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Abstract

Large model size and high computational complexity prevent
the neural machine translation (NMT) models from being de-
ployed to low resource devices (e.g. mobile phones). Due to
the large vocabulary, a large storage memory is required for
the word embedding matrix in NMT models, in the mean-
time, high latency is introduced when constructing the word
probability distribution. Based on reusing the word embed-
ding matrix in the softmax layer, it is possible to handle the
two problems brought by large vocabulary at the same time.
In this paper, we propose Partial Vector Quantization (P-VQ)
for NMT models, which can both compress the word em-
bedding matrix and accelerate word probability prediction
in the softmax layer. With P-VQ, the word embedding ma-
trix is split into two low dimensional matrices, namely the
shared part and the exclusive part. We compress the shared
part by vector quantization and leave the exclusive part un-
changed to maintain the uniqueness of each word. For accel-
eration, in the softmax layer, we replace most of the multi-
plication operations with the efficient looking-up operations
based on our compression to reduce the computational com-
plexity. Furthermore, we adopt curriculum learning and com-
pact the word embedding matrix gradually to improve the
compression quality. Experimental results on the Chinese-
to-English translation task show that our method can reduce
74.35% of parameters of the word embedding and 74.42%
of the FLOPs of the softmax layer. Meanwhile, the average
BLEU score on the WMT test sets only drops 0.04.

Introduction
Based on the encoder-decoder framework, the neural ma-
chine translation (NMT) (Bahdanau, Cho, and Bengio 2014)
has developed rapidly in recent years. However, large model
size and high computational complexity prevent the NMT
models from being deployed to low resource devices (e.g.,
mobile phones). In NMT models, to represent the discrete
words, the word embedding has become a basic component
which automatically learns the word representations during
training. Due to the large vocabulary, the word embedding
matrix requires large storage memory, which dominates the
NMT model size. Take the standard Transformer model as
an example. When the total vocabulary size reaches 50,000,
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the word embedding matrix size accounted for 36.6% of the
whole model. Moreover, the impact of the large vocabulary
size is more than that. In the softmax layer, when projecting
the output of the top hidden layer (which is also called the
context vector) onto a probability distribution over all the
words in the vocabulary, an extremely high computational
complexity is required. Meanwhile, an output embedding
matrix with the same size of the target word embedding ma-
trix is also required. Fortunately, based on the same shape of
the two matrices, early studies (Inan, Khosravi, and Socher
2016; Press and Wolf 2016) reuse the target word embed-
ding to project the context vector, which is proved to perform
well in NMT models. But the high computational complex-
ity to compute word probabilities still remains to be solved.
In auto-regressive sequence generation configure, this oper-
ation of probability calculation even runs a couple of times
to generate the whole sequence, which causes a much higher
computational complexity. For instance, to generate a 10-
word sequence with vocabulary size 30,000, the total FLOPs
(Hunger 2005) of the softmax layer reaches 307.2 million.
When deploying this model to a low resource environment,
the translation speed will be quite slow.

Based on vector quantization (VQ) (Burton, Shore, and
Buck 1983; Gersho and Gray 2012), many variant works
greatly reduce the word embedding size by sharing param-
eters. This gives us the inspiration that we only need to
project the context vector by the shared parameters when
adopting these works in the softmax layer. This operation
requires less computational complexity. However, previous
VQ works (Shu and Nakayama 2017; Shi and Yu 2018) only
focus on the compression of word embedding rather than the
output embedding in the softmax layer. Parameter sharing in
the softmax layer leads to two potential problems - parame-
ter oscillation problem and ambiguity problem. Another big
challenge in VQ works is how to maintain the quality of
the model after compression. When the embedding matrix
is directly compressed into a much smaller one, a big infor-
mation gap occurs and thus may harm the model quality.

