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Abstract

The influence maximization paradigm has been used by re-
searchers in various fields in order to study how informa-
tion spreads in social networks. While previously the atten-
tion was mostly on efficiency, more recently fairness issues
have been taken into account in this scope. In the present pa-
per, we propose to use randomization as a mean for achieving
fairness. While this general idea is not new, it has not been
applied in the area of information spread in networks.
Similar to previous works like Fish et al. (WWW ’19) and
Tsang et al. (IJCAI ’19), we study the maximin criterion for
(group) fairness. By allowing randomized solutions, we intro-
duce two different variants of this problem. While the orig-
inal deterministic maximin problem has been shown to be
inapproximable, interestingly, we show that both probabilis-
tic variants permit approximation algorithms with a constant
multiplicative factor of 1 − 1/e plus an additive arbitrarily
small error due to the simulation of the information spread.
For an experimental study, we provide implementations of
our methods and compare the achieved fairness values to
existing methods. Non-surprisingly, the ex-ante values, i.e.,
minimum expected value of an individual (or group) to obtain
the information, of the computed probabilistic strategies are
significantly larger than the (ex-post) fairness values of pre-
vious methods. This confirms that studying fairness via ran-
domization is a worthwhile direction. More surprisingly, we
observe that even the ex-post fairness values, i.e., fairness val-
ues of sets sampled according to the probabilistic strategies,
computed by our routines dominate over the fairness achieved
by previous methods on most of the instances tested.

Introduction
The internet has revolutionized the way information spreads
through the population. One positive consequence is that im-
portant and valuable campaigns can be spread at little cost
quite efficiently thanks to news platforms and social media.
Such campaigns may be related to HIV prevention (Wilder
et al. 2018a; Yadav et al. 2018), public health awareness (Va-
lente and Pumpuang 2007) or financial inclusion (Banerjee
et al. 2013). The information spreading process is notably
optimized by algorithms that identify key people in the net-
work to act as seed users to initiate the spread of the cam-
paign efficiently. The well known influence maximization
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problem formalizes this objective (Kempe, Kleinberg, and
Tardos 2015): given a network and a probabilistic diffusion
model, the task is to find a set of k seed nodes from which the
campaign will start to spread, in order to maximize the ex-
pected number of reached nodes. The problem has received a
tremendous amount of attention (Becker et al. 2020a; Borgs
et al. 2014; Borodin et al. 2017; Budak, Agrawal, and El Ab-
badi 2011; Chen and Teng 2017; Cohen et al. 2014; Tang,
Shi, and Xiao 2015; Tang, Xiao, and Shi 2014). However, as
the objective function in the influence maximization prob-
lem is only concerned with the efficiency of the diffusion
process, it does not take into account any fairness crite-
ria. More recently, fairness issues in influence maximization
have become a focus of attention for many researchers.

A first sequence of papers has investigated a setting in
which several competing players are paying the network’s
host to influence users in their favor. The goal in these works
is to ensure that the host picks seed nodes in a fair way w.r.t.
the different players (Chen et al. 2020; Lu et al. 2013; Yu
et al. 2017). Another line of research has investigated the
fairness of the diffusion process with respect to the vertices,
i.e., the users in the network. Indeed when only efficiency is
being optimized, some users, or communities, i.e., groups of
users, might get an unfairly low coverage (Ali et al. 2019;
Fish et al. 2019; Farnad, Babaki, and Gendreau 2020; Kha-
jehnejad et al. 2020; Rahmattalabi et al. 2020; Stoica, Han,
and Chaintreau 2020; Tsang et al. 2019). A intuitive cri-
terion to consider here is the maximin criterion. Here, the
goal is to choose at most k seed nodes to maximize the min-
imum probability of a user being reached. When general-
ized to groups of users or communities, the goal becomes to
maximize the minimum expected number of users reached
per community. The first problem has been considered by
Fish et al. (2019), who showed that the problem is hard
to approximate to any constant approximation factor, un-
less P = NP . The second problem has been considered by
Tsang et al. (2019). Building on previous work by (Chekuri,
Vondrák, and Zenklusen 2010) and (Udwani 2018), the au-
thors designed an algorithm with an asymptotic approxima-
tion ratio of 1− 1/e provided that the number of communi-
ties is not much larger than k.

