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Abstract

With the success of machine learning, integrating learned
models into real-world systems has become a critical chal-
lenge. Naively applying predictions to combinatorial opti-
mization problems can incur high costs, which has motivated
researchers to consider learning augmented algorithms that
can make use of faulty or incomplete predictions. Inspired
by two matching problems in computational sustainability
where data are abundant, we consider the learning augmented
min-cost matching problem where some nodes are revealed
online while others are known a priori, e.g., by being pre-
dicted by machine learning. We develop an algorithm that is
able to make use of this extra information and provably im-
proves upon pessimistic online algorithms. We evaluate our
algorithm on two settings from computational sustainability
— the coordination of opportunistic citizen scientists for inva-
sive species management and the matching between taxis and
riders under uncertain trip duration predictions. In both cases,
we perform extensive experiments on real-world datasets and
find that our method outperforms baselines, showing how
learning augmented algorithms can reliably improve solu-
tions for problems in computational sustainability.

Introduction

With the success of machine learning models for predic-
tion, integrating such learned models into real-world sys-
tems has become a critical challenge. While the models are
typically evaluated with aggregate statistics, e.g., accuracy
on a test set, for many applications, such averages might
not necessarily imply efficiency. For example, in combi-
natorial optimization, predicting most of the choices cor-
rectly might nonetheless lead to poor solutions. An emerging
paradigm for integrating machine learning into optimization
algorithms, while giving theoretical guarantees, is to con-
sider learning augmented algorithms (Lykouris and Vassil-
vitskii 2018). Here a machine learning model gives incom-
plete or partly incorrect predictions and given access to this
oracle, one constructs an algorithm that provably performs
well as long as the machine learning advice is sound but still
gives guarantees for inaccurate predictions. This approach is
applicable to many problems in computational sustainability
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Figure 1: The economic damage of invasive species is es-
timated to be in the billions of dollars annually (Pimentel,
Zuniga, and Morrison 2005), and in invasive species man-
agement, one needs to match observers to spatial locations
in a landscape that might contain invasive species. Observers
might be both employees whose efforts can be planned as
well as opportunistic citizen scientists who’s engagement is
unknown at planning time. Orchestrating the efforts of these
agents provides an important challenge.

where data are abundant and one wants to provide guaran-
tees that resources are spent efficiently (Dilkina and Gomes
2010; Bondi et al. 2018). Information might also only be
partly known for other reasons; e.g., land managers might
only know approximately what resources are available in the
future.

In this work, we consider two matching problems subject
to partial information: matching citizen scientists to observa-
tion locations for invasive species management and match-
ing riders to taxis in urban mobility. In both settings, some
parts of the matching might be known a priori, e.g., we can
use predicted trip durations to guess what taxis are available,
whilst other parts might be unknown, e.g., some taxis might
arrive early due to favorable traffic conditions or model mis-
specification. We model these problems as a semi-online
matching problem, where we want to find the minimum cost
matching in an online fashion given partial predictions of the
graph, e.g., taxis become available one by one and must irre-
vocably be matched to customers as they become available.

A primary motivation for this project is coordinating the
efforts of citizen scientists for invasive species management
as part of an ongoing collaboration with the New York Nat-



ural Heritage Program, who contribute to the state invasive
species database through the online mapping system iMap-
Invasives (NatureServe 2020 (Accessed 2020-07-01). Citi-
zen scientists is a broad term for engaging volunteer citizens
in science projects (Bonney et al. 2009; Cox et al. 2015), and
data from citizen scientists and paid managers are combined
in the database to help the state of New York assess and mon-
itor the spread of over four hundred invasive species across
the state. A pervasive problem in these settings is that citizen
scientists are opportunistic and possibly have misaligned in-
centives (Xue et al. 2013). Like many similar projects (Sulli-
van et al. 2009; Follett and Strezov 2015), the database uses
citizen scientists to perform monitoring for invasive species,
but the engagement of such citizen scientists is not known
ahead of time. In addition to these volunteers, the database
collaborates with paid employees whose schedules can be
decided ahead of time; and coordinating the effort of op-
portunistic citizen scientists with predictably scheduled paid
employees proves an important challenge in computational
sustainability. In the case of urban mobility, inspired by a
competition using data from the NYC Taxi and Limousine
Commission (TLC), we consider a machine learning model
predicting the duration of taxi rides and adjusting the match-
ing between customers and taxis for model errors.

