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Abstract

Automated medical named entity recognition and normaliza-
tion are fundamental for constructing knowledge graphs and
building QA systems. When it comes to medical text, the an-
notation demands a foundation of expertise and professional-
ism. Existing methods utilize active learning to reduce costs
in corpus annotation, as well as the multi-task learning strat-
egy to model the correlations between different tasks. How-
ever, existing models do not take task-specific features for
different tasks and diversity of query samples into account.
To address these limitations, this paper proposes a multi-task
adversarial active learning model for medical named entity
recognition and normalization. In our model, the adversarial
learning keeps the effectiveness of multi-task learning mod-
ule and active learning module. The task discriminator elim-
inates the influence of irregular task-specific features. And
the diversity discriminator exploits the heterogeneity between
samples to meet the diversity constraint. The empirical results
on two medical benchmarks demonstrate the effectiveness of
our model against the existing methods.

Introduction
Named entity recognition (NER) and named entity normal-
ization (NEN) are the fundamental tasks for constructing
the medical knowledge graph (Wu et al. 2019) and building
QA systems (Lamurias and Couto 2019). The former tries to
find the boundaries of mentions from the medical text, and
the latter maps mentions extracted from the medical text to
standard identifiers, such as MeSH and OMIM (Zhao et al.
2019).

As shown in Figure 1(A), the locations of the NER la-
bels correspond to those of NEN. When predicting the la-
bel of NER or NEN, the location information of one task
favors the other one. To make better use of the relevance
between label locations in two tasks, a multi-task learning
model (Zhao et al. 2019) is proposed for the medical NER
and NEN. However, it is based on supervised learning which
requires a large number of labeled corpus. It is expensive to
achieve, especially in the medical domain.

To reduce labeling costs, active learning is widely used
and trained in a semi-supervised manner. It exploits task
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Figure 1: (A) shows a medical text sample. The labels from
the NER task are strongly correlated to that of the NEN task.
(B) shows two active learning schemes for the two tasks,
i.e., NEN and NER. Different feature spaces influence the
procedure of query samples in multi-task active learning.

models to estimate the uncertainty of unlabeled samples to
query more valuable ones (Zhu and Ma 2012). The effec-
tiveness of active learning is influenced by the performance
of task models. Considering the relevance of different tasks,
some researchers have proposed multi-task active learning
for linguistic annotations (Reichart et al. 2008; Ikhwantri
et al. 2018). The model in (Ikhwantri et al. 2018) exploits
the encoder-decoder framework with soft-shared parame-
ters. The encoder is trained to learn the shared features bene-
ficial to all tasks. The decoder extracts task-specific features
for predicting sequence labels.

However, the existing multi-task active learning models
do not take the influence of task-specific features and the
diversity constraint into account. Firstly, the performance
of encoder-decoder framework is influenced by the task-
specific features (Liu, Qiu, and Huang 2017). The models
utilize task-specific features to estimate uncertainty degree
for selecting the most uncertain unlabeled samples for label-
ing. As shown in Figure 1(B), the task-specific features mix
up in conventional active learning models which influences
the performance of NER and NEN task models. Without ef-
fectively fitting on labeled data, the conventional model se-
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lects the unlabeled samples x1, x2 close to the labeled ones.
And the combination of x1, x2 and labeled data does not
satisfy the diversity well. Therefore, they are not the optimal
selections in the respective task models to reduce the ex-
pected risk. With the expectations for regular feature space
in the adversarial active learning, x3, x4 are added to the la-
beled pool for generalizing task models. Because x3, x4 are
better coverage of the dataset shown in Figure 1(B). They
are the more valuable samples than x1, x2 to improve the
performance of models.

Secondly, the existing models do not take the diversity of
query samples into account. Without considering diversity
as an explicit target, the active learning model cannot acquire
valuable unlabeled samples for labeling effectively (Deng
et al. 2018). We evaluate the diversity of NER and NEN by
the words and entities contained in query samples. And the
original methods lack a quantitative analysis of the diversity
of query samples.

To solve the above problems in multi-task active learn-
ing, we propose a Multi-Task Adversarial Active Learning
(MTAAL1) model based on task and diversity adversarial
learning. The contributions of this paper can be summarized
as follows:

1. We propose the MTAAL consisting of the task discrim-
inator and diversity discriminator. The former eliminates
the influence of irregular task-specific features. And the
latter exploits the heterogeneity between samples to meet
the diversity constraint.

