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Abstract

While various neural machine translation (NMT) methods
have integrated mono-lingual syntax knowledge into the lin-
guistic representation of sequence-to-sequence, no research
is available on aligning the syntactic structures of target
language with the corresponding source language syntactic
structures. This work shows the first attempt of a source-
target bilingual syntactic alignment approach SyntAligner
by mutual information maximization-based self-supervised
neural deep modeling. Building on the word alignment for
NMT, our SyntAligner firstly aligns the syntactic structures
of source and target sentences and then maximizes their
mutual dependency by introducing a lower bound on their
mutual information. In SyntAligner, the syntactic structure
of span granularity is represented by transforming source
or target word hidden state into a source or target syn-
tactic span vector. A border-sensitive span attention mech-
anism then captures the correlation between the source
and target syntactic span vectors, which also captures the
self-attention between span border-words as alignment bias.
Lastly, a self-supervised bilingual syntactic mutual infor-
mation maximization-based learning objective dynamically
samples the aligned syntactic spans to maximize their mutual
dependency. Experiment results on three typical NMT tasks:
WMT’14 English→German, IWSLT’14 German→English,
and NC’11 English→French show the SyntAligner effective-
ness and universality of syntactic alignment.

Introduction
Neural Machine Translation (NMT) has made significant
progress by developing MT-oriented deep neural transla-
tors, including recurrent neural network (RNN) (Hochre-
iter and Schmidhuber 1997), convolutional neural network
(CNN) (Kim 2014), Transformer (Vaswani et al. 2017), em-
bedding (Mukherjee et al. 2020; Piazza 2020) and their vari-
ants. In MT, syntactic knowledge has shown essential for
extracting and learning the effective linguistic representa-
tions from both source-target sequences as in both statis-
tical machine translation (SMT) (Koehn et al. 2003) and
NMT (Bugliarello et al. 2020; Eriguchi et al. 2016; Hao
et al. 2019). For example, in (Eriguchi et al. 2016), a tree-
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Figure 1: An example shows the deep structural mapping
between source-target syntactic spans-based embeddings in
their latent spaces.

to-sequence model with the source phrase structure explic-
itly exploits a constituency tree to guide the decoder to gen-
erate a translated word by weakly aligning it with phrases
and words of source sentences. The graph-convolutional net-
works (GCN) (Bastings et al. 2017) adds layers to the stan-
dard encoder of NMT models to explicitly model source
dependency-based word representation. A multi-granularity
self-attention mechanism (Hao et al. 2019) randomly mod-
ifies several attention heads in Transformer to attend to
phrase modeling in either n-gram or syntactic formalization.
The above work shows improved translation by leveraging
the source syntax information.

However, the existing syntax-aware NMT models only
integrate monolingual syntax, omitting the correspondence
and divergence between source and target’s syntactic struc-
tures. Inspired by linguistics, there may be certain bilingual
syntactic consistency and alignment between source and tar-
get languages, which could be used as a unique linguistic
characteristic of sequence-to-sequence NMT. Fig. 1 illus-
trates the bilingual syntactic alignment between the source
(English) and target (German) sentences in the granularity
of their syntactic spans. A span is a triple-set syntactic unit
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with border-word positions and a constituent label to rep-
resent a constituency tree. These syntactic spans are gener-
ated by a neural constituency parsing model (Kitaev et al.
2018). Each source or target syntactic span vector is con-
catenated by border-word hidden states and the constituent
label embedding. While each language has its own syntactic
span collocation and constituency labels, there exists aligned
(e.g, between (really, daring, ‘ADJP’) in English and (wirk-
lich, mutig, ‘AP-PD’) in German) and unaligned (e.g, (was,
did, ‘VP’) in English and (Es, mutig, ‘S’) in German) be-
tween the source-target linguistic syntactic structures.