Modeling both these problems as learning-augmented
min-cost matching problems, we develop an algorithm that
provably improves upon pessimistic algorithms in the learn-
ing augmented setting, with an approximation bound that
depends upon the amount of knowledge available. The al-
gorithm is evaluated on two large real-world datasets, the
taxi dataset of the NYC Taxi and Limousine commission
and invasive species records from the database. We find that
our algorithm consistently outperforms baselines. We sum-
marize our contributions as follows:

e Formulate the problem of learning augmented min-cost
matching motivated by applications in computational sus-

tainability and provide an algorithm for the problem.

Prove approximation guarantees for the algorithm that de-
pends upon how much knowledge we have access to.

Evaluate our algorithm on two large real-world datasets
from urban mobility and invasive species management,
showing that our method outperforms baselines.

Background

Min-Cost Matching. Consider a weighted bipartite graph
G = (V,E) with weights w, for edge e. The two sides
of the graph might represent, e.g., taxis and potential cus-
tomers. We will refer to the two sides of the graphs as the
jobs S and workers R. A perfect matching E is a subset
M C F such that each node is incident to exactly one edge
in . The weight of a matching F is w(E) = ) .y we.
We will assume that there are n workers and jobs; a perfect
matching is then of size n. In our applications, we primarily
consider matching over spatial domains, e.g., matching taxis
and customers; we thus assume that the graph G is metric.
Let d(i, ) denote the distance between nodes i, j, the metric
property then implies
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d(i,§) +d(j, k) < d(i,k) Vi, jkeV (1)

The min-cost perfect matching problems entail finding a
matching M that minimizes w(M ), which can be done in
poly-time (Kuhn 1955). Solutions often rely on so-called
augmenting paths P (augmenting w.r.t some matching M),
which are paths in G whose ending and starting nodes are
unmatched in M such that every other edge € P is also
€ M. Given such a path, one can expand the matching M
by setting

M+~ M®P 2)

Here ® is the symmetric difference between the two sets,
returning elements found in exactly one of the operand sets.

Online Matching. Online algorithms model scenarios
where parts of a problem are revealed one-by-one, but one
needs to make irreversible choices before all information
is revealed. A canonical example is the ski-rental problem,
where an agent has traveled to a ski resort and will continue
to ski for as long as the weather is good. The duration of
favorable weather is unknown, and each day the agent must
choose between renting skis or paying a larger sum to buy
skis, which can be used for the rest of the vacation. Online
algorithms are typically evaluated on their competitive ratio,
which measures the expected cost E[w(M )] of the obtained
solution M and the optimal solution M, that can be obtained
if all information was known a priori. Le., the competitive

ratio ¢ is
c]E{ }

Learning Augmented Metric Matching. As machine
learning has become increasingly successful, researchers
have been interested in so-called learning augmented algo-
rithm design. These are algorithms that can provably make
use of incomplete or noisy advice coming from e.g. a ma-
chine learning model (Purohit, Svitkina, and Kumar 2018;
Lykouris and Vassilvitskii 2018). It is typically not specified
how the side-information is obtained, one often assumes that
it comes from some oracle (which need not be a machine
learning model).

We will consider an online matching problem where parts
of the network are known ahead of time, e.g. by being pre-
dicted by a machine learning model. Our goal is to construct
an algorithm that can make use of such side information, and
improve upon pessimistic online algorithms. We will assume
that the workers arrive in a random order and formally define
our problem as

w(M)
w(M,)

3)

Definition 1 The learning augmented metric matching
problem consists of

e a metric bipartite graph G with jobs S and workers R. We
assume |R| = |S|=n

o A set R, of predicted workers containing n — k workers
known ahead of time.



workers from R are revealed one by one in a uniformly ran-
dom order and must be irrevocably matched to a job upon
arrival. An algorithm must output a perfect matching F.

A Method for Learning Augmented Matching

We now present a method for solving problems of the type
given in definition 1 by incorporating machine learning ad-
vice into classical online algorithms (Raghvendra 2016), a
high-level illustration can be found in fig. 2. We will first
present the algorithm and then discuss how to improve it
with local search.