2. We evaluate the MTAAL model on the two common med-
ical NER and NEN benchmarks. The performance of ac-
tive learning models and the quantitative analysis of di-
versity on query samples demonstrate the effectiveness of
our model against the existing methods.

Related Work
Medical Named Entity Recognition and Normalization.
A few existing studies used pipeline models to implement
NER and NEN separately (Sahu and Anand 2016; Lou et al.
2017; Vázquez, Chagoyen, and Pascual-Montano 2008). En-
tity mentions are extracted from medical texts by a named
entity recognition model firstly and then a named entity nor-
malization model maps these mentions to standard medical
identifiers. Due to the error propagation in the pipeline mod-
els, some researchers have proposed to jointly model NER
and NEN. An ensemble model that contains two traditional
machine learning models is developed as a named entity rec-
ognizer and normalizer (Leaman, Wei, and Lu 2015). With
the development of deep learning, RNN modules are used in
the multi-task sequence learning models. Zhao et al. (2019)
proposed a feedback strategy for jointly modeling medical
NER and NEN and gained the state-of-the-art results in su-
pervised learning. Our model tries to complete medical NER
and NEN with the premise of reducing labeling work.
Recurrent Models for Sequence Labeling. As a basic task
in natural language processing (NLP), sequence labeling

1We have released the code of our model at: https://github.com/
zhoubaohang/MTAAL.
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Figure 2: The multi-task adversarial active learning
(MTAAL) model for NER and NEN on the medical text.
It mainly contains four components: the shared encoder, the
task private decoders, the task discriminator ,and the diver-
sity discriminator.

was explored extensively. NER and NEN can be formu-
lated as sequence labeling problems. With the development
of deep learning, traditional CRF based models (Xu et al.
2008) have been combined with RNN modules (Hochreiter
and Schmidhuber 1997) to become a classic model on NER
(Lample et al. 2016). The relevance between NLP tasks has
been used in social media NER (Aguilar et al. 2017). To
exploit the shared information between tasks, an adversar-
ial transfer learning algorithm was proposed for Chinese
NER (Cao et al. 2018) with the self-attention mechanism
(Vaswani et al. 2017).
Active Learning. Active learning is a semi-supervised al-
gorithm that estimates unlabeled samples to query valuable
ones. It is an effective way to reduce labeling work. Shen
et al. (2018) firstly combined deep neural networks with ac-
tive learning for NER. To adapt active learning in a multi-
task scenario, Reichart et al. (2008) proposed a multi-task
active learning framework for linguistic annotations with
CRF-based models. With the advantages of the RNN model,
a multi-task active learning framework was put forward for
neural semantic role labeling on low resource conversa-
tional corpus (Ikhwantri et al. 2018). The above methods
are uncertainty-based active learning without demanding di-
versity explicitly. Deng et al. (2018) proposed adversarial
active learning with a diversity target in a single task sce-
nario. The existing multi-task active learning models do not
consider the influence of task-specific features and diversity
constraint. Therefore, we introduce task and diversity dis-
criminators into a normal model for solving the above prob-
lems.

Model
Before getting into the details of our model, we introduce
some notations about NER and NEN in the active learning
scenario. We denote

(
xL, yLNER, y

L
NEN

)
∼
(
XL, Y LNER, Y

L
NEN

)
as a tuple of labeled sample, where xL is the medical text,
yLNER and yLNEN the labels of NER and NEN respectively.
Given a sentence with Nw words, yLNER = {y(i)NER}

Nw
i=1,

yLNEN = {y(i)NEN}
Nw
i=1, where y(i)NER and y(i)NEN are the NER and

NEN labels for the i-th word. In the active learning scenario,
xU ∼ XU is denoted as an unlabeled sample in the pool.
We perform an active learning algorithm on the unlabeled
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Figure 3: The internal details of the shared encoder. It maps
the character- and word-level features of a sentence into the
latent representation for prediction and active learning.

pool XU for querying the most effective unlabeled samples
xS ∼ XS . The selected samples are manually labeled and
then are added to the labeled set

(
XL, Y LNER, Y

L
NEN

)
in the

next round.
The MTAAL model is shown in Figure 2. The shared

encoder is responsible for extracting latent representations
of input sentences. The multi-task learning module contains
the task private decoders and discriminator. The task private
decoders for NER and NEN are trained to acquire predic-
tion sequence labels of respective tasks. The task discrimi-
nator is responsible for learning regular feature space. The
active learning module controls the procedure of query unla-
beled samples. And the diversity discriminator exploits the
heterogeneity between samples to select unlabeled ones for
labeling in this module. Each module contains a specific se-
quence feature extractor. And the whole training procedure
is shown in algorithm 1.

