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Abstract
Human judgments of word similarity have been a popular
method of evaluating the quality of word embedding. But it
fails to measure the geometry properties such as asymmetry.
For example, it is more natural to say “Ellipses are like Cir-
cles” than “Circles are like Ellipses”. Such asymmetry has
been observed from the word evocation experiment, where
one word is used to recall another. This association data have
been understudied for measuring embedding quality. In this
paper, we use three well-known evocation datasets for the
purpose and study both static embedding as well as contextual
embedding, such as BERT. To fight for the dynamic nature of
BERT embedding, we probe BERT’s conditional probabili-
ties as a language model, using a large number of Wikipedia
contexts to derive a theoretically justifiable Bayesian asym-
metry score. The result shows that the asymmetry judgment
and similarity judgments disagree, and asymmetry judgment
aligns with its strong performance on “extrinsic evaluations”.
This is the first time we can show contextual embeddings’s
strength on intrinsic evaluation, and the asymmetry judgment
provides a new perspective to evaluate contextual embedding
and new insights for representation learning.

Introduction
Popular static word representations such as
word2vec (Mikolov et al. 2013) lie in Euclidean space
and are evaluated against symmetric judgments. Such a
measure does not expose the geometry of word relations,
e.g., asymmetry. For example, “ellipses are like circles”
is much more natural than “circles are like ellipses”. An
acceptable representation may exhibit such a property.

Tversky (1977) proposed a similarity measure that en-
codes asymmetry. It assumes each word is a feature set,
and asymmetry manifests when the common features of two
words take different proportions in their respective feature
sets, i.e., a difference of the likelihoods P (a|b) and P (b|a)
for a word pair (a,b). In this regard, the degree of correlation
between asymmetry from humans and a word embedding
may indicate the feature-encoding quality of the embedding.

Word evocation experiment devised by neurologist Sig-
mund Freud around the 1910s was to obtain such word di-
rectional relationship, where a word called cue is shown to a
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participant who is asked to “evoke” another word called tar-
get freely. 1 The experiment is usually conducted on many
participants for many cue words. The data produced from
the group of people exhibit a collective nature of word relat-
edness. The P (a|b) and P (b|a) can be obtained from such
data to obtain an asymmetry ratio (Griffiths, Steyvers, and
Tenenbaum 2007) that resonates with the theory of Tversky
(1977) and Resnik (1995). Large scale evocation datasets
had been created to study the psychological aspects of lan-
guage. We are interested in three of them; the Edinburgh As-
sociation Thesaurus (Kiss et al. 1973), Florida Association
Norms (Nelson, McEvoy, and Schreiber 2004) and Small
World of Words (De Deyne et al. 2019) Those three datasets
have thousands of cue words each and all publicly available.
We use them to derive the human asymmetry judgments and
see how well embedding-derived asymmetry measure aligns
with this data.

Evocation data was rarely explored in the Computational
Linguistics community, except that Griffiths, Steyvers, and
Tenenbaum (2007) derived from the Florida Association
Norms an asymmetry ratio for a pair of words to mea-
sure the directionality of word relations in topic mod-
els, and Nematzadeh, Meylan, and Griffiths (2017) used it
for word embedding. In this paper, we conduct a larger
scale study using three datasets, on both static embedding
(word2vec) (Mikolov et al. 2013), GloVe (Pennington,
Socher, and Manning 2014), fasttext (Mikolov et al. 2018))
and contextual embedding such as BERT (Devlin et al.
2018). We hope the study could help us better understand
the geometry of word representations and inspire us to im-
prove text representation learning.

To obtain P (a|b) for static embedding, we leverage vector
space geometry with projection and soft-max similar to (Ne-
matzadeh, Meylan, and Griffiths 2017; Levy and Goldberg
2014; Arora et al. 2016); For contextual embedding such as
BERT we can not use this method because the embedding
varies by context. Thus, we use a Bayesian method to esti-
mate word conditional distribution from thousands of con-
texts using BERT as a language model. In so doing, we can
probe the word relatedness in the dynamic embedding space
in a principled way.

1A clip from A Dangerous Method describing Sigmund Freud’s
experiment https://www.youtube.com/watch?v=lblzHkoNn3Q
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Comparing an asymmetry measure to the popular cosine
measure, we observe that similarity judgment fails to cor-
rectly measure BERT’s lexical semantic space, while asym-
metry judgment shows an intuitive correlation with human
data. In the final part of this paper, we briefly discuss the re-
sult and what it means to representation learning. This paper
makes the following contributions:

1. An analysis of embedding asymmetry with evocation
datasets and an asymmetry dataset to facilitate research;

2. An unbiased Bayesian estimation of word pair relatedness
for contextual embedding, and a justifiable comparison of
static and contextual embeddings on lexical semantics us-
ing asymmetry.

