff = l ⊕ l′ (9)

where Conv, σ and � indicate convolution layer, element
sigmoid and element wise multiplication. cdiff explicitly
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encodes difference context information between S and S′.
Then we compute the difference vector vdiff by following
non-linear transformation:

vdiff = tanh(Wd · cdiff + bd) (10)

where Wd and bd are two learnable parameters. Equation 10
can be regareded as a feature space mapping from spectrum
difference to peptide sequence difference.

Peptide Sequence Generation We build our peptide se-
quence generation model upon a conventional attention-
based encoder-decoder framework, integrating the differ-
ence vector and reference sequence into the decoder. The
decoder takes {hk} as an input and generates a target pep-
tide sequence S by a LSTM model with weighted attention.
The hidden state of the decoder can be acquired by:

h′j = LSTM(h′j , aj−1 ⊕ vdiff ) (11)

where the input of j-th time step is the last step hidden state
h′j−1 as well as the concatenation of the (j-1)-th amino acid
aj−1 embedding and the difference vector vdiff obtain in
Equation 11. Then we comput a context vector ci, which is
a weight sum of {hk}.

ci =
∑
j

αi,jhj (12)

αi,j =
exp(ei,j)∑

(ei,j)
(13)

ei,j =Wotanh(Wi[hj ⊕ hi]) (14)

where weight αi,j is linked to relation between hidden states
and W s are trainable weights. The final generative probabil-
ity distribution is given by,

p = softmax(Wp[ai−1 ⊕ h′i ⊕ ci] + bp) (15)

Note that Equation 8 and 12 are the attention mechanism
following (Chorowski et al. 2015), which can mitigate the
long-term dependency issue of the original Seq2Seq model.
We append the difference vector to every input embedding
of the decoder in Equation 11, so the difference information
can be utilized conveniously in the entire generation process.

3.4 Reinforcement Learning-based Optimization
Similar to previous works, we can train our peptide sequence
generation model by minimizing the conventional negative
log likelihood loss, which aims to maximize the probabil-
ity of the ground truth peptide sequence provided with the
difference vector and current context as:

LXE = −
L∑

j=1

log p(aj |vdiff , P ′, a<j) (16)

However, it is proved that only training with cross-entropy
loss is insufficient, and the resulting model usually suffers
from the exposure bias problem (He et al. 2019). What’s
more, the peptide identification model should not only learn
the difference between two spectra but also know which is
useful regions while others are noisy or invalid. Therefore,
we introduce a reinforcement learning-based strategy that

Figure 2: A schematic diagram of reinforcement learning-
based optimization to force model to attend the effective dif-
ference features with feedback reward.

incorporating the attention perturbation to further optimize
our cross-modality attention module.

During training, our model generates two peptide se-
quence candidates for the same input spectrum. The first
peptide sequence P = {a1, . . . , aL} is generated in the
usual way with original difference vector, while the sec-
ond peptide sequence P̂ = {â1, . . . , âL} is generated in a
slightly different way according to a sampled probability
map v̂diff , as shown in Figure 2. Here, v̂diff is a mod-
ified map of difference vector vdiff by integrating some
small disturbation, which will lead to the generation of a
new peptide sequence. By comparing the estiamtion score of
two sequences P and P̂ , and rewarding the better one with
reinforcement learning technique, the peptide identification
model can virtually explore for a better match.

Specially, to generate a disturbed v̂diff , we first randomly
select some elements from the original feature map vdiff to
perturb with a sampling of γ. For the selected element vi,jdiff ,
we generate its new perturbed version by sampling from the
following Gaussian distribution:

v̂i,jdiff ∼ N (vi,jdiff , σ) (17)

where the standard deviation σ corresponds to a small pre-
set hyperparameter. For the residual elements, we maintain
the original form, v̂i,jdiff = vi,jdiff . With v̂, we can then
generate the peptide sequence P̂ with peptide reviser ac-
cordingly. After that, we calculate the accuracy metric for
the two peptide sequences and treat them as rewards, i.e.,
r(P ) = AAP(P, P ′) and r(P̂ ) = AAP(P̂ , P ′). If r(P ) is
higher than r(P̂ ), it means that P̂ shows better quality and
matchness of peptide sequences than P . Consequently, the
attended difference vector vdiff should be more close to the
sampled vector v̂diff . Along with this intuition, we can de-
fine our reinforcement loss as follows:
LRL = max(r(P̂ )− r(P ), 0)||v̂diff − vdiff ||22 (18)