In the present paper, we extend these works by studying
the impact of randomization on fairness. Our approach is
to allow for randomized strategies for choosing seeds rather
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than to restrict to deterministic strategies, i.e., sets of size k.
Indeed, after recalling the necessary technical background
related to influence maximization, we introduce two ran-
domized versions of the maximin influence problem. In the
first one, we consider strategies that consist of probability
distributions over seed sets of size k, we call this the set-
based problem. In the second case, the node-based problem,
we consider randomized strategies that pick nodes as seeds
with some probability such that the expected size of the re-
sulting seed set is at most k. Such randomized strategies
provide certain advantages over deterministic ones. In fact,
the use of randomization is a longstanding idea in compu-
tational social choice, where it often leads to more tractable
results and more expressive solutions via for instance time-
sharing mechanisms (David 2013). It is also used to in-
centivize participation (Aziz, Luo, and Rizkallah 2018) or
to workaround impossibility results (Brandl, Brandt, and
Seedig 2016). Lastly and closer to our work, using random-
ization is frequently used to obtain fairer solutions (Aziz,
Brandt, and Stursberg 2013; Bogomolnaia and Moulin 2001;
Katta and Sethuraman 2006). Indeed, there may be opti-
mization problems for which any deterministic solution is
unfair (Machina 1989). In such cases, randomization may
help evening things out by considering fairness in expecta-
tion, i.e., ex-ante fairness rather than ex-post fairness. Ran-
domization is both useful for one-shot and for repeated prob-
lems. In the former, it provides fairness over opportunities,
in the latter it achieves fairness in the long run in a natural
way. Lastly, randomization can be used to satisfy the fair-
ness principle of equal treatment of equals (Moulin 1991).
Despite being an old research topic, the study of randomized
solutions is still a hot topic with many open problems (Aziz
2019; Brandt 2019).

Our Contribution. We show that both randomized vari-
ants of the maximin influence problems are NP-hard and
quantify the loss in efficiency that can be incurred by follow-
ing our fairness criteria. Thereafter we show that still, in this
setting of fairness in influence maximization, randomization
leads to a number of advantages. In fact, we prove that the
resulting problems can be approximated to within a factor
of 1− 1/e (plus an additive −ε term that is also inherent in
the work of Tsang et al. (2019)) even in the case when the
number of communities exceeds the number of seed nodes
k. This shows that we can circumvent the inapproximability
result of Fish et al. (2019) by introducing randomization to
the problem. Our algorithms are comparatively simple. For
the set-based problem, the problem can be approximated (to
within an additive ε term) by a linear program. The down-
side is that this program is of dimension Θ(nk). As the lin-
ear program is a covering problem, we are able to show that
a multiplicative weights routine that is essentially a black-
box application of a method by Young (1995) can be used
to obtain the described approximation. This method, as a
subroutine, requires an algorithm for an oracle problem. We
observe that the oracle problem in our case turns out to be
the standard influence maximization problem and thus can
be approximated to within a factor of 1 − 1/e efficiently

both in theory and practice. Although the feasible set to the
set-based problem is of dimension Θ(nk), the multiplicative
weights routine has the nice property that the returned solu-
tion is of support linear in n. For the node-based problem,
we face a different problem. Here the feasible set is of size
n, the problem however is not linear. We show that it is ap-
proximated to within a constant factor by a linear program of
the same size and thus can be solved in polynomial time. We
then evaluate our implementations on random instances and
those instances from the work of Tsang et al. (2019) that are
publicly available. We compare both the ex-ante and ex-post
performance of our techniques with the routines proposed
by Tsang et al. (2019) and Fish et al. (2019). We observe
that our ex-ante values are superior to the ex-post values of
all other algorithms and, maybe surprisingly, also the ex-
post values of our algorithms are competitive with or even
improve over the ex-post values of previous techniques.

See the full version (Becker et al. 2020b) for all proofs
and further details regarding the implementation that have
been omitted in this article due to space limitations.