In fact, to date, our understanding and application of
the source-target bilingual syntactic relationship in NMT
are very limited, and it is challenging to capture the bilin-
gual syntactic relations. There usually exists complex and
flexible syntax divergences across different languages, such
as Subject-verb-object orders (German V.S English), Spe-
cial Interrogative Word orders (Chinese V.S English), and
Pronoun Shedding (Japanese). Hence, there is no univer-
sal linguistic rule or golden-data to characterize the bilin-
gual syntactic relationship. The existing monolingual syn-
tactic NMT models cannot handle these challenges. Fortu-
nately, the sequence-to-sequence NMT architecture is natu-
rally suitable to be a platform to align the bilingual syntac-
tic structure in unsupervised way. Inspired by Fig. 1, it is
potential to identify and align bilingual syntactic spans and
maximize their mutual dependency for syntactic alignment.
Then, the bilingual syntactic relationships could be mod-
eled by means such as between Transformer encoder and
decoder word hidden states, and an abstract linguistic align-
ment could be made between source and target sentences on
top of the traditional word alignment for NMT.

Motivated by the above analysis, this paper proposes a
self-supervised bilingual syntactic alignment approach Syn-
tAligner to precisely align the source-target bilingual syn-
tactic structures in the high-dimensional deep space, and
then maximizes the mutual information between the aligned
bilingual syntactic structure samples for translation. First,
SyntAligner represents the respective syntactic span vec-
tors of source and target sentences by combining sequential
representation and syntactic representation. Second, SyntAl-
igner introduces a Border-Sensitive Span Attention (BS-SA)
mechanism to characterize the alignment relationship be-
tween source and target syntactic spans. Considering the po-
tential noise incorporated by the syntax parser, we evalu-
ate the confidence of syntactic span by leveraging the self-
attention between the syntactic span start and end border
words from the Transformer encoder (and decoder). These
attention weights are then to bias the alignment attention dis-
tribution to obtain the final alignment attention matrix. Sub-
sequently, SyntAligner samples the aligned syntactic span
pairs with high attention scores by a curriculum learning
strategy to sample the aligned syntactic span pairs with a
gradually increasing scale for better training the span align-
ment. Lastly, a self-supervised objective function Bilingual
Syntactic Mutual Information Maximization (MIM) opti-
mizes the NMT model for maximizing the bilingual syntac-
tic mutual dependency.

We test SyntAligner on three widely-used trans-

lation tasks WMT’14 English→German, IWSLT’14
German→English, and NC’11 English→French. Extensive
analyses reveal that the NMT with bilingual syntactic
alignment effectively improves the translation performance.
We also visualize the bilingual syntactic span alignment
and the mutual information variation process as to why the
SyntAligner insight.

Background
Transformer
Transformer is a primary sequence-to-sequence model for
NMT. It consists of a stack of layers both in the encoder and
decoder. Each layer first learns the scale-dot product self-
attention to extract information from the whole sentence,
and then forms a point-wise feed-forward network to pro-
vide nonlinearity. The self-attention is formulated as:

Attention(Q,K, V ) = softmax(
QKᵀ

√
de

)V, (1)

where de is the dimension of the hidden representation and
is set as the embedding size. For the self-attention inside
the encoder, Q,K, V ∈ RM×de , while for the self-attention
inside the decoder, Q,K, V ∈ RN×de . For the attention
that bridges the encoder and decoder, Q ∈ RN×de and
K,V ∈ RM×de . The feed-forward network consists of two
linear projections with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2, (2)
where x is the input representation. Both the self-attention
and feed-forward networks are wrapped by the residual con-
nection (He et al. 2016) to form a sublayer:

Sublayer(x) = Block(LayerNorm(x)) + x, (3)
LayerNorm() is the layer normalization (Ba et al. 2016)
for self-attention.

Our SyntAligner substantially extends Transformer to re-
spectively leverage the word hidden states from encoder and
decoder to construct the bilingual syntactic span sequences,
as shown in Fig. 2. It consists of novel modules to incorpo-
rate syntax of bilingual spans and to maximize their mutual
information to capture bilingual syntactic dependency.

Constituency Syntactic Span
To align the bilingual syntactic trees and measure their mu-
tual dependency on a sufficient sample scale, we aim to find
an appropriate syntactic granularity to represent the syn-
tactic structure of a sentence. A constituency tree (Kasami
1965) Tree is a collection of labeled spans over a sentence,

Tree := {(li, (si, ei))}, (4)
where i = 1, ..., I , si and ei represent the start and end
border words of the syntactic span Treei, and li is the cor-
responding constituent label. Recently, many new methods
improve the span-based neural constituency parsing (Cross
et al. 2016; Kitaev et al. 2018; Stern et al. 2017) by following
an encoder-decoder architecture. In this paper, we adopt the
syntactic span sequences generated by the well-performed
Berkerly Neural Parser1 as our constituency parsing tree.