Shared Encoder
The shared encoder E is established to map the input sen-
tence x to a latent representation: e = E(x). We consider
the character-level features and the word-level features of a
sentence as shown in Figure 3. Similar to other neural lan-
guage models, we firstly map discrete characters and words
into the distributed representations. For a given sentence
x = {x1, x2, . . . , xNw}, the i-th word xi is represented
by a pretrained word embedding vector wi ∈ Rdw , where
i = 1, 2, . . . , Nw. And for each character in a word, we use
a pre-defined char embedding matrix to map it to a vector
ci ∈ Rdc . After getting the multi-level features of a sentence,
we need to extract composite features further. To extract
contextual representations, we feed the multi-level features
into bidirectional LSTM (BiLSTM) layers respectively. For
character-level features of word i, we extract its contextual
representations uci from a BiLSTM layer. Then, we get the
fusion representation by concatenation ui = [wi;u

c
i ]. Fur-

thermore, the hidden states of the fusion feature extractors
are obtains by ei = BiLSTM (ui, ei−1; θw), where θw is the
parameters of the BiLSTM.

Multi-task Learning Module
We adopt the soft-shared parameter schema as other multi-
task learning models (Cao et al. 2018; Zhao et al. 2019;
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Figure 4: The implementation details of the multi-task learn-
ing module. It exploits the latent representation from the
shared encoder for predicting task labels. And the task pri-
vate features are fed into the task discriminator for learning
regular feature space.

Ikhwantri et al. 2018). The shared encoder E is responsible
for extracting the shared features of the two tasks. The la-
tent representation from the shared encoder should be trans-
formed into task-specific features that are beneficial for pre-
dicting the label sequences. Therefore, we build task private
decoders DNER and DNEN for the NER and NEN tasks re-
spectively as shown in Figure 4. Each decoder is composed
of the self-attention layer (Vaswani et al. 2017) and the BiL-
STM layer.

The tasks k ∈ {NER,NEN} focuses on the specific in-
ner structure information of the same sentence because of
their label space. To explicitly learn the relationship be-
tween two words in a sentence, we apply self-attention
to the latent representations extracted from the shared en-
coder. The self-attention mechanism can be formulated as:
Attention(Q,K,V) = softmax(QKT

√
d
)V. The task private fea-

tures could be expressed as: pk = Attention(Q,K,V; θk)
where θk are the parameters of the respective decoders. To
get the prediction results, we also exploit BiLSTM to map
the task private features pNER = {p(i)NER}

Nw
i=1 and pNEN =

{p(i)NEN}
Nw
i=1 to label sequences. The hidden states of BiL-

STM layer in this module can be computed as: h(i)k =

BiLSTM(p
(i)
k , h

(i−1)
k ; θk). Furthermore, we apply the soft-

max layer stacked on the BiLSTM layer. For each token,
we can compute the prediction probabilities as: ŷ(i)k =

softmax(Wkh
(i)
k + bk) where Wk, bk are trainable param-

eters. ŷNER = {ŷ(i)NER}
Nw
i=1 and ŷNEN = {ŷ(i)NEN}

Nw
i=1 denote the

predicted probabilities of respective task labels.
For training, we exploit the cross-entropy loss as

the objective function. Given M training examples(
xL, yLNER, y

L
NEN

)
, the single-task loss functions can be de-

fined as: LNER = −
∑
M yLNER log(ŷLNER) and LNEN =

−
∑
M yLNEN log(ŷLNEN). To train our multi-task model, we

sum the above single-task loss functions up as our loss func-
tion. The multi-task loss can be formulated as follows:

LTask = LNER + LNEN. (1)