Preliminaries
We consider the classical influence maximization setting
where we are given a directed arc-weighted graph G =
(V,A,w) with V being the set of n nodes, A the set of arcs,
and w : A → [0, 1] an arc-weight function. In addition we
are given an information diffusion model. A broad variety of
models can be used as information diffusion model. Two of
the most popular models are the Independent Cascade (IC)
and Linear Threshold (LT) models (Kempe, Kleinberg, and
Tardos 2015). In both these models, given an initial node
set S ⊆ V called seed nodes, a spread of influence from
the set S is defined as a randomly generated sequence of
node sets (St)t∈N, where S0 = S and St−1 ⊆ St. These
sets represent active users, i.e., we say that a node v is ac-
tive at time step t if v ∈ St. The sequence converges as
soon as St∗ = St∗+1, for some time step t∗ ≥ 0 called the
time of quiescence. For a set S, we use the standard notation
σ(S) = E[|St∗ |] to denote the expected number of nodes ac-
tivated at the time of quiescence when running the process
with seed nodes S, here the expectation is over the random
process of information diffusion that depends on the weights
w and moreover on the information diffusion model at hand.
Both models are in fact special cases of what is known as
the Triggering model. Due to space limitations, we defer the
reader to the literature for the precise definitions of the IC
and LT models. Here, we proceed by introducing the more
general Triggering model. For a node v ∈ V , let Nv denote
all in-neighbors of v. In the Triggering model, every node
independently picks a triggering set Tv ⊆ Nv according to
some distribution over subsets of its in-neighbors (usually
depending on w). For a possible outcome L = (Tv)v∈V of
triggering sets for the nodes in V , let GL = (V,AL) denote
the sub-graph of G where AL = {(u, v)|v ∈ V, u ∈ Tv}.
We refer to GL as live-edge graph and to AL as live edges.
In what follows, we denote with L the random variable
that describes the process of generating live-edge graphs,
and with L we mean a possible outcome, i.e., value taken
by L. We let ρL(S) be the set of nodes reachable from S
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in GL, then σ(S) = EL[|ρL(S)|]. The IC and LT models
each occur when triggering sets are chosen in a particular
way. In what follows, we assume the Triggering model to
be the underlying model describing the information spread.
We define σv(S) := PrL[v ∈ ρL(S)] to be the probability
that node v is reached from seed nodes S. Clearly, σ(S) =
EL[|ρL(S)|] =

∑
v∈V PrL[v ∈ ρL(S)] =

∑
v∈V σv(S).

We extend this notation in a natural way, that is, for C ⊆ V ,
we denote by σC(S) = 1

|C| ·
∑
v∈C σv(S) the average prob-

ability of being reached of nodes in C. Note that σv(S) =
σ{v}(S) for nodes v ∈ V and σ(S) = |V | · σV (S) for all
nodes V .

For a maximization problem max{F (x) : x ∈ R} with
feasibility region R and objective function F : R → R≥0,
and for real values α ∈ (0, 1] and β ∈ [0,∞), we say that
x is an (α, β)-approximation, if F (x) ≥ α · opt−β, where
opt denotes the optimum value.

Maximin Optimization. The standard objective studied
in influence maximization is finding a set S maximizing
σ(S) under a cardinality constraint |S| ≤ k for some in-
teger k. As this objective function does not take into account
the fairness of the diffusion process with respect to nodes
or communities, Fish et al. (2019) and Tsang et al. (2019),
have investigated maximin variants of this objective that can
be written as maxS∈(V

k) minC∈C σC(S), where C is a set
of m different communities C ⊆ V that may not be dis-
joint and

(
V
k

)
denotes the set of subsets of V of size k. If

each node is its own community, this amounts to finding
a set of k seed nodes maximizing the minimum probabil-
ity that a node is reached, which is the problem considered
by Fish et al. (2019). We note that this is actually one in-
stance of a broader class of optimization problems that ask
to maximize a social welfare function, being the −∞-mean
here. Fish et al. (2019) considered the special case where
the diffusion model is the Independent Cascade model and in
which all arcs have the same probability of diffusion α. They
proved that the problem of choosing k seeds such as to max-
imize minv∈V σv(S) is NP-hard to be approximated within
a factor better than O(α) and that minimizing the number of
seeds to obtain the optimal solution cannot be approximated
within a factor O(lnn). Furthermore, they analysed several
natural heuristics which unfortunately exhibit worst-case ap-
proximation ratio exponentially small in n.

Fairness via Randomization
We initiate studying the impact of randomization to increase
fairness for influence maximization. We start with a simple
example of an influence maximization problem to illustrate
the impact of randomization. Consider the graph consisting
of two nodes u, v, each forming their own community, con-
nected in both directions by edges (u, v), (v, u) with proba-
bilities 1/2. Assume that k = 1. Then due to symmetry the
optimal deterministic strategy is to choose any of the two
nodes achieving a minimum probability of being reached of
1/2 for the non-chosen node. A probabilistic strategy how-
ever would be allowed to assign probabilities 1/2 to both the
sets {u} and {v}, achieving a minimum expected probability

of 3/4 for both nodes. While this example seems simplistic
and artificial, it shows that the probabilistic strategy may in
fact achieve a higher degree of fairness. We consider two
different ways of introducing randomness, either via distri-
butions over sets or via distributions over nodes.