1https://github.com/nikitakit/self-attentive-parser
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Figure 2: The architecture of SyntAligner for mutual infor-
mation maximization-based bilingual syntactic alignment.
The red blocks in the BS-SA matrix are the aligned syntactic
span pairs.

The SyntAligner
Fig. 2 shows the architecture of our proposed SyntAligner
for bilingual syntactic alignment. SyntAligner firstly rep-
resents bilingual syntactic spans and then aligns them by
a border-sensitive span attention (BS-SA) mechanism with
the border-word self-attention weights from Transformer’s
encoder and decoder as the scaling biases. SyntAligner fur-
ther includes a self-supervised objective function for bilin-
gual syntactic mutual information maximization between
the transformed spans, which maximizes the lower bound
of mutual information for sampling aligned bilingual syn-
tactic span pairs, then jointly train SyntAligner with a cross-
entropy training objective for NMT.

Aligning Bilingual Syntaxes
Syntactic Span Representation Given a source input
word-based sequence Ssent = {x1,x2, ...,xM}, their hid-
den state-based sequence Hsent = {h1, h2, ..., hM} can
be obtained from the top layer of Transformer encoder.
Then, with the span sequence of source language by Eq.
4, we obtain the source syntactic span sequence Sspan =
{s1, s2, .., sI}, where each source syntactic span vector
sxi = [(xei −xsi) : l

x
i ]. We represent the syntactic span vec-

tor by combining the span border word hidden state xei−xsi
with its constituency label embedding lxi of the source lan-
guage, where xsi ,xei , l

x
i ∈ Rde and sxi ∈ Rd2e . Simi-

larly, we can generate the target syntactic span sequence
Tspan = {sy1, s

y
2, .., s

y
J} by using the output from the top-

layer of decoder, where each target syntactic span vector
syj = [(yej − ysj ) : l

y
j ].

BS-SA: Border-sensitive Span Attention To align the
source and target syntactic structures in the granularity of
span, we propose the Border-sensitive Span Attention (BS-
SA) mechanism, which reflects the alignment relationship
between each source and target span pair’s vectors sxi and
syj by using the scale-dot product attention method:

SpanAttn(Sspan, Tspan) = softmax(
Sspan · Tspanᵀ√

d2e
),

(5)
where the attention weight matrix
SpanAttn(Sspan, Tspan) ∈ RI×J . Eq. 5 enforces to
align bilingual syntactic spans, and we choose the aligned
syntactic span pairs with higher attention scores than the
alignment gate η. We will introduce the details later.

Furthermore, as noise is likely introduced by the syn-
tax parser, BS-SA evaluates the confidence of each syntac-
tic span Sspan (or Tspan) according to the correlation be-
tween its border words xei and xsi (or yej and ysj ). In
Transformer, the self-attention mechanism can capture the
linguistic relationship between words, especially in the top
layers. A higher attention score represents a stronger re-
lationship between words. We thus refer to the word self-
attention scores to reflecting the confidence of relationship
between syntactic span border words. Specifically, for the
source word self-attention SAttn ∈ RM×M (from Eq. 1), we
firstly find the corresponding border- word attention scores
for each source syntactic span and generate a confidence
matrix SConf ∈ RI×J , where each row i has the same
J confidence biases of source syntactic span si. Next, we
set a scaling weight Ws multiplying to SConf to widen the
confidence gap between source syntactic spans. Then, we
element-wisely multiply the SConf with SpanAttn to obtain
a BS-SA-Src attention matrix as follows:

BSSrc(Sspan, Tspan) =softmax(Ws × SConf

� softmax(Sspan · Tspan
ᵀ

√
d2e

)).