Related Work
Word embedding can be evaluated by either the sym-
metric “intrinsic” evaluation such as word pair similar-
ity/relatedness (Agirre et al. 2009; Hill, Reichart, and Ko-
rhonen 2015) and analogy (Mikolov et al. 2013) or the “ex-
trinsic” one of observing the performance on tasks such as
text classification (Joulin et al. 2016), machine reading com-
prehension (Rajpurkar et al. 2016) or language understand-
ing benchmarks (Wang et al. 2018, 2019).

On utterance-level, probing contextual embeddings was
conducted mainly on BERT (Devlin et al. 2018), suggesting
its strength in encoding syntactic information rather than se-
mantics (Hewitt and Manning 2019; Reif et al. 2019; Tenney
et al. 2019; Tenney, Das, and Pavlick 2019; Mickus et al.
2019), which is counter-intuitive given contextual represen-
tation’s superior performance on external evaluation.

On the lexical level, it is yet unknown if previous obser-
vation also holds. Moreover, lexical-semantic evaluation is
non-trivial for contextual embedding due to its dynamic na-
ture. Nevertheless, some recent approach still tries to either
extract a static embedding from BERT using PCA (Etha-
yarajh 2019; Coenen et al. 2019), or use context embeddings
as is (Mickus et al. 2019) for lexical-semantic evaluation.
Some instead use sentence templates (Petroni et al. 2019;
Bouraoui, Camacho-Collados, and Schockaert 2020) or di-
rectly analyze contextual embedding for its different types
of information other than lexical ones (Brunner et al. 2019;
Clark et al. 2019; Coenen et al. 2019; Jawahar, Sagot, and
Seddah 2019). So far, a theoretically justifiable method still
is missing to mitigate the bias introduced in the assumption
of above analysis methods. Thus, how contextual and static
embedding compares on lexical semantics is still open.

An asymmetry ratio was used to study the characteris-
tics of static embedding (Nematzadeh, Meylan, and Griffiths
2017) and topic models (Griffiths, Steyvers, and Tenenbaum
2007), and the study of asymmetry of contextual embedding
is still lacking. Given the current status of research, it is nat-
ural to ask the following research questions:
• RQ 1. Which evocation dataset is the best candidate to

obtain asymmetry ground-truth? And RQ 1.1: Does the
asymmetry score from data align with intuition? RQ 1.2:
Are evocation datasets correlated for the first place?

• RQ 2. How do static and context embeddings compare
on asymmetry judgment? Furthermore, how do different

context embeddings compare? Do larger models perform
better?

• RQ 3. What are the main factors to estimating P (b|a)
with context embedding, and what are their effects?

• RQ 4. Does asymmetry judgment and similarity judgment
agree on embedding quality? What does it imply?
We first establish the asymmetry measurement in Section

and methods to estimate them from an evocation data or
an embedding in Section followed by empirical results to
answer those questions in Section .

The Asymmetry Measure
Log Asymmetry Ratio (LAR) of a word pair. To mea-
sure asymmetry of a word pair (a; b) in some set of word
pairs S , we define two conditional likelihoods, PE(b|a) and
PE(a|b), which can be obtained from a resource E , either
an evocation dataset or embedding. Under Tversky’s (1977)
assumption, if b relates to more concepts than a does, P (b|a)
will be greater than P (a|b) resulting in asymmetry. A ratio
PE(b|a)/PE(a|b) (Griffiths, Steyvers, and Tenenbaum 2007)
can be used to quantify such asymmetry. We further take
the logarithm to obtain a log asymmetry ratio (LAR) so that
the degree of asymmetry can naturally align with the sign of
LAR (a ratio close to 0 suggests symmetry, negative/positive
otherwise). Formally, the LAR of (a; b) from resource E is

LARE(a; b) = logPE(b|a)− logPE(a|b) (1)
LAR is key to all the following metrics.