In conventional multi-task active learning, the perfor-
mance of task models is influenced by the task-specific
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Figure 5: The internal details of the active learning module.
The diversity discriminator is trained to select the unlabeled
samples that are the least similar to the labeled ones. Our
model explicitly targets diversity over conventional active
learning models.

features. Because the shared features can exist in the task
private space and the task-specific features creep into the
shared space (Liu, Qiu, and Huang 2017). Adversarial learn-
ing can be applied to multi-task active learning that the task
models should learn a regular feature space as shown in Fig-
ure 1. To address this problem, we introduce the task dis-
criminator (TD) into our model. We exploit the min-max
game between the shared encoder and the task private de-
coder with task discriminator (Goodfellow et al. 2014). TD
is composed of a BiLSTM layer stacked with a softmax
layer to estimate what kind of tasks the task private feature
pk comes from. It is used to map the task private representa-
tions into a probability distribution. Besides, we need a task
adversarial loss LAdvTask to limit the task-specific features into
their private feature space. The task-based adversarial loss
can be defined as follows:

LAdvTask = min
θE

max
θk,θTD

∑
k

dk log(TD(pk)), (2)

where dk denotes the ground-truth label indicating the task
type where the private features come from.

Active Learning Module
In conventional multi-task active learning, the diversity
of query samples is not analyzed as a target. And the
uncertainty-based methods are strongly correlated to the
training of task models (Culotta and McCallum 2005). Al-
though the diversity adversarial learning was exploited in the
single task scenario (Deng et al. 2018), the multi-task ac-
tive learning still has not taken the diversity into account. To
overcome this, we further develop it to the multi-task sce-
nario which is beneficial to medical NER and NEN. We in-
troduce the diversity discriminator (DD) into our model to
estimate whether the input sentence x is from the labeled or
the unlabeled as shown in Figure 5.

The diversity discriminator is also composed of a BiL-
STM layer stacked with a softmax layer. It is responsible
to map the latent representation e to the probability distri-
bution, estimating which data set the input sentence comes
from. Given the input sentence xL and xU , we firstly com-
pute their latent representations eL = E(xL) and eU =

Algorithm 1 Multi-Task Adversarial Active Learning

Input: Labeled data XL with label sequences Y LNER and
Y LNEN; Unlabeled data XU ;
Initialized parameters: shared encoder θE, task discrim-
inator θTD, diversity discriminator θDD, task private de-
coders {θk|k ∈ {NER,NEN}}

1: for e = 1 to query-times do
2: Sample batches xL ∼ XL and xU ∼ XU

3: Minimize LAdvDD in (3) to update θDD

4: Minimize LAdvE in (4) to update θE

5: Query samples XS according to (5)
6: (Y SNER, Y

S
NEN)← ORACLE(XS)

7: (XL, Y LNER, Y
L

NEN) ← (XL, Y LNER, Y
L

NEN) ∪
(XS , Y SNER, Y

S
NEN)

8: XU ← XU −XS

9: for mini-batches xL ∼ XL and xU ∼ XU do
10: Minimize LAdvTask in (2) to update θE

11: Maximize LAdvTask in (2) to update θTD and {θk|k ∈
{NER,NEN}}

12: end for
13: for mini-batches in (XL, Y LNER, Y

L
NEN) do

14: Minimize LTask in (1) to update θE, {θk|k ∈
{NER,NEN}}

15: end for
16: end for
Output: The well trained θE, θTD, θDD and {θk|k ∈
{NER,NEN}}

E(xU ). The discriminator is encouraged to assign eL to the
labeled (DD(eL) = 1) and eU to the unlabeled (DD(eU ) =
0). The objective function can be defined as follows:

LAdvDD =− ExL∼XL log(DD(E(xL)))

− ExU∼XU log(1−DD(E(xU ))).
(3)

To learn the fine-grained representations, the shared en-
coder is trained to fool the discriminator to regard all latent
representations (eL and eU ) as labeled ones. We can define
the corresponding loss as follows:

LAdvE =− ExL∼XL log(DD(E(xL)))

− ExU∼XU log(DD(E(xU ))).
(4)

After training the shared encoder and diversity discrimina-
tor, the latter can estimate the unlabeled samples that are the
least similar to the labeled ones. Then, we define the active
scoring function for selecting the unlabeled samples.