Algorithm 1:
input : Graph G = (E, N), jobs S C N, predicted
workers I, C N, arandom permutation I.
output: A matching M
1 M < {} // current matching
2 Gg < induced subgraph of Gon R, U S
3 M, < MinMatch (Gy)
4 My < M, // planned matching for predicted
workers not revealed
5 ¢ < w(Mx)
6 forr € Rdo

7 if r ¢ R, then

8 | | M« MUM;(r)

9 else

10 P + aug(r, M,) minimizing A¢ eq. (4)
1 ¢+ ¢+ Ap(P, M,) viaeq. (4)

12 M, + M.6P

13 M + M U (r, s) where (r, s) are endpoints

of P

14 end
15 end
16 output M

Algorithm

The algorithm will maintain a matching M, which it outputs
at the end, and auxiliary matchings My and M,, the latter
being updated throughout the procedure. At a high level, our
strategy is to first find a suitable set of jobs for the predicted
nodes IR, and then update our matching M as workers are
revealed one by one via augmenting paths with respect to
M. Throughout the algorithm, we will keep track of the
variable ¢, which will be useful for the analysis. At the very
start, the algorithm initializes M to the empty set and M.,
to the min-cost matching from all predicted workers, using,
e.g., the Hungarian method (Kuhn 1955). Thereafter, when
predicted workers arrive, they are assigned as per M ¢. When
an adversarial node r € R is revealed we find an augmenting
path P from r to an empty job s that minimizes A¢, defined
as

AP MY = S wle) @)
e€P\ M,

after this, we update M, < M, @ P and assign the worker
to the endpoint of P. See Algorithm 1.

Formal Analysis

It is straightforward to verify that Algorithm 1 gives a per-
fect matching, the reason being that we always connect un-
predicted workers with endpoints of paths that are augment-
ing w.r.t M,. Since all predicted workers are matched in M.,
at the start, such paths must terminate in unmatched jobs.
A formal proof is given in the Appendix. Of more interest
is the approximation guarantees, which will depend upon &
the number of unpredicted workers as follows.

Theorem 1 Algorithm I has competitive ratio O(1+1log k).

As is common in the analysis of learning augmented al-
gorithm (Purohit, Svitkina, and Kumar 2018; Lykouris and
Vassilvitskii 2018), our algorithm will interpolate between
known methods at the extremes of perfect or unavailable ma-
chine learning advice. The algorithm reduces to the Hungar-
ian method or the online method of (Raghvendra 2016) at
such extremes, borrowing from the analysis of these meth-
ods but improving upon the O(logn) guarantee the latter
provides in the case of partial information. The algorithm
can be analyzed by bounding the value of ¢; it is first possi-
ble to lower bound it.

Proposition 1 Let M; be the matching at iteration t. For
any t we then have

w(My) +w(M]) +w(My \ M) < 2¢ %)

Proof. We prove this by induction. It holds at ¢ = 0 trivially.
Let us assume that it holds for ¢ and consider ¢ + 1 and the
node r we add this step. If »r € R, the RHS of eq. (5) is
unchanged as per Algorithm 1. r will be matched to s =
M (r), and thus w(M;) will increase by w(e(, 5)) whereas
w(M/ \ M,;) will decrease by the same amount. Then the
LHS of eq. (5) is also the same and the inductive statement
holds. Let us assume r ¢ R,. We then have

w(M) —w(M,) = Z

e€eP\M;_, e€ePNM;
1 1
—aop) - (3 X wlady > i)
e€PNM;_, e€PAM;_,

we add and subtract § Y P\M; w(e) in the parenthesis

= A¢(P;) — (; Z w(e) + % Z w(e) +
ee PNM;_, ecP\M;_,
=1uP;)
1 1
7 2 w-g > “’(e))

e€PNM;_ eeP\M

i—1

=—(w(M;)—w(M;_,))
thus

(w(MF) —w(M) = A6(P) - SUP)  (©)

N | =
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Figure 2: The high-level idea of our algorithm. a) For all predicted workers, we first calculate an optimal matching M,.. b) When
a predicted worker arrives, we match it according to M,. ¢) When an unpredicted worker arrives, we calculate an augmenting
path relative to M, and d) match the endpoints. We improve this general strategy by adding a local search procedure.