(6)
A higher confidence score will enlarge the difference in the
distribution of each row of SpanAttn after the outermost
softmax normalization. We further leverage the target syn-
tactic span confidence vector TConf ∈ RI×J obtained from
the target word-masked self-attention (the bottom sub-layer
in decoder) TAttn ∈ RN×N , where each column j has the
same I confidence biases of target syntactic span yj . In prac-
tice, for each row n in TAttn, the attention of future words
[Tattnn+1 , .., TattnN

] will be masked to avoid accessing the
future information. To obtain the attention scores between
any words, we use the unmasked version T ′Attn for BS-SA.
Meanwhile, it also has a scaling weight Wt. We can bias
each column of SpanAttn to produce a BS-SA-Tgt attention
matrix as follows:

BSTgt(Sspan, Tspan) =softmax(Wt × TConf

� softmax(Sspan · Tspan
ᵀ

√
d2e

)).

(7)
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Compared to the source confidence bias, the target confi-
dence bias changes the final span attention matrix more di-
rectly, because the outermost softmax function normalizes
the span attention matrix in the row dimension, and the target
confidence bias adjusts the attention score for each column
element. We deeply analyze the effect of scaling weight on
BS-SA in the Experiment section.

Curriculum Learning-based Sampling To obtain more
accurate syntactic span pairs as positive samples for better
bilingual mutual dependency, we use the BS-SA mechanism
to align the bilingual syntactic spans after the NMT pre-
training. Further, we adopt the curriculum learning idea to
sample syntactic pairs from easy to difficult and from less to
more. Accordingly, we set a time-based exponential decay
alignment gate η as follows:

η = η0 × η

⌊
max(stepn−steps+stepd,0)

stepd

⌋
d , (8)

where η0 ∈ (0, 1] represents the initial gate, ηd ∈ (0, 1]
represents the decay gate, stepn, steps, stepd represent the
current training steps, starting decay steps, and decay inter-
val steps, respectively. Based on Eq. 8, at the initial training
steps, we only sample the aligned syntactic pairs with the
highest span attention (e.g., η = 1) to guarantee the qual-
ity of alignment at the cost of sampling scale. As the BS-
SA network captures more accurate syntactic alignment, we
lower the threshold of sampling to get more positive samples
for mutual information maximization.

Finally, for the bilingual syntactic span sequences
Sspan, Tspan, we can sample the aligned bilingual syntac-
tic span pairs Bspan = {(sxi , s

y
j )} .

Maximizing Bilingual Syntactic Mutual
Dependency
To generate more syntax-consistent translations, it is nec-
essary to strengthen the syntactic correspondence between
the source and target syntactic span vectors. We leverage
the concept of mutual information to measure the depen-
dency between random variables and maximize their mutual
dependency. Formally, the mutual information between an
aligned syntactic pair (sxi , s

y
j ) is:

I(sxi , s
y
j ) = H(sxi )−H(sxi |s

y
j ) = H(syj )−H(syj |s

x
i ) (9)

where H(·) denotes the entropy. We choose a particular
lower bound InfoNCE, which is based on Noise Contrastive
Estimation (NCE; (Gutmann et al. 2012)) . The InfoNCE
bound of an aligned syntactic pair (sxi , s

y
j ) is defined as:

I(sxi , s
y
j ) ≥

Ep(sxi ,syj )[fθ(s
x
i , s

y
j )

− Eq(s̃yj ) log
∑
s̃yj∈S̃

expfθ(s
x
i , s̃

y
j )] + log

∣∣∣S̃∣∣∣ , (10)

where fθ ∈ R is a function parameterized by θ (e.g., a dot
product between bilingual syntactic spans), and s̃yj is a target
syntactic span from a sample set S̃ drawn from a proposal

distribution q(S̃). S̃ consists of the positive sample syj (the
aligned target syntactic spans) from the current target sen-
tence and |S̃|− 1 negative samples (unaligned target syntac-
tic spans) from all of the sentences. In practice, we constrain
the negative samples into the current training batch, hence
the size of the negative set is still manageable.