ψDiversity(x
U ) = 1−DD(E(xU )) ∈ (0, 1),

xS = max
xU∼XU

ψDiversity(x
U ).

(5)

Experiments
Datasets
We compare our model against the existing methods
(Ikhwantri et al. 2018; Shen et al. 2018) on two medical
text datasets. The detailed statistics of the two datasets are
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Item NCBI BC5CDR

vocabulary size 9839 15380
# medical abstracts 793 1500
# entities 7025 28545
# NER labels 3 5
# NEN labels 743 2311
# initial labeled samples 1439 3198
# unlabeled samples 5037 11193
# test samples 719 1599

Table 1: The statistical information of the NCBI dataset and
the BC5CDR dataset in our experimental settings.

shown in Table 1. NCBI dataset (Dogan, Leaman, and Lu
2014) contains 793 public medical abstracts. There are 7025
disease entities annotated with MeSH/OMIM ids. BC5CDR
dataset (Li et al. 2016) consists of 1500 public medical ab-
stracts. And 28454 disease and medical entities are manually
annotated with MeSH identifiers. We split each abstract into
samples in sentence-level according to the ends of sentences.
And each sentence contains 40 words averagely. To handle
sentences with unequal lengths, we use padding chars to fill
them to a fixed length. In the active learning scenario, the
whole dataset is partitioned into three parts: the labeled set,
the unlabeled set, and the test set. The initial labeled set usu-
ally contains a few samples in the real world scenario.

Experiment Settings
The number of hidden units of all the BiLSTM layers is 64.
We initialize the character embeddings with a uniform dis-

tribution from
[
−
√

3
dim ,

√
3
dim

]
where dim is set to 30

(Zhao et al. 2019). Considering the influence of different
pre-trained word embeddings, we apply the GloVe vectors
(Pennington, Socher, and Manning 2014) and the Word2Vec
vectors (Mikolov et al. 2013) as comparison respectively.
We use the ADAM algorithm (Kingma and Ba 2015) to train
the networks and the learning rate of task private decoder is
set to 0.001. During every epoch of training, we query for a
fixed number of unlabeled samples and add them to the la-
beled set, which is the same behavior as the existing active
models.

We do 70 queries and the model is fine-tuned for 1 epoch
after every query (Shen et al. 2018). There are 64 unlabeled
samples selected from NCBI and 128 unlabeled ones from
BC5CDR at every query respectively. To evaluate the perfor-
mance of models on NER and NEN, we apply the F1 score
as the metric (Zhao et al. 2019). All experiments are accel-
erated by a single NVIDIA GTX 2080Ti.

Compared Methods
Uncertainty-based multi-task active learning exploits the
prediction probabilities from task models. They define dif-
ferent active scoring functions to query unlabeled samples
with those probabilities. Therefore, these methods take the
current training situation of task models into account in the
single- (ST) and multi-task (MT) learning. The uncertainty

scores are calculated by active scoring functions with the
expectation for the unlabeled samples which are the most
beneficial to improve the models.

(1) Random (Erdmann et al. 2019): This is an intuitive base-
line. And this strategy queries unlabeled samples with the
same probability.

(2) Entropy (Ikhwantri et al. 2018; Reichart et al. 2008):
After getting the prediction probabilities of a sentence,
the entropy term is widely used as the uncertainty score:
ψSTEntropy(x

U ) = −
∑
Nw

ŷk log(ŷk). In the multi-task
learning, the outputs from different task models should
be taken into account. It is intuitive to sum up the en-
tropy scores from all task models. The entropy score for
multi-task learning can be formulated as: ψMT

Entropy(x
U ) =

−
∑
k

∑
Nw

ŷk log(ŷk). We sort the unlabeled samples
in ascending order and query the ones with the highest
scores.

(3) Least Confidence (LC) (Shen et al. 2018): This method
is also correlated with the prediction probability of task
models. The least confidence score in single-task learn-
ing is defined as: ψSTLC (xU ) = 1 − max

ŷk
P (ŷk|xU ). Just

like what we did for the entropy score, the least confi-
dence score for multi-task learning can be formulated as:
ψMT

LC (xU ) =
∑
k 1 − max

ŷk
P (ŷk|xU ). We rank the un-

labeled samples according to the above score, then select
the samples with the highest scores.