Aggregated LAR (ALAR) of a pair set. We care about
the aggregated LAR on a word pair set S , the expectation
ALARE(S) = E(a;b)∈S [LARE(a; b)], to quantify the over-
all asymmetry on S for E . However, it is not sensible to
evaluate ALAR on any set of S , for two reasons: 1) because
LAR(a;b) = −LAR(b; a), randomly ordered word pairs will
produce random ALAR values; 2) pairs of different rela-
tion types may have very different LAR signs to cancel each
other out if aggregated. For example, “a is a part of b” sug-
gest LAR(a; b) > 0 , and “a has a b” for LAR(a; b) < 0.
Thus, we evaluate ALAR on S(r), the relation-specific sub-
set, as

ALARE(S(r)) = E(a,b)∈S(r)[LARE(a; b)] (2)
where the order of (a, b) is determined by (a, r, b) ∈ KG,
the ConceptNet (Speer, Chin, and Havasi 2017). Note that
when E is an evocation data, we can qualitatively examine
if ALARE(S(r)) aligns with with human intuition as one
(RQ 1.2) of the two metrics to determine the candidacy of an
evocation data as ground truth; When E is any embedding, it
measures the asymmetry of embedding space.

Correlation on Asymmetry (CAM) of Resources. By
using LAR defined in Eq. 1, for a resource E and a word
pair set S we can define a word-pair-to-LAR map

M(E ,S) = {(a; b) : LARE(a; b)|(a; b) ∈ S} (3)
and the Spearman Rank Correlation on asymmetry measure
(CAM) between two resources Ei and Ej can be defined as

CAM(S, Ei, Ej) = Spearman(M(Ei,S),M(Ej ,S)) (4)
There are two important settings:
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1. Ei is an evocation data and Ej is an embedding

2. Ei and Ej are two different evocation datasets

Setting one is to evaluate embedding using evocation data
as the ground truth. Setting two is to measure the correla-
tion between any pair of evocation data, which is the sec-
ond metric (RQ 1.1) to validate the candidacy of an evoca-
tion dataset as asymmetry ground-truth: several studies indi-
cate that the human scores consistently have very high cor-
relations with each other (Miller and Charles 1991; Resnik
1995). Thus it is reasonable to hypothesize that useful evo-
cation data should correlate stronger in general with other
evocation data. We will discuss it more in experiments.

Next, we introduce how to obtain P (b|a) for calculating
LAR, ALAR, and CAM from different resources.

Method
PD(b|a) from Evocation Data
For evocation data D, PD(b|a) means when a is cue, how
likely b can be evoked (Kiss et al. 1973). During the ex-
periment, one has to go through a thought process to come
up with b. This process is different from humans writing or
speaking with natural languages, because the word associa-
tions are free from the basic demands of communication in
natural language, making it an ideal tool to study internal
representations of word meaning and language in general
(De Deyne et al. 2019). Unlike similarity judgment where a
rating (usually 1 to 10) is used to indicate the degree of sim-
ilarity of (a, b), evocation data does not immediately pro-
duce such a rating, but a binary “judgment” indicating if b
is a response of a or not. Yet, evocation data is collected
from a group of participants (De Deyne et al. 2019; Nelson,
McEvoy, and Schreiber 2004), and we could derive a count-
based indicator to average the binary judgments to give a
rating as is done for the similarity judgment averaging the
scores of experts. The total number of responses usually nor-
malizes such count, leading to a score called Forward As-
sociation Strength (FSG) (Nelson, McEvoy, and Schreiber
2004), a metric invented for psychology study. FSG score is
essentially the PD(b|a),

PD(b|a) = Count(b as a response|a is cue)
Count(a is cue)

(5)

It is easy to confuse such evocation counts with the counts
derived from texts. Again, the counts in evocation data are
the aggregation of judgments (De Deyne et al. 2019) rather
than co-occurrence from language usage which is subject to
the demands of communication.

PB(b|a) from Contextual Embedding
It is easy to obtain P (b|a) for static embedding by exploring
geometric properties such as vector projection. But estimat-
ing it with contextual embedding is generally hard due to the
embedding’s dynamic nature invalidating the projection ap-
proach. Thus, to evaluate P (b|a) within a contextual embed-
ding space in an unbiased manner yet admitting its dynamic
nature, we first find the contexts that a and b co-occur, and

then use one word to predict the likelihood of another, admit-
ting the existence of the context. Finally, to remove the bias
introduced by context, we average the likelihood over many
contexts to obtain an un-biased estimate of P (b|a). This idea
can be understood in a Bayesian perspective: we introduce
a random variable c to denote a paragraph as context from
corpus C, say, Wikipedia. Then we obtain the expectation of
PB(b|a) over c, using B, say BERT, as a language model as
PB(b|a) = EP (c|a),c∈C [PB(b|a, c)]. The formation can be
simplified: for c that does not contain a, P (c|a) = 0, and for
c that does not contain b, PB(b|a, c) = 0. Finally,