We use the contrastive learning framework to design a
task that maximizes the mutual information between the
aligned source and target syntactic spans with unaligned tar-
get syntactic spans as negative samples. Accordingly, the
self-supervised objective function JMIM is:

JMIM = −Ep(sxi ,syj )

sxi ᵀsyj − log
∑
s̃yj∈S̃

exp(sxi
ᵀs̃yj )

 ,
(11)

In comparison with the traditional NMT supervised cross-
entropy training objective:

JCE(θ) =
N∑
n=1

logP (y(n)|x(n); θ), (12)

our bilingual syntactic alignment-oriented objective func-
tion JBLS−MIM below combines the self-supervised ob-
jective function JMIM with the above-supervised objective
function JCE to train the NMT model. It is a weighted com-
bination of the two terms above:

JBLS−MIM = λMIMJMIM + λCEJCE(θ) (13)

where λMIM and λCE are hyperparameters that balance the
contribution of each term.

The general mutual information calculation will be pro-
vided with stable positive samples and negative samples,
then it maximizes the mutual dependency between positive
samples and minimizes the relationship between negative
samples. However, a big challenge is that we do not know
which syntactic source-target pair is correctly aligned in ad-
vance. Hence, the confidence of our positive sample (sxi , s

y
j )

is dependent on the BS-SA accuracy. To improve the accu-
racy of BS-SA, we firstly pretrain the NMT model by using
E.q. 12 to convergence to obtain more well-trained word hid-
den states from the encoder and decoder to construct bilin-
gual syntactic span vectors. Then we fine-tune the NMT
model using the joint training objective as in E.q. 13.

Experiments
Settings
We test SyntAligner on three language translation
tasks: WMT14 English→German (En→De), IWSLT14
German→English (De→En), and WMT14 News Commen-
tary version 11 (NC11) English→French (En→Fr). For
the En→De translation, the training data consists of 4.5M
sentence pairs (newstest2013 and newstest2014 as the vali-
dation set and sets). For the De→En translation, the training
set consists of 160K sentence pairs and we randomly draw
7K samples from the training set as the validation set. We
concatenate dev2010, dev2012, tst2010, tst2011 and tst2012
as the test set. For the En→Fr translation, the training
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Architecture En→De De→En En→Fr
#Para BLEU #Para BLEU #Para BLEU

Transformer (Vaswani et al. 2017) 88.0M 27.31 52.8M 33.63 97.6M 28.35
LightConv (Wu et al. 2019) n/a n/a n/a 34.80 n/a n/a
MG-SA (Hao et al. 2019) 89.9M 28.28 n/a n/a n/a n/a
Transformer-Base 88.0M 27.61 52.8M 34.43 97.6M 28.54

+ SyntAligner-Base 90.2M 28.29 52.8M 35.05↑ 97.6M 28.85↑

+ SyntAligner-Src 90.2M 28.22 52.9M 35.01↑ 97.6M 29.12⇑

+ SyntAligner-Tgt 90.2M 28.56⇑ 52.9M 35.13⇑ 97.6M 28.96↑

+ SyntAligner-Bi 90.2M 28.42⇑ 52.9M 35.11↑ 97.6M 29.28⇑

Table 1: Testing Results of SyntAligner against Syntax-enhanced baselines Including Transformer for NMT on WMT14
En→De, IWSLT14 De→En, and NC11 En→Fr. “# Para” denotes the trainable parameter size of each model (M = million).
Symbols “↑ /⇑” refer to the improvement significance level over the self-attention baseline (p < 0.05/0.01).

data consists of 180K sentence pairs (newstest2013 and
newstest2014 as validation and test sets). We evaluate our
approach in terms of different languages and data sizes.

The baselines include: Transformer as a strong base-
line with the state-of-the-art performance; LightConv as
a simpler but effective baseline; and MG-SA as a latest
source syntax-integrated method which modifies the par-
tial heads of the self-attention networks of Transformer en-
coder to capture the syntactic phrase representation. The re-
sults in their papers are reported here. We also implement
a Transformer-Base by using OpenNMT toolkit, which out-
performs the original Transformer in (Vaswani et al. 2017).

Several SyntAligner variants with/out BS-SA mechanism
are compared. “ +SyntAligner-Base” is the SyntAligner
without border-word self-attention to influence the BS-SA
alignment distribution. Various BS-SA mechanisms are ap-
plied to generate: “ +SyntAligner-Src” with self-attention
of source syntactic span border-words; “ +SyntAligner-Tgt”
with self-attention of target syntactic span border-words;
and “ +SyntAligner-Bi” with self-attention of both source
and target syntactic span border-words. These greatly lift the
base BS-SA mechanism for small and large language pairs.