Further more, the overall training loss can be rewritten as:
L = µLRL + LXE (19)

where µ denotes a balancing factor to control the relative
weights of two losses.
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Data set Lab Instrument Resolution Species #Spectra Publication

Mann-Human-QE Mann Q Exactive high Human 27,570 (Michalski et al. 2011)
Mann-Mouse-QEHF Mann Q Exactive HF high Mouse 172,000 (Sharma et al. 2015)
Gygi-Human-QE Gygi Q Exactive high Human 176,000 (Chick et al. 2015)
Dong-Ecoli-QE Dong Q Exactive high E. coli 15,000 (Liu et al. 2014)
Xu-Yeast-QEHF Xu Q Exactive HF high Yeast 243,000 (Chi et al. 2018)

Table 1: Basic mass spectrum dataset information integrated in the experiments.

4 Experiments
We empirically verify the merit of our retrieve-and-revise
model by conducting experiments on different mass spec-
trum datasets for peptide identification task.

4.1 Experimental Settings
Datasets Diverse datasets are collected from the previous
work (Tran et al. 2017; Fei 2020b), which are all publicly
available. Dataset information is listed in Table 1. Following
the common practice in (Fei 2020b), we utilize Open-pFind
(Chi et al. 2018) to process these raw data sets and search
against the reviewed peptide sequence database of human,
mouse, E.coli, and yeast, respectively, which can be down-
loaded from Uniprot and their versions are consistent with
(Chi et al. 2018). We also set the precursor ion tolerance
and the fragment ion tolerance as ±20 ppm. The FDR is
controlled at 1% at the spectrum level. At last, ∼ 920,000
high-quality PSMs were obtained in the experiments. Im-
portantly, the peptide sequences identified from Open-pFind
were assigned to the corresponding MS/MS spectra and re-
garded as ground truth for estimating peptide identification
results’ correctness.

Evaluation Metrics In this paper, the generated amino
acid can be considered as correct when the mass difference
between the predicted amino acid and a ground-truth amino
acid is less than 0.1 Da, and the prefix mass before them as
well as the suffix mass behind them are different by less than
0.5 Da. Following (Qiao et al. 2019), we adopt three types
of metrics: precision, recall and area under curve (AUC) to
evaluate the performance of peptide sequencing. In between,
amino acid level precision denotes the ratio of the total num-
ber of matched amino acids over the total number of amino
acids in the generated peptide sequences while peptide level
precision the fraction of correct peptide sequences in total
predicted peptide sequences. Similar definitions can be ap-
plied to recall and AUC as well.

4.2 Compared Methods
(1) PEAKS (Ma et al. 2003) adopts a sophisticated dynamic
programming algorithm to make peptide correspond to as
many high abundance peaks as possible. (2) Novor (Ma
2015) employs a decision tree based scoring function with
two-stage refinement to select the peptide candidates. (3)
pNovo3 (Yang et al. 2019) uses a learning-to-rank frame-
work to distinguish similar peptide candidates for each spec-
trum. (4) DeepNovo (Tran et al. 2017) is the first work to in-
corporate deep learning technology with peptide identifica-

tion, which is under the conventional CNN plus RNN frame-
work. (5) DeepNovoV2 (Qiao et al. 2019) combines an order
invariant network and RNN to predict peptide sequence pat-
terns. (6) DRL (Fei 2020c) consider peptide identification as
a multi-step decision making process and optimize with a re-
ward function. (7) DeepTag (Fei 2020b) starts the inference
with a selected high-confidence guiding tag and produce the
complete sequence based on this guiding tag further. Please
note that the first three methods are constructed with a tra-
ditional search strategy, while the last two methods are deep
learning-based.