PB(b|a) = EP (c|a),c∈C({a,b})[PB(b|c)] (6)

where C(x) indicates all the contexts in C that includes
x, being either a single word or a word pair. Note that
PB(b|a, c) = PB(b|c) if a ∈ c, leading to Eq. 6. P (c|a) is
estimated as 1/|C(a)| and PB(b|c) is estimated by masking
b from the whole paragraph c and then getting the probabil-
ity of b from the Soft-max output of a pre-trained BERT-like
Masked language model B. When there are N words of b in
c, we only mask the one that is being predicted and repeat
the prediction for each b. We append “[CLS]” to the begin-
ning of a paragraph and “[SEP]”after each sentence. Word
a can also appear k > 1 times in c and we regard c as k
contexts for C(a).

Using BERT as a language model, we can make an unbi-
ased estimation of context-free word relatedness, if the con-
texts are sufficient and the distribution is not biased. But, like
all unbiased estimators, Eq. 6 may suffer from high variance
due to the complexity of context c. We identify two factors
of context that may relate to estimation quality (RQ 3): the
number of contexts and the distance between words as a bias
of context, which we discuss in the experiments.

PE(b|a) from Static Embedding
To answer RQ 4, we also calculate conditionals for static
embedding. For word2vec or GloVe, each word can be re-
garded as a bag of features (Tversky 1977) and P (b|a) can
be obtained using a “normalized intersection” of the feature
sets for a and b which corresponds to geometric projection
in continuous embedding vector space:

proj(b|a) = emb(b) · emb(a)

||emb(a)||
(7)

And we normalize them with Soft-max function to obtain
PE as

PE(b|a) =
exp(proj(b|a))∑
x exp(proj(x|a)

(8)

where the range of x is the range of the evocation dataset. If
we compare Eq. 8 and 7 to the dot-product (the numerator
in Eq. 7) that is used for similarity measurement (Levy and
Goldberg 2014; Nematzadeh, Meylan, and Griffiths 2017;
Arora et al. 2016), we can see dot-product only evaluates
how much overlap two embedding vectors have in common
regardless of its proportion in the entire meaning representa-
tion of a or b. In other words, it says “ellipses” are similar to
“circles”. But it fails to capture if there is more to “circles”
that is different than “ellipses”.

14474



EAT FA SWOW Spearman’s Correlation (CAM)
r count ALAR count ALAR count ALAR EAT-FA SW-FA SW-EAT

relatedTo 8296 4.50 5067 0.89 34061 4.83 0.59 0.68 0.64
antonym 1755 1.27 1516 0.38 3075 0.01 0.43 0.58 0.51
synonym 673 -15.80 385 -17.93 2590 -15.85 0.49 0.65 0.59

isA 379 43.56 342 31.59 1213 47.77 0.64 0.75 0.59
atLocation 455 17.48 356 9.59 1348 16.02 0.61 0.71 0.64

distinctFrom 297 -2.38 250 0.01 593 -1.07 0.32 0.57 0.43

Table 1: Pair count, ALAR(S(r)) and the Spearman Correlation on Asymmetry Measure (CAM) between datasets. See Ap-
pendix for a complete list. P-value< 0.00001 for all CAM results

An Asymmetry-Inspired Embedding and Evaluation.
Unlike static embedding that embeds all words into a sin-
gle space, a word can have two embeddings. In word2vec
learning (Mikolov et al. 2013), it corresponds to the word
and context embedding learned jointly by the dot-product
objective. Intuitively, such a dot-product could encode word
relatedness of different relation types more easily than with
a single embedding space. To verify this, we use the weight
matrix in word2vec skip-gram as context embedding sim-
ilar to (Torabi Asr, Zinkov, and Jones 2018) together with
the word embedding to calculate PE(b|a). We denote it as
cxt. With cxt, the asymmetry can be explicitly encoded: to
obtain P (b|a), we use word embedding for a and context
embedding for b, and then apply Eq. 7 and 8.

Result and Analysis
To sum up, we first obtain P (b|a) (Section ) from evocation
data, static and context embedding respectively, and then
use them to calculate asymmetry measure LAR, ALAR and
CAM (Section ). Below we start to answer the plethora of
research questions with empirical results.

RQ 1: Which evocation data is better to obtain
asymmetry ground truth?
We answer it by examining two sub-questions: an evocation
data’s correlation to human intuition (RQ 1.1) and its corre-
lation with other evocation data (RQ 1.2).