Results
To compare the performances of different multi-task active
learning models, we apply the methods to two datasets and
record the F1 scores after specific query times. In the single-
task (ST) scenario, we complete two tasks with active learn-
ing on every dataset respectively. Meanwhile, we apply the
baseline models without the task discriminator (TD) to two
datasets in the multi-task (MT) scenario.
Comparison with Existing Methods. As shown in Table 2
and 3, it can be observed that the results of two tasks with
multi-task active learning are worse than the results in the
single-task scenario. Because the task-specific features creep
into the shared feature space in the multi-task scenario. We
perform experiments on NCBI and BC5CDR for NER and
NEN. And the task decoder and the procedure of query sam-
ples are influenced by the shared feature space. However,
our model can guarantee that the task-specific features do
not interfere with respective task decoders. And the diver-
sity constraint of query samples is also included by our mod-
ules. These advantages are beneficial to the performances of
downstream tasks and the query procedure of active learn-
ing. Therefore, our model can always gain the best results
in all situations. Furthermore, the pre-trained word embed-
dings have little influence on the results. Although different
word embeddings vary in vocabulary sizes, the character-
level features make up for the out-of-vocabulary problem
(Chiu and Nichols 2016).
Influence of Task-specific Features. We can see that the re-
sults of two tasks with multi-task active learning are worse
than the results in the single-task scenario shown in Table
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Method ST MT

NER NEN NER NEN

LC+w 0.8408 0.8862 0.8107 0.8869
LC+g 0.8402 0.9066 0.8338 0.9040

Entropy+w 0.8334 0.8864 0.7868 0.8931
Entropy+g 0.8381 0.9008 0.8292 0.9015
Random+w 0.8137 0.8856 0.7651 0.8836
Random+g 0.8188 0.8936 0.8005 0.8923

MTAAL+w 0.8411 0.8873 0.8462 0.9091
MTAAL+g 0.8492 0.9103 0.8600 0.9152

Table 2: The F1 scores of the models on BC5CDR. “+g”
denotes the model using the Glove word embeddings, while
“+w” the Word2Vec word embeddings. The reported results
of different methods are after 55 queries.

2 and 3. The reason for these comparison results is that the
task-specific features can creep into the shared feature space.
And the query samples are not strongly correlated to the
task-specific features in the normal multi-task active learn-
ing. Therefore, the results of LC and Entropy strategies are
worse than those of Random. To solve the problem in LC,
Entropy, and Random, we introduce the task discriminator
(TD) into them.

With the help of the task discriminator, we limit the task-
specific features into their feature spaces. The MT with TD
gains appreciable improvements on both tasks. To intuitively
view the influence of the task discriminator, we show the re-
sults of the normal multi-task active learning methods based
on TD with the increase of query times. In Figure 6, the dot-
ted lines denote the normal multi-task active learning meth-
ods. And the full lines represent the original methods based
on the task discriminator. It is significant that the methods
based on the task discriminator gain better results than the
normal ones. When the task-specific features could creep
into the shared feature space, the results of LC and Entropy
strategies are worse than that of Random. With the advan-
tage of the task discriminator, the LC and Entropy can gain
better results than Random.

Further Discussions
Influence of Query Times. To visually view the influence
of query times, we show the results of different multi-task
active learning methods with the ascending query times in
Figure 7. We can see that our model has a rapid increase in
the F1 score on the test set compared with the baseline meth-
ods. Although the results of NER on the BC5CDR dataset
are not very significant, the performance of NEN is apprecia-
ble. And our model gains the best performance on the NCBI
dataset. Because the complexity of datasets affects the effec-
tiveness of active learning models. Besides, we can also see
that the results of the LC strategy on the NCBI dataset are
worse than that of Random strategy. In conventional multi-
task active learning models, the task-specific features mix
up in the shared feature space. And the procedure of query

Method ST MT

NER NEN NER NEN

LC+w 0.7608 0.9158 0.6736 0.9151
LC+g 0.7452 0.9200 0.6752 0.9151

Entropy+w 0.7394 0.9154 0.7257 0.9139
Entropy+g 0.7462 0.9201 0.7291 0.9137
Random+w 0.7099 0.9151 0.6763 0.9138
Random+g 0.7185 0.9194 0.6749 0.9137

MTAAL+w 0.7688 0.9284 0.7682 0.9267
MTAAL+g 0.7542 0.9267 0.7744 0.9287

Table 3: The F1 scores of the models on NCBI. “+g” de-
notes the model using the Glove word embeddings, while
“+w” the Word2Vec word embeddings. The reported results
of different methods are after 25 queries.