Using the metric property we have £(P) > d(r, s), and we
note that d(r, s) is Aw(M). This gives us

Aw(M,) + Aw(M) < 2A¢ )

We know that s is unmatched in M, and since My is un-
changed w(My \ M) is also unchanged. Thus the inductive
statement still holds. l

After lower bounding ¢, it is possible to upper bound it,
utilizing the random permutation to bound its expectation,
using the fact that not all workers are adversarial to improve
upon pessimistic adversarial bounds (Raghvendra 2016).

Proposition 2 E[¢] < (1 + Hy)w(Mop).

Proof. At t = 0 we have ¢ < w(Mop). We thus only need
to bound the change A¢ from when we add r ¢ R,,. Let us
consider the augmenting paths from M;* to M. Since My
is a perfect matching, there are n—¢ vertex disjoint augment-
ing paths — one for each node that has not yet arrived. We let
Pj{ be the set of these augmenting paths, then

Yoor=3( ¥ den) ®
=1 j=1 (s,rEPJ{QJV[f)

(X )<l

(s,r€P/NMop)

n—i
J=1
Here we have used the fact that the paths are vertex disjoint.

Let us now relabel such that worker r; is 7. Since we always
chose the path with the smallest A¢ we must have

A¢(P;) < Ag(Pj)

In the random arrival model, all adversarial nodes are
equally likely to arrive at any time. Let us assume that &’
adversarial nodes have already arrived, using eq. (8) we then
have

E[A¢(P)|r; €] < ﬁ ; A¢(P,)

1
k—F

w(MOPt)

k—F

<

Z Ap(Py) <

In total, we then have
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E[Y S A¢(P)] =D E[L,E[AG(P)Iri ¢ Ryl ©)
q q
|
S w(Mopl) Z E
k'=1
adding (9) to the fact that ¢ < w(Mop) at t = 0 yields
the claim. W

Proof of Theorem 1. Adding proposition 1 evaluated at
t = n and proposition 2 gives us

%E[W(M)} < SE[(w(M) +w(My\ M) +w(M,))]

1

2
< E[¢] < (1+ Hy)w(Mop)

inspecting the ends of this inequality yields the result. B

Improvement via Local Search

It is possible to perform a local search before assigning a
worker to a job to further improve the solution. When an ad-
versarial worker r is revealed, we find a minimum weight
augmenting path P from r to empty job s and use P to up-
date M.,. Then, we define N to be the set of nodes that are
matched in M but not matched in M, and H to be subgraph
of G induced on Ny U {r, s}. We observe that if we update
M and assign r based on the minimum weight matching on
H, we can reduce the weight of the final matching without
disturbing the overall structure of the algorithm. See Algo-
rithm 2 for a complete description of the local search routine.
If we replace line 13 in Algorithm 1 with the local search
routine, we can show that M, will remain the same in every
iteration. It is straightforward to prove that this procedure
can only improve Algorithm 1, see the Appendix.

Algorithm 2: LocalSearch(r, s)

1 Ny < nodes that are matched in M but not matched
in M

2 H < induced subgraph of G on Ny U {r, s}.

3 My < MinMatch(H)

4 M < MUM; (r)




method 2/21 222 2/23  2/24 2/25 2/26 2/27 3/21 3/22 3/23 3/24 3/25 3/26 3/27
opt 132 179 87 129 92 143 256 249 110 77 192 137 117 118
bipartite 0.5 163 235 133 176 131 196 337 319 164 104 253 218 180 178
bipartite 1.0 192 271 142 195 143 222 401 381 180 107 304 228 198 190
bipartite 2.0 257 354 179 242 193 279 520 501 215 137 387 301 245 238
online 156 227 111 170 130 191 333 294 143 94 235 201 174 181
hybrid 156 227 112 171 129 178 333 294 143 94 234 201 172 181
greedy 158 238 136 177 135 204 353 299 173 104 241 210 177 181
local 154 203 99 156 118 177 282 262 133 90 218 180 167 154
adversarial 158 238 137 177 135 204 352 300 176 104 242 212 181 183
method 4721  4/22 4723  4/24  4/25 426 4/27 5/21 5/22  5/23  5/24 5/25 5/26 5/27
opt 89 168 106 160 184 135 115 260 161 134 116 184 196 149
bipartite 0.5 137 236 138 228 256 206 160 339 230 187 176 259 257 204
bipartite 1.0 142 277 159 250 277 215 180 380 266 200 184 292 291 223
bipartite 2.0 185 363 200 328 341 260 227 476 332 255 257 370 379 267
online 130 228 130 221 237 18 156 315 229 163 166 244 235 191
hybrid 130 228 129 217 237 186 154 315 227 163 167 242 235 191
greedy 140 241 133 222 239 210 160 322 219 190 178 243 242 199
local 116 200 124 201 230 152 144 301 201 151 154 232 220 173
adversarial 142 242 134 225 239 211 161 323 224 189 179 246 243 202