SyntAligner, its variants and all the baselines on top
of the advanced Transformer model (Vaswani et al. 2017)
are implemented by using the open-source toolkit Open-
NMT (Klein et al. 2017). We follow the Transformer (base
model) setting in (Vaswani et al. 2017) to train the models
and reproduce their reported results on the En→De task. The
hidden size is 512, filter size is 2,048, and the number of at-
tention heads is 8. All models are trained on four NVIDIA
TITAN Xp GPUs where each is allocated with a batch size
of 4,096 tokens. We adopt a fine-tuning training strategy for
all SyntAligner variants, and firstly pretrain about 30 epochs
for all translation tasks with the cross-entropy training ob-
jective. Then, we fine-tune the NMT models for about 1 ∼ 3
epochs by using both the SyntAligner and cross-entropy
training objectives. Specifically, we take turn to optimize
the networks by self-supervised or supervised training ob-
jectives. Due to the introduction of the JMIM objective, our
training speed of fine-tuning is about 1.5× slower than tra-
ditional NMT methods.

The byte-pair encoding (BPE) toolkit2 (Sennrich et al.
2016) is used with 32K merge operations. The 4-gram NIST
BLEU score (Papineni et al. 2002) is used as the evalua-
tion metric. The Berkeley Neural Parser (Kitaev et al. 2018)
generates the constituency spans for English, German and
French languages. Besides, the statistical significance test
method in (Collins et al. 2005) is taken.

Main Results
Tab. 1 shows the main results of three baseline Trans-
formers and the Transformer-Base enabled by our proposed
SyntAligner with multiple BS-SA mechanism variants on
the WMT14 En→De dataset with 4.5M pairs, IWSLT14
De→En dataset with 160K pairs, and the WMT16 En→Fr
dataset with 180K pairs.

The test against SyntAligner variants in the lower ta-
ble shows the effectiveness of maximizing the mutual
dependency between bilingual syntactic representations
with the precisely-aligned span samples. The border-word
self-attention lifts the SyntAligner, which together, i.e.,
SyntAligner-Tgt, substantially outperforms Transformer by
+1.25 BLEU points on En→De, +1.50 BLEU points on
De→En, and +0.91 BLEU points on En→Fr. These results
demonstrate the efficacy and applicability of SyntAligner
and the alignment accuracy of the BS-SA mechanism.

The upper table shows the results of three types of
baselines: Transformer, LightConv and MG-SA. While
both LightConv and MG-SA make an improvement
over Transformer, the SyntAligner with multiple BS-SA-
enabled (SyntAligner-Base, SyntAligner-Src, SyntAligner-
Tgt, SyntAligner-Bi) NMT models substantially and con-
sistently beat the standard Transformer and both LightConv
and MG-SA. For example, our SyntAligner-Tgt on Trans-
former outperforms MG-SA by over 0.28 BLEU points on
En→De and outperforms LightConv by over 0.33 BLEU
points on De→En. This is owing to the BS-SA and Syn-
tAligner design of aligning the bilingual syntactic represen-
tation and maximizing the syntax-consistency between the
word hidden states of encoder and decoder. On the other

2https://github.com/rsennrich/subword-nmt
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Figure 3: The Effect of Curriculum Learning Gates.

hand, the results of the SyntAligner-Tgt and SyntAligner-
Bi models outperform the SyntAligner-Src model. It may be
owing to that the target-side self-attention weights can bias
the relative value of the span alignment weights more di-
rectly for the softmax function than the former one. Mean-
while, the scale of parameters is well controlled in our mod-
els compared to all the baselines, because our models mostly
transform the word hidden states into syntactic span vectors
without using additional networks and thus do not incur too
many training parameters.

Analysis
Here, we analyze the effectiveness and generalizability of
different mechanisms in SyntAligner, the effect of BS-SA-
enabled alignment, and the visualization of comparing mu-
tual information loss function and cross-entropy loss func-
tion during training. Owing to space limitation, we only re-
port testing results on the IWSLT14 De→En validation set.

Tuning the Curriculum Learning Gates A major chal-
lenge of this work is that no prior golden-alignment syntac-
tic span pairs are available as the positive samples to max-
imize the syntactic mutual information in SyntAligner. We
thus use the curriculum learning-based sampling to guaran-
tee the alignment quality of positive samples at the cost of
initial sampling scale.