RQ 1.1: Correlation to Human Intuition To see if an
evocation data conforms to intuition, we examine the ALAR
for each relation type r separately, which requires grouping
word pairs S to obtain S(r).

Unfortunately, evocation data does not come with rela-
tion annotations. Thus we use ConceptNet (Speer, Chin,
and Havasi 2017) to automatically annotate word relations.
Specifically, we obtain S(r) = {(a, b)} where (a, b) is con-
nected by r (we treat all relations directional) where a as
head and b is tail. If (a, b) has multiple relations {ri}, we
add the pair to each S(ri). Pairs not found are annotated
with the ConceptNet’s relatedTo relation. Finally we calcu-
late the ALARE(S(r)) using Eq. 2 for each relation r.

Table 1 shows a short list of relation types and their
ALAR(S(r)). We can see that isA, partOf, atLocation, has-
Context exhibit polarized ALAR; whereas antonym and dis-
tinctFrom are comparably neutral. These observations agree
with intuition in general, except for synonym and similarTo,

(e.g., “ellipses” and “circles”) which ALARs show mild
asymmetry. This may have exposed the uncertainty and bias
of humans on the KG annotation of similarity judgments,
especially when multiple relations can be used to label a
pair, e.g. “circle” and “ellipse” can be annotated with either
“isA” or “similarTo”. However, such bias does not affect the
correctness of asymmetry evaluation because the Spearman
correlation of two resources is correctly defined no matter
which set of pairs is used. The relation-specific ALAR is for
qualitatively understanding the data. However, this interest-
ing phenomenon may worth future studies.

RQ 1.2: Correlation to each other The observation that
good human data have high correlations with each other
(Miller and Charles 1991; Resnik 1995) provides us a princi-
ple to understand the quality of the three evocation datasets
by examining how they correlate. Our tool is CAM of Eq.
4 defined on the common set of word pairs, the intersection
S(r) = SEAT(r)∩SFA(r)∩SSWOW(r) where each set on RHS
is the collected pairs for r in a dataset. The number of com-
mon pairs for r is about 90% of the smallest dataset for each
r in general. Then, the CAM is obtained by Eq. 3 and 4, e.g.
CAMS(r)(SWOW, FA). The calculated CAM is shown in
Table 1, and a longer list is in Table ?? in Appendix. In gen-
eral, SWOW and FA show stronger ties, probably because
they are more recent and closer in time; EAT correlates less
due to language drift.

Answering RQ 1: Which data to use? From Table 1, we
favor SWOW because 1) in the study of RQ 1.1 we see
SWOW aligns with human intuition as well as, if not bet-
ter than, the other two datasets, e.g., it made almost sym-
metric ALAR estimation on pair-abundant relations such as
antonym; 2) According to the answer to RQ 1.2, in general,
SWOW correlates to all other datasets the best, e.g., on the
most pair-abundant relation relatedTo, SWOW has the top
two CAM scores, 0.68 and 0.64 to other datasets; 3) it is
the largest and the most recent dataset. Thus we mainly use
SWOW for later discussions.

RQ 2: Asymmetry of Embedding
Setup. We compare embeddings using CAM in Eq. 4 and
set Ei to an embedding E and Ej to evocation data D us-
ing LAR obtained according to Section . For context em-
beddings, we leverage the masked language models obtained
from Huggingface Toolkit (Wolf et al. 2019) (See Appendix
for a full list of models), and for static embeddings we both
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EAT (12K pairs) FA (8K pairs) SWOW (30K pairs)
w2v/cxt glv fxt bert/bertl w2v/cxt glv fxt bert/bertl w2v/cxt glv fxt bert/bertl

relatedTo .08/.25 .37 .20 .48/.55 .17/.30 .41 .27 .44/.50 .06/.28 .42 .14 .43/.50
antonym .05/.15 .25 .07 .31/.38 .16/.23 .31 .21 .30/.38 .04/.15 .33 .09 .33/.41
synonym -.21/.14 .43 -.03 .52/.59 .19/.37 .44 .40 .33/.41 .00/.29 .43 .16 .38/.47
isA .06/.33 .45 .27 .50/.58 .23/.41 .44 .37 .43/.50 .03/.34 .39 .16 .50/.57
atLocation .08/.28 .44 .29 .45/.52 .22/.36 .47 .31 .33/.44 .08/.35 .47 .21 .44/.52
distinctFrom -.12/-.20 .05 -.09 .17/.28 .11/.17 .35 .17 .34/.42 .03/.19 .40 .16 .38/.49
SA .05/.22 .34 .16 .45/.52 .17/.29 .39 .26 .38/.46 .05/.27 .41 .15 .42/.49
SR -.02/.15 .30 .08 .40/.47 .17/.27 .36 .25 .35/.43 .02/.24 .38 .16 .40/.48