Table 1: Total distance (km) traveled for various methods on the taxi matching problem for dates (given as month/day) in 2016.
Less is better. We see that our method local consistently outperforms alternatives, a hybrid greedy algorithm being a competitor.

Experiments

For evaluating our algorithm, we will consider experiments
using graphs generated from two real-world datasets from
invasive species management and taxi-cab matching. We
will consider finding the minimum cost perfect matching in
the learning augmented setting of section definition 1, com-
paring our algorithms to the following baselines:

o A greedy algorithm that myopically assigns a worker r to
the closest unmatched job s. This comes with no guaran-
tees, and we refer to it as greedy.

e A naive matching algorithm that first predicts the min-
cost matching of the predicted workers, and reserves the
workers not matched to this set to be greedily matched to
unpredicted workers. This comes with no guarantees, and
we refer to it as hybrid.

e The semi-supervised matching algorithm of (Kumar et al.
2018), which reserves a set of jobs for unpredicted work-
ers with low “externality”. This algorithm was developed
for unweighted maximum matching; we adopt it by con-
sidering edges present if their distance is less than some
cutoff proportional to the average distance per edge in the
optimal solution. For constant of proportionality p, we re-
fer to these as bipartite-p. Nodes that cannot be matched
with edges below the threshold are matched greedily.

e The online algorithm of (Raghvendra 2016) which gives
pessimistic performance guarantees and does not use any
additional information. We refer to it as adversarial.

We will refer to our algorithm, with and without the local
search routing, as online and local, respectively. It is worth
noting that our algorithm provides guarantees, which can be
useful beyond just providing performance. E.g., it might be
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drives
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Figure 3: In urban mobility, matching customers to drivers
is challenging as, e.g., changing traffic conditions makes it
hard to estimate the travel time. Using a machine learning
model to predict the trip duration, we evaluate our algorithm
on the ability to generate matchings robust to prediction er-
TorS.

useful for policy-makers to know how close to optimality the
solutions are. Experiments are repeated five times; the mean
is given in the main paper and the standard deviations in the
Appendix.

Taxi-Cab Matching

We conduct experiments on matching taxi drivers to cus-
tomers. Traffic conditions and other issues are typically hard
to predict, to this end, NYC Taxi and Limousine Commis-
sion (TLC) released a dataset of roughly two million taxi
rides in the greater NYC area, and a competition to predict
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Figure 4: The area for the taxi dataset, each dot corresponds
to a ride. Note the outline of Manhattan and Central park.

the duration of taxi rides was organized . The dataset con-
tains the location and time of pickup/dropoff of customers
and various other data (e.g., number of passengers, taxi com-
pany), but not the time of the cab order. See Figure 4 for an
illustration over the geographic area. We consider matching
taxis (workers) to riders (jobs). To construct the graph, we
consider all n taxi cabs that become available in some time
interval [T, T'+t,4] (i.e. they drop off a customer in this inter-
val) and try to match them to the next n customers. We aim
to minimize the Manhattan distances from the initial dropoff
to the next pickup, and the edge weights correspond to this
quantity. In the spirit of the original competition, we con-
struct a machine learning model that predicts the duration of

! Available at www.kaggle.com/c/nyc-taxi-trip-duration

taxi rides. Taxis that were predicted to be free for new cus-
tomers after 1" + ¢4, but nonetheless arrived before due to,
e.g., beneficial traffic conditions or miscalibrated prediction,
are treated as unpredicted workers, other taxis are treated as
predicted. The machine learning regression is random forest
implemented via XGBoost (Chen and Guestrin 2016); fea-
tures used include distance, pickup and dropoff area, time of
the day, among others; see the Appendix for further details.
In practical applications, one might also want to optimize
for waiting time, as such information is not available for this
dataset, we defer such studies to future work. We consider
seven days for each of four months in 2016, taking 7' = 3
pm and ¢4 as 30 minutes. Results are given in Table 1, where
we see that our method with local search consistently gives
the best matchings.