Fig. 3 shows the performance of adjusting the values of
initial gate and decay gate of the curriculum learning sam-
pling strategy. The left figure fixes the decay gate (ηd = 0.8)
to evaluate the effect of initial alignment quality on perfor-
mance, where higher initial gate values lead to better results,
proving that strictly controlling the alignment quality at ini-
tial epochs is critical for the mutual dependency. The right
figure fixes the initial gate (η0 = 1.0) to find a trade-off be-
tween the scale and quality of effectively-aligned syntactic
pairs. The performance firstly increases as the decay gate de-
creases until ηd = 0.8 and then drops with the decrease of
decay gate value. The results reveal that a too loose sampling
strategy may not guarantee the effectiveness of SyntAligner
training objective. For example, when ηd = 0.5, it means
the curriculum gate η = 0.075 � 1 after 50k steps. Hence,
it may introduce some noise because it almost samples the
total syntactic span pairs.

Effect of Scaling Weight on BS-SA and SyntAligner
Fig. 4 shows how the scaling weights Ws and Wt combin-
ing with border-word self-attention influences the alignment
confidence for the De→En sentence pair: “was macht man ,

Figure 4: The Effect of Scaling Bias on BS-SA Alignment
Distribution.

wenn man solch eine unterbrechung im fluss hat ?” , “what
do you do when you have this sort of disrupted flow ?”.

The top two figures in Fig. 4 show the source BS-
SA alignment distributions for two source syntactic spans
(wenn, hat, S-MO) and (solch, eine, AP-NK), respectively.
We illustrate the alignment distributions of three models:
BS-SA-Base (the black line), BS-SA-Src with Ws = 100

(the blue line) and BS-SA-Src with Ws = 103 (the red
line). The scaled self-attention (Ws × SConf ) of border-
word (wenn, hat) and (solch, eine) are 6.8 and 93.3. Both the
source syntactic spans have the corresponding target syntac-
tic spans (at the top of distribution) in top-left and top-right
figures, which are Subordinate Clause [(wenn, hat, S-MO),
(when, hat, SBAR)] and Noun Phrase [(solch, eine, AP-NK),
(this, sort, NP)]. However, the improvement of the highest
alignment attention weight (the gap between the peak val-
ues of red and black lines) in top-right figure is more signif-
icant than in top-left figure, owing to the border-words (this,
sort) are neighbouring words with a tight connection, result-
ing in a higher confidence score Ws × SConf = 93.3 for
(solch, eine, AP-NK). This shows that the source confidence
bias influences the alignment distribution in different rows
at varying degrees. On the other hand, both top figures also
show that an appropriate scaling weight Ws should be set
for the source confidence bias SConf , otherwise incurring
a more uniform alignment distribution like the blue line to
make the sampling aligned syntactic pairs more difficult.

Further, the bottom figure in Fig. 4 compares the align-
ment distribution of different scaling weights Wt. Contrary
to top figures in Fig. 4, the target confidence bias changes the
related values between different columns according to the
target border-word connection. When Wt = 100 or 101, the
distributions are more uniform than the BS-SA-Base model.
When Wt = 103, the different target confidence biases for
each column widen the alignment attention weight gap be-
tween (when, hat, SBAR) (the 5th column) and (of, flow,
PP) (the 12th column) from 0.31 to 1.0.

In addition, Tab. 2 shows that different scaling weights of
both SyntAligner-Src and SyntAligner-Tgt lift the SyntAl-
igner performance at varying degrees. This proves (1) ap-
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Systems Ws/Wt BLEU 4
SyntAligner-Base N/A 35.80 -

SyntAligner-Src

100 35.65 -0.15
101 35.60 -0.20
102 35.78 -0.02
103 36.01 +0.21

SyntAligner-Tgt

100 35.70 -0.1
101 35.85 +0.05
102 35.99 +0.19
103 36.41 +0.61

Table 2: The Effect of Scaling Weights Ws and Wt on
SyntAligner-Src and SyntAligner-Tgt models.

propriate scaling weights Ws and Wt can enhance the con-
fidence of aligned bilingual syntactic span pairs and boost
the performance of SyntAligner by +0.21 and +0.61 BLEU
point, respectively; and (2) the influence of scaling weights
plays a more important role on the SyntAligner-Tgt model
by improving 0.61 BLEU point when Tw = 103. Together
with the results in Fig. 4, we can conclude that the higher
quality of aligned syntactic span pairs induces the better per-
formance of SyntAligner-based NMT.