Probabilistically Choosing Sets. We relax the maximin
problem by allowing for randomized strategies, i.e., feasi-
ble solutions in our set-based probabilistic maximin prob-
lem are not simply sets of size at most k, but rather dis-
tributions over sets. Let S be the set of distributions over
sets of size exactly k, i.e., S := {p ∈ [0, 1](

V
k) :

1T p = 1} and let S ∼ p denote the random pro-
cess of sampling S according to the distribution p. One
possible way of defining a probabilistic maximin prob-
lem would be to consider maxp∈S ES∼p[minC∈C σC(S)].
We note however that among the optimal solutions to the
above problem, there always also is a deterministic one as
any distribution that assigns a probability of 1 to a set in
argmaxS∈(V

k) minC∈C σC(S) and 0 to all other sets is opti-
mal. Certainly, the study of this problem may still be of inter-
est as finding approximation algorithms to it may be easier
than for the original maximin problem. Here, we however
take a more radical route. That is, we consider the problem

optS(G, C, k) = max
p∈S

min
C∈C

ES∼p[σC(S)],

i.e., we reverse the order of the expectation and the minimum
over them communities C. This notion is frequently referred
to as ex-ante fairness in the literature (Machina 1989).

Probabilistically Choosing Nodes. An alternative intu-
itive way of introducing randomness is obtained by consid-
ering a maximin problem where feasible solutions are not
distributions over sets, but are characterized by probability
values for nodes. In this setting, which we call the node-
based probabilistic maximin problem, we let X := {x ∈
[0, 1]n : 1Tx ≤ k} be the feasible set and consider the
process of randomly generating a set S from x, denoted by
S ∼ x, by letting i be in S independently with probability
xi. In this setting we are thus interested in finding x ∈ X
that maximizes the minimum expected coverage from S of
any community, when S is generated from x as described
and the expectation is over this generation. We write this
problem as

optX (G, C, k) = max
x∈X

min
C∈C

ES∼x[σC(S)].

Extending Set Functions to Vectors. In what follows, we
extend set functions to vectors in S and X in a straightfor-
ward way, i.e., for a set function f , for p ∈ S , we let f(p) :=
ES∼p[f(S)] and, for x ∈ X , we let f(x) := ES∼x[f(S)].

Relationship between Problems. We illustrate that the
set and node-based probabilistic maximin problems may
have different optimal values for the same instance. Con-
sider the graph G illustrated in Figure 1. Assume that C
is such that each vertex forms its own community and
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k = 2. Consider the vector p ∈ S with p({1, 5}) =
p({2, 6}) = 1/2 and p(S) = 0 for all other sets. Then,
σv(p) = ES∼p[σv(S)] ≥ 1/2 for all nodes v and thus
optS(G, C, 2) ≥ 1/2. However, a strategy x ∈ X cannot
achieve such value. More precisely, the strategy x ∈ X with
x1 = x2 = x5 = x6 = 1/2 achieves σv(x) = 1/2 for
v ∈ {1, 2, 5, 6}, σ3(x) = 3/4, and σ4(x) = 3/8. While
this latter value could be increased by making x4 positive,
this is possible only at the cost of reducing xi below 1/2 for
i ∈ {1, 2, 5, 6}, which directly implies σi(x) < 1/2. Hence,
optX (G, C, 2) < 1/2.

1

2

3 4 5 6

1

1

1/2

Figure 1: Instance showing that optimal solutions to set and
node-based probabilistic maximin problems may differ.

Price of Fairness and Hardness
Price of Group Fairness. The price of group fairness is a
quantitative loss measuring the decrease in efficiency that is
incurred when we restrict ourselves to solutions respecting
a group fairness requirement. In the following, we denote
the maximizing solutions to the node and set-based prob-
lems by FX (G, C, k) = argmaxx∈X minC∈C ES∼x[σC(S)]
and FS(G, C, k) = argmaxp∈S minC∈C ES∼p[σC(S)], re-
spectively. Then, the prices of fairness PoFX (G, C, k) and
PoFS(G, C, k) incurred by only considering strategies in
FX (G, C, k) and FS(G, C, k) respectively are equal to

PoFX (G, C, k) := max
S∈(V

k)
σ(S)

/
max

x∈FX (G,C,k)
σ(x),

PoFS(G, C, k) := max
S∈(V

k)
σ(S)

/
max

p∈FS(G,C,k)
σ(p).

We obtain that for both problems, the price of group fairness
can be linear in the graph size.

Lemma 1. For any even n > 0, there is a graph G
with n nodes and a community structure C such that
PoFX (G, C, 1) = PoFS(G, C, 1) = (n + 2)/4, when us-
ing the IC model.

On the positive side we obtain that the price of group fair-
ness is never larger than n/k.

Lemma 2. For any graph G, community structure C and
number k, PoFX (G, C, k),PoFS(G, C, k) ≤ n/k.

Hardness. Fish et al. (2019) show that the standard max-
imin problem is NP-hard. We provide an analogous result
for the two probabilistic maximin problems.

Theorem 3. For a directed arc-weighted graph G =
(V,E,w) and a value α ∈ [0, 1] it is NP-hard to decide if
there is p ∈ S with minv∈V ES∼p[σv(S)] ≥ α (resp. x ∈ X
with minv∈V ES∼x[σv(S)] ≥ α) even in the IC model.