Table 2: Spearman Correlation on Asymmetry Measure (CAM) between embedding LAR and data LAR. Acronyms: w2v
(word2vec), glv (GloVe), fxt (fasttext), bert (BERT-base), bertl (BERT-large). SA (Weight-Averaged Spearman, where
weights are calculated as |S(r)|/|S|); SR (SA excluding relateTo relation). P-value<0.0001 for BERT and GloVe in general.
Using Eq. 9, where V is the intersection of above embeddings, we collect 12K pairs for EAT data, 8K for FA, and 30K for
SWOW.

obtain pre-trained embeddings (for GloVe and fasttext) and
train embeddings ourselves (w2v and cxt) using Wikipedia
corpus (October 2019 dump, details are in Appendix). An
issue that hampers fair comparison of embeddings is their
vocabularies differ. To create a common set of word pairs,
we take the intersection V of the vocabularies of all embed-
dings that are to be compared and the evocation dataset, and
for Eq. 4 we obtain S(r) as

{(a, b)|(a, b) ∈ D ∧ r(a, b) ∈ KG ∧ a ∈ V ∧ b ∈ V } (9)

where KG is ConceptNet. which means any word in the set
of pairs has to be in-vocabulary for any embedding.

We have two settings: 1) comparing static and contextual
embeddings (BERT as a representative), wherein applying
Eq. 9 leads to 12K, 8K, and 30K pairs on EAT, FA, and
SWOW dataset in Table 2. 2) comparing contextual embed-
dings, which leads to 7.3K SWOW pairs with asymmetry
scores that will be made public.

Comparing Static and Contextual embedding In Ta-
ble 2, we compare BERT (base and large) with static em-
beddings on three different evocation datasets with CAM
(Relation-specific ALAR can provide us a qualitative under-
standing how embedding performs on each relation in gen-
eral but it does not affect the correctness of CAM). GLoVe
is the most competitive among static embeddings because it
takes into account the ratio P (x|a1)/P (x|a2) that may help
learn P (b|a), which can lead to better accuracy on some
relations. BERT, especially BERT-large, has a stronger
correlation with the three datasets than any other static em-
bedding, which aligns with the empirical evidence from ex-
ternal evaluation benchmarks such as SQUAD (Rajpurkar
et al. 2016) and GLUE (Wang et al. 2018). It may be the
first time we can show context embedding outperforms static
embedding on intrinsic evaluation. Moreover, by comparing
CAM on a per-relation basis, we see BERT performs com-
petitively on LAR-polarized, asymmetric relations such as
“relatedTo”, “isA” and “atLocation”, while not so much on
symmetric ones. Also, the context embedding (cxt) consis-
tently outperforms word2vec on almost all relation types.
Combining these observations, we think that the dot-product
of two embedding spaces can encode rich information than a

single embedding space can. BERT does it with a key-query-
value self-attention mechanism, being one reason for it to
perform well on the asymmetry judgment. Also, it is not sur-
prising that BERT-large outperforms BERT-base, sug-
gesting larger models can indeed help better “memorize”
word semantics, which we also show for other models soon
later.

What about LAR Directions? An embedding could have
a high correlation (CAM) with data but totally wrong on
asymmetry directions (LAR). Thus in Fig. 1, we com-
pare embeddings’ ALAR to the ALAR of data (SWOW).
We took log over the ALAR(r) while retaining the sign
to smooth out the numbers. BERT-base produces small
ALAR values, which we scale by x1000 before log to
make the figure easy to read. BERT-base and GLoVe are
two strong embeddings that show better directional corre-
lation with SWOW. Note that word pairs under hasCon-
text aligns with SWOW data generally well, but words with
relations hasProperty, capableOf, hasA is hard for all text
embeddings. These findings may suggest a non-negligible
gap (Spearman’s Correlation for BERT-SWOW and GloVe-
SWOW has P-value< 0.0001) between text-based word em-
beddings and the human-generated evocation data, regard-
less of how embeddings are trained. It may be either be-
cause texts do not entail relations of those pairs or because
relations are too hard for current embedding techniques to
discover, which requires further investigation.