4.3 Implementation Details
The Mann-Human-QE dataset is served as our retrieval
database in the whole experiment. We utilize pre-trained T-
Net (Tran et al. 2017) as spectrum feature extractor. Mean-
while, two-layers biLSTM is adopted to encode reference
peptide sequence, whose hidden size is set to 256, and
dropout is set to 0.2. The same structure of biLSTM is used
to peptide sequence decoding, and both are trained indepen-
dently. The λ is set as 0.5 in the similar mass spectrum re-
trieval. Due to the low loss value, we set the hyperparameter
µ in Equation 19 as 200 to put more weight on the reinforce-
ment learning loss. In the reinforcement learning optimiza-
tion, we set the random sampling rate of γ as 0.025. As for
the gaussian distribution, we set σ as 0.1. During training,
we use a minibatch size of 64, the Adam optimizer (Kingma
and Ba 2014) with learning rate 3e-4.

We implement our experiments in PyTorch. After each
epoch, we evaluate the model performance on the validation
set and choose the identification model with the best perfor-
mance. Following setting in (Fei 2020b), our model was first
trained on the Mann-Human-QE data set and then tested on
Mann-Mouse-QEHF for cross-species validation and Gygi-
Human-QE data set for cross-lab validation. The rest of
the data sets were used to test the robustness of the pro-
posed model. Please note that the training dataset and testing
dataset come from different species (Zhou et al. 2017). The
cross-validation is used to guarantee unbiased training and
testing and does not give our model any extra advantage.

4.4 Comparison with State-of-the-art
The performances of different peptide identification models
on public mass spectrum datasets for the peptide identifi-
cation task are summarized in Table 2. Overall, the results
across all metrics consistently indicate that our revise-based
model exhibits better performances than other approaches,
including statistical-based methods (PEAKS, PepNovo, and
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Dataset Mann-Mouse-QEHF Gygi-Human-QE Dong-Ecoli-QE Xu-Yeast-QEHF

Metric AAR AAP PR AAR AAP PR AAR AAP PR AAR AAP PR

Statistical based methods

PEAKS 0.342 0.483 0.145 0.365 0.421 0.152 0.425 0.462 0.178 0.382 0.453 0.155
Novor 0.371 0.502 0.152 0.383 0.412 0.187 0.461 0.501 0.218 0.401 0.512 0.171
pNovo3 0.402 0.508 0.193 0.416 0.419 0.23 0.494 0.508 0.244 0.423 0.535 0.182

Deep learning based methods

DeepNovo 0.427 0.512 0.241 0.454 0.428 0.251 0.513 0.521 0.321 0.466 0.561 0.253
DeepNovoV2 0.467 0.532 0.266 0.484 0.448 0.281 0.533 0.538 0.345 0.482 0.583 0.262
DRL 0.480 0.562 0.284 0.495 0.464 0.294 0.554 0.558 0.347 0.501 0.612 0.269
DeepTag 0.492 0.568 0.289 0.515 0.486 0.307 0.581 0.580 0.382 0.512 0.605 0.271

Ours 0.501 0.575 0.293 0.527 0.497 0.315 0.590 0.586 0.390 0.522 0.610 0.275

Table 2: Evaluation results of popular statistical-based, deep learning-based and our retrieve-and-revise model on different data
sets.AAR represents amino acid recall, AAP represents amino acid precision, and PR represents peptide recall. The metric
values of baselines are from the corresponding paper.

Figure 3: The precision-recall curves of various baselines
and our proposed peptide identification model on Mann-
Mouse-QEHF dataset.

Novor) and deep learning-based methods (DeepNovo, Deep-
NovoV2, and DeepTag). In particular, our model by integrat-
ing similar references with global information, makes the
absolute improvement over the best competitor DeepTag by
3.1% in terms of PR score, which achieves a new state-of-
the-art result. The results generally highlight the key advan-
tage of exploiting the past and after features on the basis of
similar spectrum-peptide pair, persuing a through difference
information understanding. Similar to the observations (Tran
et al. 2019), deep learning-based methods lead to better per-
formances than conventional statistical-based method.