Figure 6: The influence of the task discriminator (TD) on the
original multi-task active learning methods. We can see that
the results of the methods with TD are better than the normal
(w/o TD) ones.

samples is influenced by the task-specific features.
Ablation Study. To investigate the influences of the task dis-
criminator (TD) and the diversity discriminator (DD), we
perform an ablation study on MTAAL. During every query,
we do not optimize the corresponding modules and record
the F1 score on the test set.

The corresponding results are shown in Figure 8. It can be
seen that the diversity discriminator is more important than
the task discriminator in our model. Because the diversity
discriminator is the active learning module in our model. It
makes use of the heterogeneity between samples. During ev-
ery query, it selects the unlabeled samples that are the least
similar to the labeled ones. Besides, we can also see that the
results of MTAAL are very close to that of the model with-
out TD. Because the diversity discriminator is free of task
models. This proves from the side that the task-free active
learning methods are not influenced by the task private fea-
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Figure 7: The comparison of different multi-task active
learning models with the incremental of query times.

tures. Although the task discriminator leads to less improve-
ment than the diversity discriminator, decoupling features
between tasks also makes sense for MTAAL.
Case Study. The diversity of labeled data means that the
trained model can reduce the expected risk effectively (Deng
et al. 2018). Therefore, we should analyze the diversity of
query samples to intuitively show the effectiveness of dif-
ferent multi-task active learning models. We do statistics on
the number of different words, the number of entities and,
the percentage of samples with the entity. We select 100 un-
labeled samples during every query. After 10 queries, the
statistical analysis is conducted on 1000 samples. We repeat
the above process for 5 times and calculate the mean and
standard deviation of results.

As shown in Table 4, different methods vary in the diver-
sity of query samples. Random strategy performs worst in
the diversity of query samples. Because this naive method
does not consider the performance improvements that query
samples bring to task models. Entropy and LC strategy gain
a better diversity of query samples compared with Random
one. Although LC and Entropy start from the perspective of
training models, the diversity of samples can also be guaran-
teed. LC and Entropy exploit different ways to handle pre-
dicted probabilities for estimating the uncertainty of unla-
beled samples. They directly bridge the gap between un-
labeled samples with current models. MTAAL exploits the
heterogeneity between samples for extending the diversity of
the labeled pool. It gains better diverse results in the word-
and entity-level.

Conclusion
In this paper, we propose a multi-task adversarial active
learning model and achieve state-of-the-art results on two
datasets. With the advantages of the task discriminator and
the diversity discriminator, our model can eliminate the in-
fluence of irregular task-specific features and select the most
valuable unlabeled samples to improve the performance of
respective task models. The task-based adversarial learning

Figure 8: The ablation study of MTAAL. We show the in-
fluence of the task discriminator (TD) and the diversity dis-
criminator (DD) to our model respectively.

Dataset Method # words # ent. % sample w/ ent.

NCBI

LC 3973±16 1528±33 66.23±0.64
Entropy 3081±32 1295±188 59.22±6.13
Random 3181±33 915±26 53.16±0.70
MTAAL 3980±17 1530±21 67.46±0.47

BC5CDR

LC 5454±50 2601±37 90.40±0.37
Entropy 5020±276 2232±195 80.40±6.70
Random 4160±55 1761±49 76.98±1.16
MTAAL 5465±58 2614±44 90.17±0.62

Table 4: The diversity statistical results of query samples on
NCBI and BC5CDR. “ent.” is short for “entity”.

makes the multi-task active learning model learn the regular
feature space. And task models gain better performance on
NER and NEN tasks. We also gain appreciable improvement
on the compared methods when introducing the task dis-
criminator into them. The diversity-based adversarial learn-
ing exploits the heterogeneity between samples for effective
procedure of active learning.

In future work, we will design controllable diversity-
based multi-task active learning models to avoid selecting
unlabeled samples that are abnormal and far away from la-
beled data. And it is also a good choice to extend the model
to more than two tasks.
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