Comparing Contextual Embeddings. By applying Eq. 9,
we use all candidate contextual embeddings’ vocabulary to
obtain V and use SWOW as D, resulting in 7.3K pairs in
total, for which in Table 3 we show the comparison of em-
beddings on CAM. In general, we see that larger models
indeed show a higher correlation with SWOW data, which
suggests models with larger capacity can help encode lexi-
cal semantics better in general. For example, CAM of BERT
(Devlin et al. 2018), roBERTa (Liu et al. 2019) and AL-
BERT (Lan et al. 2019) grow with the number of parameters,
yet ELECTRA (Clark et al. 2020) does not show the same
trend. One reason for the abnormality may be that ELEC-
TRA uses generated synthetic text for training, which may
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BERT
-base 110 .33 .23 .32 .36 .44 .23
-large 340 .41 .26 .38 .45 .49 .28
roBERTa
-base 125 .41 .27 .38 .45 .48 .27
-large 355 .42 .27 .38 .46 .49 .29
ALBERT
-base 11 .36 .24 .37 .42 .41 .25
-large 17 .38 .25 .38 .44 .42 .24
-xl 58 .39 .26 .37 .45 .43 .24
-xxl 223 .39 .25 .37 .43 .44 .26
ELECTRA
-base 110 .39 .24 .38 .45 .44 .24
-large 335 .36 .26 .35 .34 .42 .29

Table 3: Spearman Correlation on Asymmetry Measure
(CAM) between SWOW and contextual embedding for 7.3K
SWOW pairs obtained with Eq. 9. Counts: 5409, 910, 217,
211, 262, 206 from left to right.

Figure 1: LAR Prediction Comparison. Same setting as Ta-
ble 2. BERT refers to BERT-base

result in data drift that is exacerbated by using larger models.
While ELECTRA and ALBERT have shown their advantage
over BERT in many external evaluation benchmarks such as
GLUE, SUPERGLUE, and SQuAD (Rajpurkar et al. 2016;
Wang et al. 2018, 2019), they do not improve significantly
over asymmetry judgment compared to BERT or roBERTa.
It is reasonable to doubt if the improvements of ELECTRA
or ALBERT over BERT come from better model tuning
or better semantic representation, and asymmetry judgment
may shed some light on the answer to this question. Also,
RoBERTa outperform BERT may be because RoBERTa im-
proves BERT’s optimization, and in turn it confirms that
optimization matter on semantic encoding. Thus, exploring
better optimization techniques may still be valuable.

RQ 3: Two Factors of the Bayesian Estimation
Since we evaluate P (b|a) with contexts, the quality and dis-
tribution of it matter the most for the LAR, ALAR, and

CAM. Comparing BERT-base and SWOW as an exam-
ple, we study two quantities: 1) The number of contexts of a
word pair because more contexts suggest the more accurate
the estimation may be; and 2) the distance of word pairs in
context, because the closer two words are, the more likely
they relate. For 1), we group word pairs into bins of size 200
by the number of contexts collected for each pair and use av-
erage LAR directional accuracy (Appendix ??) in each bin
as a tool to study the factors’ impact. The three upper fig-
ures in Figure 2 suggest a mild trend where pairs with more
contexts have higher direction accuracy, which discontinues
beyond 5000 contexts. We hypothesis that the discontinua-
tion is due to the pairs grouped into >5000 bin may contain
“systematical bias”, such as topics, where a word depends
more on the topic than the other word, which pushes asym-
metry prediction towards random. Techniques of diversify-
ing the context may help alleviate the problem, an extensive
study too complicated for this paper. For 2), we group word
pairs by character distance into size-200 bins. The three bot-
tom ones in Figure 2 show word distance correlates weakly
to direction accuracy due to BERT’s ability to model long-
distance word dependency.

RQ 4: Similarity v.s. Asymmetry Judgment
In comparison to asymmetry judgment, we would like to see
if similarity judgment can say otherwise about embeddings.
We compare all embeddings on popular symmetric simi-
larity/relatedness datasets. We take the dot-product score
of two word embeddings for static embeddings and calcu-
late the Spearman’s correlation on the scores. For contex-
tual embeddings, we use the geometric mean of P (a|b) and
P (b|a) as similarity score (see Appendix for justification) to
be comparable to dot-product. Table 4 shows that although
this approach helps BERT performs better on 2 out of 3
datasets than PCA on the contextual embedding approach
(Ethayarajh 2019), the result on other contextual embed-
dings looks extremely arbitrary compared to static embed-
dings. Similarity judgment, in general, fails to uncover con-
textual embedding’s ability on lexical semantics: it focuses
on similarity rather than the difference that BERT seems to
be good at, which can also be supported by contextual em-
beddings being superior on WS353 REL than SIM. Simi-
larity judgment tells us that contextual embedding does not
correctly encode semantic features and static embeddings,
but it can beat them reasonably well on asymmetry judg-
ment, suggesting otherwise. Are they conflicting with each
other? Let us look into it now.