Approximation Algorithms
In this section, we show that there are algorithms that com-
pute (1 − 1/e, ε)-approximations to both the set-based and
the node-based maximin problems. The functions σC(p)
and σC(x) involved in the optimization problems are not
computable exactly in polynomial time (even for a vector
p of polynomial support). Even worse, they are not rela-
tively approximable using Chernoff bounds as there is no
straightforward absolute lower bound on σC(S) for sets
S of size k and communities C ∈ C. Using a Hoeffd-
ing bound however, we show that the functions σv(S) for
nodes v ∈ V and v ∈ V and sets S ∈

(
V
k

)
are approx-

imated to within an additive error of ε > 0 by the func-
tions σ̃v(S) := 1

T

∑T
t=1 1v∈ρLt (S)

, where, for T ∈ Z≥0,
we let L1, . . . , LT denote a set of T live-edge graphs sam-
pled according to the Triggering model. This implies also
that σ̃v(p) = ES∼p[σ̃v(S)] is an absolute ε-approximation
of σv(p) := ES∼p[σv(S)] for any p ∈ S and similarly for
σ̃v(x) = ES∼x[σ̃v(S)] for any x ∈ X . We then get the
same result for σ̃C(p) := 1

|C|
∑
v∈C σ̃v(p) for any p ∈ S

and C ∈ C and for σ̃C(x) := 1
|C|
∑
v∈C σ̃v(x) for any

x ∈ X and C ∈ C as these functions are again just aver-
ages over other absolute ε-approximations. In summary, we
can solve the optimization problem involving the approxi-
mations while incurring an additive arbitrarily small error.

Lemma 4. Let δ ∈ (0, 1/2) and ε ∈ (0, 1). As-
sume that T ≥ 4ε−2 · [(k + 1) · log n + log δ−1]
and that σ̃C(·) is as above. Let p ∈ S be a (α, β)-
approximation for maxp∈S minC∈C σ̃C(p), then p is a
(α, β + ε)-approximation of optS(G, C, k) with probability
at least 1−δ. If T ≥ 4ε−2 · [n+log n+log δ−1] and x ∈ X
is a (α, β)-approximation for maxx∈X minC∈C σ̃C(p), then
x is a (α, β+ε)-approximation of optX (G, C, k) with prob-
ability at least 1− δ.

Probabilistically Choosing Sets
Recall the set-based probabilistic maximin prob-
lem optS(G, C, k) := maxp∈S minC∈C σC(p),
where σC(p) = ES∼p[σC(S)] for C ∈ C and
p ∈ S := {p ∈ [0, 1](

V
k) : 1T p = 1}. In the light of

Lemma 4, we focus on finding approximate solutions to
maxp∈S minC∈C σ̃C(p).

Allowing for distributions over sets rather than sets turns
the optimization problem at hand, maxp∈S minC∈C σ̃C(p),
into a problem that can be written as a linear program.
While the original problem, i.e., the problem of choosing a
set maximizing the approximate minimum probability, can
be written as an integer linear program using a variable to
model a threshold to be maximized. Hence, from an algo-
rithmic point of view, one may think that this makes the
problem polynomial time solvable. The caveat is of course
that the dimension of S is large, namely Θ(nk), which turns
the dimension of the corresponding linear program super-
polynomial, at least for super-logarithmic values of k. In this
section, we show that, nevertheless, the problem can be ap-
proximated to within a constant factor using a specific kind
of linear programming algorithm. The essential observation
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is that the linear program at hand actually is a covering lin-
ear program. We will use a result due to Young (1995) that
shows that such linear programs can be solved efficiently
independent of their dimension under the condition that a
certain oracle problem can be solved efficiently.

Young’s Algorithm. Young (1995) gives algorithms for
solving packing and covering linear programs. A covering
problem in the sense of Young is of the following form:
Let P ⊆ Rν be a convex set and let f : P → Rµ
be a µ-dimensional linear function over P . Assume that
0 ≤ fj(x) ≤ ω for all j ∈ [µ] and x ∈ P , where ω is
the width of P w.r.t. f . The covering problem consists of
computing λ∗ := maxx∈P minj∈[µ] fj(x), when fj(x) ≥ 0
for all x ∈ P .

Theorem 5 ((Young 1995)). Let η ∈ (0, 1) and assume that
there is an oracle that, given a non-negative vector z ∈ Rµ
returns x ∈ P and f(x) satisfying

∑
j∈[m] zjfj(x) ≥

α · maxx∈P {
∑
j∈[m] zjfj(x)} for some constant α ≤ 1,

then there is an algorithm that computes x ∈ P with
minj∈[µ] fj(x) ≥ α(1 − η) · λ∗ in O(ωη−2 log µ/λ∗) it-
erations in each of which it does O(µ) work and calls the
oracle once. The output x is the arithmetic mean of the vec-
tors returned by the oracle.