On the other hand, we should also be noted that all pep-
tide identification models report confidence scores for their
own predictions, and setting a higher threshold of confi-
dence score will lead to a smaller part of peptides with high

Figure 4: The area under curve of various baselines and our
proposed peptide identification model on different species
and labs data sets.

precision but will make the rest of the dataset without re-
sults (Tran et al. 2017). It is difficult for biologists to ac-
cept in practical application. In this end, it is reasonable to
depict precision-recall curves and incorporate the area un-
der curve (AUC) as metrics of peptide sequencing quality.
Figure 3 and 4 display the precision-recall curves on the
Mann-Mouse-QEHF dataset and the AUC of different pep-
tide sequencing methods on different data sets, respectively.
We can observe that our retrieve-and-revise model main-
tains superiority performance against other peptide identi-
fication methods, including conventional human-designed
and deep learning-based. Encouragingly, extensive quantify
experimental results demonstrated that the improvement of
our method was efficient and reliable.
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Figure 5: One mass spectrum examples form Mann-Mouse-QEHF dataset with retrieved similar peptide-spectrum match and
peptide identification results from the training dataset. The peptide sequences are generated by 1) Ground Truth (GT), 2)
DeepNovoV2, 3) DeepTag, and 4) our proposed method (Ours). Peaks colored in red and blue are effective peaks, amino acid
letters colored in red denotes the difference between the reference sequence and target sequence, and amino acid letters colored
in blue represents the difference between the candidates and ground-truth peptide sequences. Spaces are underlined to indicate
missing amino acid letters.

4.5 Qualitative Analysis

Figure 5 showcases a mass spectrum identification result
with retrieved spectrum-peptide pair produced by Deep-
NovoV2, DeepTag, and our proposed revised based model,
respectively. As illustrated in the examplar results, the pep-
tide sequences output by our model is most correct to the
ground truth. We can observe that there are a lot of noise
peaks (color in gray) on both sides of the mass spectrum. For
DeepNovoV2, which inference the peptide sequence from
left to right in one stage, is prone to make mistakes at early
stages. Though DeepTag incorporates a high-confidence tag
to release the issue, it still comes to a tight spot sometimes.
In contrast, our model effectively solves this problem. We
speculate the results are benefited from the integration of
the reference template. The results again indicate the advan-
tage of revising the peptide sequence from a good point and
considering the past and after information.

4.6 Effect of Reinforcement Learning-based
Optimization

To clarify the effect of the RL-based optimization, we illus-
trate the performance over automatic metrics with different
parameters µ in Table 3. We can see that: 1) By incorporat-
ing the RL-based optimization, that is, µ > 0, all of the met-
rics are increased, indicating the effectiveness of perturbing
with reforcement learning technique. 2) Along with the col-
umn of metric scores listed in Table 3, most performance
metrics are generally like the shapes hillside (first increase
then decrease) when it varies in a range from 0 to 2000. Cor-
respondingly, we set the parameter µ as 200 in our experi-
ments, which can achieve the best performance.

µ AAR AAP PR AUC

0 0.494 0.567 0.288 0.47
100 0.498 0.572 0.291 0.48
200 0.501 0.575 0.293 0.48
500 0.500 0.575 0.292 0.48
1000 0.495 0.572 0.290 0.47
2000 0.490 0.565 0.283 0.46

Table 3: Effect of RL-based optimization. Results are evalu-
ated on Mann-Mouse-QEHF. µ denotes the balancing factor
to reweight of the perturbed loss.

5 Conclusion

In this paper, we present a new paradigm, retrieve and revise,
for improved MS-based peptide identification, enabling a
peptide sequence generation model to leverage effective re-
trieved information. Compared with other conventional pep-
tide identification methods, our proposed approach can ef-
fectively exploit global information and accurately discrim-
inate against the changes between spectrum pairs. To further
utilize the sequence information to guide the diversity judg-
ment, we have further proposed a reinforcement learning-
based optimization to supervise the difference vector with
the peptide sequence evaluation rewards. Experiment re-
sults on various datasets show that our model outperforms
both traditional and deep learning methods on some met-
rics. More remarkably, we achieve new state-of-the-art per-
formances on these datasets. The results on our model also
validate the potential of useful knowledge retrieving.
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