Discussion and Conclusion
The rise of Transformers has aroused much speculation on
how the model works on a wide variety of NLP tasks. One
lesson we learned is that learning from large corpora how to
match contexts is very important, and many tasks require the
ability. From the intrinsic evaluation perspective, the asym-
metry judgment and similarity judgment also support this.
BERT can encode rich features that help relatedness mod-
eling, but it fails frustratingly on similarity judgments that
suggest otherwise.
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Figure 2: BERT directional accuracy (y-axis) v.s. context frequency (x-axis for upper 3 figures) and average character distance
(x-axis lower 3 figures) for EAT (left), FA (middle) and SWOW (right)

w2v cxt glv fxt brt brtl rbt rbtl abt abtl abtxl abtxxl elt eltl KEl1 KEl12
MEN .74 .76 .74 .79 .26 .07 .11 .11 -.04 -.16 .00 .01 .07 .08 .20 .08

SIMLEX .33 34 .37 .45 .36 .16 .18 .34 .16 .18 .19 .19 .12 .12 .32 .23
WS353 .70 .71 .64 .73 .28 .28 .26 .09 .06 .02 .01 -.01 .17 -.03 .39 .33

–SIM .76 .76 .70 .81 .12 .08 .07 -.02 -.05 -.08 -.01 .16 .01 -.14 - -
–REL .64 .67 .60 .68 .45 .48 .47 .49 .23 .12 .11 .26 .34 .09 - -

Table 4: Spearman Correlation between model scores and oracle word similarity datasets MEN (Bruni, Tran, and Baroni 2014),
SIMLEX999 (SIMLEX) (Hill, Reichart, and Korhonen 2015), WordSim353 (Finkelstein et al. 2002) similar (SIM) and related-
ness (REL) subsets. KEl1 and KEl2 are two results listed in (Ethayarajh 2019) which extract static embeddings from BERT-base
model. l1 and l12 are principle components from first and last layer BERT embedding therein.

We should not take this contradiction of similarity and
asymmetry judgment on BERT slightly. If correct, our anal-
ysis shows BERT can not encode the meaning of words as
well as static embedding can, but it learns contextual match-
ing so well that it supports the modeling of P (b|a) to exhibit
a correct asymmetry ratio. Does it make sense at all? It is not
clear if BERT learns word meaning well because similarity
judgment does not provide supporting evidence. It probably
is hard, if not impossible, to extract a stable word meaning
representation out of the rest of the information that the dy-
namic embedding can encode for context matching. Even if
we can, the evaluation may not be sound since they probably
are correlated in the BERT’s decision making.

But, do we even care about if Transformers encode mean-
ings? Is it OK to encode an adequate amount and let con-
text matching do the rest? On the one hand, feeding mean-
ings to Transformers in the form of external hand-crafted
knowledge has not been as successful as we had hoped, yet
the work is still going on under this philosophy (Liu et al.
2020); On the other hand, we continue to relentlessly pur-
sue larger models such as the unbelievably colossal GPT-
3 (Brown et al. 2020) with 175-billion-parameters, and Ta-
ble 3 shows that naively scaling up model size does not guar-
antee significantly better word relatedness modeling. It may
be high time that we stop and think how far we should chug
along the path of Transformers with bells and whistles, and
if it can lead us from 0.99 to 1. Learning representation by
capturing the world’s complexity through automatic discov-

ery 2 may still be the way we can follow. However, we may
need either a very different family of models that encode
meaning and context matching together harmoniously or a
new objective very different from predicting a masked word
or the next sentence. We do not know if BERT will look like
it, or it will look like BERT. It must be out there waiting for
us to discover.

Future Work
There are still many questions left: 1) How does lexical se-
mantics (through asymmetry judgment) encoded in contex-
tual embeddings change before and after transfer learning
(task-specific fine-tuning) or multi-task learning, and how
do we measure them? It can guide us on when to stop pre-
training, how much to fine-tune or what task/data to learn
from; 2) Can you explicitly encode such asymmetry during
model training? For example, can you regularize the network
using asymmetry data? How does it affect the accuracy of
the model? 3) Can we create new architectures based on the
asymmetry insight? 4) How can multi-modal embeddings be
better at asymmetry judgment?
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