Invasive Species Management

We now consider the problem of invasive species manage-
ment as part of a collaboration with the New York Natu-
ral Heritage Program. The dataset upon which the experi-
ments are conducted comes from the iMaplnvasives project
(NatureServe 2020 (Accessed 2020-07-01). Its database cur-
rently consists of more than 200,000 observations and 408
species, spread over more than 30 years and 2,200 observers.
Of central importance is the heterogeneous agents collabo-
rating on this initiative; the state is divided into eight regions
administered by individual organizations that make use of
both employees and individual citizen scientists. For each
year, we will aim to match volunteers/employees (workers)
to sites deemed necessary to investigate (jobs). For this task,
we do not assume that the side-advice comes from a ma-
chine learning model, but instead that volunteers are unpre-
dicted due to their opportunistic engagement, whereas em-

method 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
bipartite 0.5 4777 4896 5310 4587 3723 4783 5645 6897 5873 4312 6723 3246 4003 5410
bipartite 1.0 5346 5494 5519 4880 3944 4925 5964 7103 6224 4560 6995 3360 4165 5812
bipartite 2.0 5444 5685 6132 5466 4837 6158 7395 8806 7209 5455 8003 4601 5109 6478
online 4316 4899 5005 4305 3094 4469 5042 6665 5006 3836 5967 2821 3897 4689
hybrid 4316 4899 4963 4268 3094 4469 5042 6665 4898 3814 5967 2851 3753 4690
greedy 4792 4835 5075 4387 3616 4689 5719 6734 5738 4349 6543 3441 4027 5314
local 4085 4583 4706 4000 3094 4250 4692 6204 4881 3497 5695 2700 3229 4417
adversarial 5079 5006 5202 4441 3801 4737 5758 7144 5966 4352 6462 3550 3944 5952
opt 4083 4443 4701 3973 3092 4158 4659 6145 4862 3415 5635 2575 3079 4399
method 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
bipartite 0.5 4272 4656 3324 4550 4214 4439 3978 5675 1705 1971 1983 1856 2043 1921
bipartite 1.0 4309 5152 3840 5124 4278 4780 4249 6155 1798 2310 2206 1933 2171 2071
bipartite 2.0 5023 5825 4402 5622 5553 6003 5250 8199 2594 2587 2831 2556 2372 2438
online 3531 4624 3108 3883 3797 4861 4261 5897 1898 2129 2224 1849 1842 1836
hybrid 3530 4652 3063 3885 3903 4889 4468 6107 1915 2155 2249 2044 1970 1899
greedy 3990 4493 3394 4478 4224 4342 3920 5415 1746 2029 2174 1855 1779 1902
local 3363 4061 2819 3659 3556 3999 3658 5468 1703 1982 1935 1699 1726 1759
adversarial 4211 4544 3335 4619 4280 4433 3654 5779 1906 2173 2062 2025 1999 1968
opt 3278 3723 2602 3617 3272 3552 3066 4819 1362 1490 1477 1372 1413 1389

Table 2: Total distance (km) traveled for various methods on the invasive species management problem by year. Less is better.
We see that our method local typically outperforms alternatives, only being beaten by a small margin for three years.
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Figure 5: The geographical area that the invasive species
dataset covers, each dot corresponds to an observation, on
the ground, of an invasive species. Data are collected over
31 years.