Effect of the Joint Objective-based Training The Syn-
tAligner introduces a mutual information maximization-
based self-supervised training objective to leverage the
alignment of bilingual syntactic structures, combined with
supervised cross-entropy minimization training objective, to
jointly train it for NMT. Fig. 5 shows the performance of
this joint objective-based training. Both the translation per-
formance and the loss variation follow the same trend, which
first descend at the initial several steps and then turns to in-
crease at the late training steps. The Supplementary further
illustrates more results about the similar trend across dif-
ferent language translations. In the right part of Fig. 5, the
Cross-Entropy Minimization Loss (CE Loss) is disturbed by
the newly-applied Mutual Information Maximization (MI
Loss) Loss before 10k training steps. Correspondingly, the
translation performance also decreases in left part of Fig. 5.
It may be owing to the low alignment quality in the initial
fine-tuning, which provides noisy positive samples for mu-
tual information maximization. Meanwhile, the worse trend
of CE Loss backlashes against the MI Loss, which leads to
the decrease of bilingual syntactic mutual information. As
training proceeds, both training objectives gradually adapt
to the joint optimization. The final best translation perfor-
mance achieves at 48k training steps in the left part of Fig.
5. This shows the necessity and challenge to find the balance
between the self-supervised and supervised training objec-
tives.

Related Work and Discussion
One popular extension to NMT is to improve the linguis-
tic representation by integrating syntactic knowledge on ei-
ther the source-side (Bugliarello et al. 2020; Eriguchi et al.
2016; Hao et al. 2019; Li et al. 2017; Zhang et al. 2020)

Figure 5: The translation performance on the validation set
in the joint-objective-based training (the left). The Cross-
Entropy Loss (the red line) vs. Mutual Information Loss (the
blue line) in the joint-objective-based training (the right)

or the target-side (Aharoni et al. 2017; Passban et al. 2018;
Wu et al. 2017). For example, a String-to-Tree NMT model
(Aharoni et al. 2017) translates into linearized, lexicalized
constituency trees. However, the related work on the source-
to-target integration is limited. (Wu et al. 2018) simply ap-
plies the dependence structures in both source and target
languages without deeply analyzing the syntactic correspon-
dence and divergence between source-target sentences.

Mutual information-based objective functions such as
the InfoMax principle (Linsker 1988) were used in self-
supervised representation learning in such domains as com-
puter vision, audio processing, and reinforcement learning
(Bachman et al. 2019; Belghazi et al. 2018; Hjelm et al.
2019; Löwe et al. 2019; van den Oord et al. 2018). Some
of the related methods maximize a particular lower bound
of mutual information, e.g. InfoNCE (van den Oord et al.
2018), also known as contrastive learning (Saunshi et al.
2019). While less work is reported in Natural Language Pro-
cessing and NMT, (Kong et al. 2020) use the mutual in-
formation as training objective that unifies classical word
embedding models (e.g., Skip-gram) and modern contextual
embedding (e.g., BERT, XLNet). Our work makes a new at-
tempt to adopt mutual information to optimize the bilingual
syntactic alignment to boost the translation performance.

More work on learning hierarchical semantic, syntactic
and linguistic couplings (Cao 2015; Cheng et al. 2013)
within/between sources and targets.

Conclusion

While mono-lingual syntactic knowledge has been widely
explored for NMT tasks, an open challenge is to charac-
terize the dependency between source and target syntac-
tic structures in the classic sequence-to-sequence modeling.
This paper makes one step forward by not only aligning
the bilingual syntactic structures but also introducing a self-
supervised mutual information maximization-based train-
ing objective, combined with traditional supervised cross-
entropy training objective, which enables bilingual syntax-
consistency-based translation. The proposed SyntAligner ef-
fectively aligns the source and target syntactic structures
across multiple languages.
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