Set-Based Problem via Young’s Algorithm. Clearly σ̃C
is a linear function in p, namely σ̃C(p) =

∑
S∈(V

k) pS σ̃C(S)

and thus the problem maxp∈S minC∈C σ̃C(p) takes exactly
the form of a covering problem in the sense of Young
with ν =

(
n
k

)
, µ = m = |C|, P = S , and ω = 1.

Hence, we can compute a (1 − 1/e, 0)-approximation for
maxp∈S minC∈C σ̃C(p), if we provide an oracle with ap-
proximation factor 1− 1/e.

Let us now take a closer look at the requirements of
Theorem 5 in terms of the oracle problem. Given a non-
negative vector z ∈ Rm, the oracle is required to return
p ∈ S and σ̃C(p) for C ∈ C such that

∑
C∈C zC σ̃C(p) ≥

α · maxp∈S{
∑
C∈C zC σ̃C(p)} for some α ≤ 1. Note that,

by linearity of expectation,
∑
C∈C zC σ̃C(p) is equal to

ES∼p
[∑
C∈C

zC ·
1

|C|
∑
v∈C

σ̃v(S)
]

= ES∼p
[∑
v∈V

ωv · σ̃v(S)
]
,

where ωv :=
∑
C∈C:v∈C zC/|C|. We observe that this is a

weighted average over sets S ∈
(
V
k

)
of the values σω(S) :=∑

v∈V ωv · σ̃v(S) and hence maxp∈S{
∑
C∈C zC σ̃C(p)} is

attained by a vector that assigns 1 to a set that maximizes
σ̃ω(·) over all sets in

(
V
k

)
and 0 to all other sets. Hence

solutions to the oracle problem can be obtained by exact
or approximate solutions to the problem of maximizing the
set function σ̃ω(S) with respect to a cardinality constraint
|S| ≤ k. The crucial observation here is that σ̃ω(S) is sub-
modular and monotone and thus can be approximated within
a factor of 1 − 1/e using the greedy algorithm. The sub-
modularity property is evident as σ̃ω is an approximation
(obtained via sampling through the Hoeffding bound) to the

weighted influence function σω(S) :=
∑
v∈V ωv · σv(S).

Hence we get the following theorem.
Theorem 6. Let δ ∈ (0, 12 ) and ε ∈ (0, 1). There
is a polynomial time algorithm that, with probability at
least 1 − δ, computes p ∈ S s.t. minC∈C σC(p) ≥
(1 − 1

e ) optS(G, C, k) − ε. Moreover, the support of p is
O(ε−2n logm/k).

Probabilistically Choosing Nodes
We turn to the node-based problem optX (G, C, k) :=
maxx∈X minC∈C σC(x), where σC(x) = ES∼x[σC(S)] for
C ∈ C and x ∈ X := {x ∈ [0, 1]n : 1Tx ≤ k}. Recall that
S ∼ x denotes the random process of independently letting
i ∈ V be in S with probability xi. Analogous to the set-
based problem, in what follows, we thus have to argue how
to get a good approximation algorithm for the problem As
for the set-based problem, we use Lemma 4 and thus focus
on finding good approximations to maxx∈X minC∈C σ̃C(x).
We first observe that Theorem II.5 from (Chekuri, Vondrák,
and Zenklusen 2010) in combination with a binary search
on a threshold can be used in order to get a a (1 − 1/e, 0)-
approximation for that problem. In what follows we give a
more direct derivation of such an approximation. The ap-
proach fundamentally differs from the set-based problem.

Node-based Problem via LP. In particular, the problem
here is not linear as, for given x, the probability to sample
S ∈ 2V is equal to

∏
i∈S xi

∏
i/∈S(1 − xi). We argue how-

ever that the problem can be constantly approximated by an
LP.

For a live-edge graph L and a node v ∈ V , what
is the probability of sampling a set S that can reach v
in L, i.e., what is qv(L, x) := PrS∼x[v ∈ ρL(S)]? It
is the opposite event of not sampling any node that can
reach v in L, hence qv(L, x) = 1 −

∏
i∈V :v∈ρL(i)(1 −

xi) and this is approximated by the function pv(L, x) :=
min{1,

∑
i∈V :v∈ρL(i) xi}:

Observation 7. For any live-edge graph L, node v ∈
V , and x ∈ X , it holds that qv(L, x) ∈ [(1 − 1

e ) ·
pv(L, x), pv(L, x)].