ployees are known ahead of time. Observations are typically
strongly correlated at the small scale, representing observa-
tions conducted the same day a couple of meters apart. We
divide the landscape into patches corresponding to 0.2 de-
grees latitudes/longitudes and subsample the set of obser-
vations so that each patch has at most one observation per
year, approximately corresponding to a day’s work. Then,
for each year, we construct the matching graph where the
jobs correspond to the observations conducted that year, and
the workers correspond to the observers. As we have not
been able to obtain employment data, for a given year, ob-
servers that only conduct one observation and have no previ-
ous observations are treated as citizen scientists (modeled as
unpredicted workers), others as employees (predicted work-
ers). We weight an edge by the distance from the centroid of
the employee’s/citizen scientist’s observations to the obser-
vation location. The results are given in Table 2, where we
see that our method outperforms the alternatives. We also
consider an ablation experiment to evaluate the impact of
the number of predicted observers. Instead of treating the
observers as unknown based upon historical data, we ran-
domly pick the observer to be predicted or not. We then plot
the average distance traveled, averaged over all years and
five repetitions (with five fixed seeds), as a function of the
fraction of known nodes. The results are given in Figure 6,
with performance improving as with predicted observers.

Related Work

Matching problems are ubiquitous in sustainability applica-
tions, examples include health interventions (Wilder et al.
2018) and organ donor matching (Roth, S6nmez, and Unver
2004), fair division of goods (Aleksandrov et al. 2015)
and supply-demand matching in energy storage (Pickard,
Shen, and Hansing 2009). The idea of learning augmented
algorithms goes back at least to (Lykouris and Vassilvit-
skii 2018), which studies the problem in the context of
machine-learned advice for caching policies. Other appli-
cations include frequency estimation in data streams (Hsu
et al. 2018), low-rank estimation (Indyk, Vakilian, and Yuan
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Figure 6: Ablation experiments showing the performance on
the invasive species management matching problem of var-
ious algorithms, as the fraction of predicted nodes changes.
Solution quality is given by average cost of matchings, mea-
sured in kilometers. Our proposed methods improves upon
the alternatives, and improves as the number of predicted
nodes grows.

2019), scheduling (Lattanzi et al. 2020) among others (Puro-
hit, Svitkina, and Kumar 2018). Within matching, (Kumar
et al. 2018) introduces semi-supervised maximum match-
ing, online matching where a certain subset of the nodes is
known before. We instead consider min-cost perfect match-
ing, which introduces additional complications as the exter-
nalities of a single bad choice can grow substantially. Pure
online algorithms have a long history, see, e.g., (Karp, Vazi-
rani, and Vazirani 1990), but is still an active area of research
(Buchbinder, Segev, and Tkach 2019; Buchbinder et al.
2020; Devanur and Huang 2017). Both applications we con-
sider here have extensive literature owing to their practical
importance. In the context of invasive species management,
citizen science has proven to be a promising strategy for
conservation work (Crall et al. 2015; Rutledge et al. 2013;
McKinley et al. 2017). On the computational side, consid-
ered methods include reinforcement learning (Taleghan et al.
2015), mixed integer programming solvers (Biiyiiktahtakin,
Feng, and Szidarovszky 2014), stochastic dynamic program-
ming and others (Shea and Possingham 2000). From a theo-
retical perspective (Bjorck et al. 2018) considers a predator-
prey model for biocontrol, (Gupta et al. 2018) uses Hawkes
processes for modelling and (Spencer 2012) considers an
extension of the firefighter problem. Within the domain of
urban mobility (Lowalekar, Varakantham, and Jaillet 2018;
Freund et al. 2019) various dimensions of the problem have
been considered, examples include pricing (Qiu et al. 2017),
finding the minimum fleet size (Vazifeh et al. 2018) or al-
locating multiple passengers to the same ride (Santi et al.
2014). Again there is a heterogeneous set of strategies con-
sidered, from traditional combinatorial optimization (Nair
and Miller-Hooks 2011) to reinforcement learning (Schultz
and Sokolov 2018).



Conclusion

Motivated by problems in computational sustainability, we
have introduced a novel learning augmented method for
matching problems with partially unknown nodes. Our al-
gorithm interpolates between a completely known setting
and an adversarial online setting, and we provide a theo-
retical bound that improves with accurate predictions. We
evaluate our method on two large scale datasets covering
urban mobility and invasive species management and find
that our method consistently outperforms alternatives. We
believe that this research direction is broadly applicable to
problems in computational sustainability, and hope that it
can inspire future work outside of our two applications.
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