Defining λv(x) := 1
T

∑T
t=1 pv(Lt, x) and analogously

λC(x) := 1
|C|
∑
v∈C λv(x) directly yields the following

lemma.
Lemma 8. Let x ∈ X be an optimal solution
to maxx∈X minC∈C λC(x), then x is a (1 − 1/e, 0)-
approximation to maxx∈X minC∈C σ̃C(x).

Together with Lemma 4 and the fact that the above prob-
lem can be solved by an LP we get the following result.
Theorem 9. Let δ ∈ (0, 12 ) and ε ∈ (0, 1). There is a
polynomial time algorithm that, with probability at least
1 − δ, computes x ∈ X s.t. minC∈C σC(x) ≥ (1 −
1
e ) optX (G, C, k)− ε.

Experiments
This section reports on an experimental study on the proba-
bilistic maximin problems. We provide implementations of
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multiplicative-weight routines for both the set-based and the
node-based problems. The routine for the set-based prob-
lem is the one described above. For the node-based prob-
lem, an implementation of the LP-based algorithm does not
seem promising as it requires solving a large LP. Instead,
we propose a heuristic approach that is again based on a
multiplicative-weight routine. The essential observation is
that the optimization problem maxx∈X minC∈C λC(x) from
Lemma 8 is again a covering LP and thus can be solved us-
ing a multiplicative-weight routine again. In this case how-
ever, the oracle problem turns out to be the LP-relaxation
of the standard influence maximization problem and thus
we are again faced with a linear program of a similar form.
This is where our approach becomes heuristic, we propose
to again use the greedy algorithm for influence maximiza-
tion in order to obtain feasible solutions for this LP. While
this comes without any guarantee on approximation ratio, it
is very efficient in practice and in fact yields very similar
results to the algorithm for the set-based problem. We stress
that our implementations, at this point, have to be considered
proof-of-concept implementations and are not tuned for run-
time efficiency at all. In fact, we implement all routines and
subroutines on our own in Python and refrain from using the
very efficient implementations of the greedy algorithm for
influence maximization that exist in the literature for rea-
sons of simplicity. Our implementation also does not use any
parallelization. While it is easily perceivable that this could
lead to big run-time improvements (both for the greedy al-
gorithm and for the multiplicative-weight routines (Young
2001)), this is out of the scope of the work reported here.
We rather focus on measuring the fairness achieved by our
methods and compare it to results of the algorithms proposed
by Fish et al. (2019) and Tsang et al. (2019).

Experimental Setting. Just like Fish et al. (2019) and
Tsang et al. (2019), we use the IC model as diffusion model
and a constant number of live-edge graphs for simulating the
information spread. We explored both setting edge weights
uniformly at random and setting them to a constant. This
does not seem to have a big impact on the results; we re-
port results from both choices while specifying the choice
for each experiment. Each datapoint in our plots is the re-
sult of averaging over 25 experiments, 5 runs on each of 5
graphs generated according to the respective graph model.
Error-bars in our plots indicate 95-% confidence intervals.
For the multiplicative weight routine we choose the η = 0.1.

We report both ex-ante and ex-post fairness values for
our methods (for short, we use ea and ep). These have
the following precise meaning. After computing proba-
bilistic strategies p or x for the set-based and node-
based problem, the ex-ante values correspond to the ob-
jective values minC∈C ES∼p[σC(S)] for the set-based and
minC∈C ES∼x[σC(S)] for the node-based problem. The ex-
post values on the other side are obtained by sampling a
set S according to the probabilistic strategy p or x respec-
tively and then reporting the value minC∈C σC(S). In our
evaluation, we also compare to the uniform distribution for
the node-based problem, i.e., the distribution that uniformly

selects every node as a seed with probability k/n, we call
this “method” uf node based in our plots. We report also
both ex-ante and ex-post values for the method of Tsang
et al. (2019), since, at the core, their algorithm works with
the multilinear extension and thus also computes a contin-
uous solution x ∈ Rn, i.e., a feasible solution to the node-
based problem. Hence for their method we report both the
value minC∈C ES∼x[σC(S)] as ex-ante value and a value
minC∈C σC(S) as ex-post value, where S is computed by
swap rounding from x as described in their paper.

Results. We evaluate our implementations on random in-
stances and those instances from the work of (Tsang et al.
2019) that are publicly available. As random instances we
choose graphs generated according to the Barabasi-Albert as
well as by the block-stochastic graph model. We also explore
different community structures. The instance generators are
available within the implementation provided.

For the Barabasi-Albert model, we choose the parameter
m = 2, i.e., every newly introduced node during the gen-
eration of the graph is connected to two previously existing
nodes. We explored the following community structures: (1)
singleton communities: every node is his own community.
(2) BFS community structure: For a predefined number of
communities m, we iteratively grow communities of size
n/m by BFS from a random source node (once there are
no more reachable nodes but the community is still not of
size n/m, we pick a new random source, until every node is
in one of the m communities. In the plots reported here we
chosem = k as in this case the algorithm of Tsang et al. sat-
isfies its approximation guarantee. This way of choosing the
communities results in a rather connected community struc-
ture. (3) Random imbalanced community structure: we ran-
domly assign nodes to one of 4 communities, the community
sizes are fixed to 4n/10, 3n/10, 2n/10, n/10. This results
in rather unconnected community structures. The results are
reported in Figure 2. We can see that the ex-ante values of
our methods dominate over all other values. Furthermore,
we can see that particularly in the last plot, where the com-
munity structure is less simplistic, even the ex-post values of
our methods are higher than the ones of all competitors.

We generate Block Stochastic graph instances to further
explore how the connectivity of the community structure in-
fluences the performance of the different approaches. We fix
the number of nodes to 120, the number of communities to 6
and their sizes to 4n/12, 3n/12, 2n/12, n/12, n/12, n/12.
We then choose a parameter p that we vary from 0.03 to 0.27
in steps of 0.03 and create a sequence of instances where the
probability of an edge within a community is p and between
communities 0.3 − p. The results are reported in Figure 3.
Again the ex-ante values of our methods dominate all others.
Among the ex-post values, greedy performs best with our
method second. There seems to be a trend that for higher p,
i.e., communities are better connected within each other than
between each other, there is a bigger advantage for ex-ante
fairness over ex-post fairness algorithms.

We conclude with the instances used by Tsang et
al. (2019). These are synthetic networks introduced by
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Figure 2: Barabasi Albert instances: (1) Singleton commu-
nity structure, edge weights uniformly at random, k = 10,
n increasing from 5 to 50 in steps of 5. (2) BFS commu-
nity structure, edge weights constant 0.1, k = 10, n increas-
ing from 50 to 100 in steps of 10. (3) Random imbalanced
community structure, edge weights constant 0.1, k = 10, n
increasing from 20 to 120 in steps of 10.

Wilder et al. (2018b) in order to analyze the effects of health
interventions. Each of the 500 nodes in these networks has
some attributes (region, ethnicity, age, gender, status) and
more similar nodes are more likely to share an edge. The
attributes induce communities and we test, as proposed by
Tsang et al. (2019), all algorithms w.r.t. group fairness of the
communities induced by some of those attributes. Figure 4
shows the results. Again the ex-ante values of our methods
dominate over all other values in both experiments reported.
In the first experiment (communities induced by gender) the
ex-post values of our algorithms and of the algorithm of
Tsang et al. are very close to their respective ex-ante val-
ues. All algorithms are close to each other and the achieved
minimum probability of the communities is rather large. For
the second experiment (communities induced by region), the
achieved minimum probability of all communities is much
smaller. Again, our algorithm performs best among all algo-
rithms in the ex-ante values and best in the ex-post values as
well. In this case, there is a large advantage for ex-ante over
ex-post values (even for the uniform distribution).

Conclusions
We have presented new results on the problem of determin-
ing key seed nodes in order to influence the users of a so-
cial network in an efficient and fair manner. Notably, we

Figure 3: Block stochastic graphs: edge weights 0.05, k = 6,
n = 120, p increasing from 0.03 to 0.27 in steps of 0.03.

Figure 4: Instances of Tsang et al. (2019): (1) Community
structure induced by attribute gender, edge weights u.a.r., k
increasing from 5 to 50 in steps of 5. (2) Community struc-
ture induced by attribute region, edge weights 0.1, k increas-
ing from 5 to 50 in steps of 5.

have designed approximation algorithms achieving a con-
stant multiplicative factor of 1 − 1/e (plus an additive arbi-
trarily small error) for the objective of maximizing the max-
imin influence received by a community. We achieved this
by using randomized strategies, thus enlarging the solution
set and enabling us to find fairer solutions ex-ante. Our de-
tailed experimental study confirms the increase in ex-ante
fairness achieved over previous methods (Fish et al. 2019;
Tsang et al. 2019), indicating that randomness as source of
fairness in influence maximization is very promising to be
further explored. Interestingly, our study shows that even the
ex-post fairness achieved by our methods frequently outper-
forms the fairness achieved by other tested methods.

Several future work directions are conceivable. Improving
our approximation guarantees or providing approximation
hardness results seems challenging. Moreover, efficiently
engineering our methods could yield a big practical impact.
Lastly, using randomization to increase fairness for influ-
ence maximization may be used for other fairness criteria
as, e.g., the group rational criterion of Tsang et al. (2019).
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