To address the above issues, we propose a simple but very
effective method, the Partial Vector Quantization (P-VQ), to
reduce the computational complexity in the softmax layer
with partial word embedding compression. We tie the tar-
get word embedding matrix and the output embedding ma-
trix following Inan, Khosravi, and Socher (2016). The tied
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matrix is called the embedding matrix in the rest. Then the
embedding matrix is split into the shared part and the ex-
clusive part. The shared part is compressed by VQ, in the
meantime the exclusive part is unchanged to avoid the po-
tential problems. Besides, in the softmax layer, we replace
most of the multiplication operations with the more efficient
looking-up operations to reduce computational complexity.
To avoid the big information gap and improve the compres-
sion quality, following the idea of curriculum learning (Ben-
gio et al. 2009) that encourages students to learn from easy
to hard, we increase the compression rate by degrees during
the compression phase. In this way, we make the informa-
tion gap much smaller in each compression step and elim-
inate it with continuous training. We evaluate our method
on the Chinese-to-English translation task. The empirical re-
sults show that, P-VQ can reduce both parameter number of
the embedding matrix by 74.35% and the required FLOPs in
the softmax layer by 74.42%, while keeping a high transla-
tion quality on WMT test sets. Overall, the main contribu-
tions in our work are as follows,
• The proposed P-VQ takes advantage of partial embed-

ding parameter sharing to compress the embedding ma-
trix. Different from other VQ variant works, our method
preserves the exclusive part and thus avoid the two poten-
tial problems to have a better performance.

• Based on partial compression, our method reduces the
computational complexity of the softmax layer at the
same time by replacing multiplication operations with the
efficient looking-up operations.

• We adopt curriculum learning and compress the embed-
ding matrix gradually, which significantly improves the
compression quality.

Related Works
In the literature of neural language processing, there have
been several works that try to resolve the problem caused by
the large vocabulary.

Some works focus on reducing the computational com-
plexity in the softmax layer. Hierarchical softmax methods
(Goodman 2001; Morin and Bengio 2005; Mikolov et al.
2011) cluster the words in the vocabulary V into k groups
first and then predict the next word by two steps: predict
the group, then limit the word prediction to this group. In
this way, the computational complexity O(|V |) is roughly
decomposed into O(k+ |V |/k). Unfortunately, hierarchical
softmax methods even increase the size of the model be-
cause an extra weight matrix is needed for the group pre-
diction. Binary code prediction (Oda et al. 2017) represents
the words by binary codes that can speed up both training
and predicting process, but the translation quality drops rel-
atively high when the training set is large.

Some other works focus on reducing the embedding size.
Liu et al. (2019) use shared-private word embedding for
bilingual NMT models to reduce the embedding dimensions,
it has little impact on computational complexity. Differenti-
ated softmax (Chen, Grangier, and Auli 2015) uses a struc-
ture sparse matrix to reduce both embedding matrix size
and computational complexity at the same time. But it only

slightly compresses the embedding matrix size. Factorized
embedding parameterization (Lan et al. 2019) build the word
embedding by a low rank matrix, which can be decomposed
into two lower dimensional matrices, this property can also
be used to reduce computational complexity. Structure prun-
ing (Anwar, Hwang, and Sung 2017) is mainly used in con-
volutional neural networks to drop weak channels, which
can also cut off dimensions with smaller values in the em-
bedding matrix.

Vector quantization (VQ) (Burton, Shore, and Buck 1983;
Gersho and Gray 2012) is widely used in many tasks (Soong
1985; Faundez-Zanuy 2007; Jegou, Douze, and Schmid
2010). Many VQ variations are employed to reduce the word
embedding size by using multiple codes. These variations
can be approximately divided into two categories. One is
additive quantization (Babenko and Lempitsky 2014). For
instance, LightRNN (Li et al. 2016) uses the 2-component
shared embedding for word representation, each word is as-
signed two codes; Deep composition (Shu and Nakayama
2017) uses a number of codes for word representation. An-
other is product quantization (Jegou, Douze, and Schmid
2010). The structured word embedding (Shi and Yu 2018)
and the KD encoding (Chen, Min, and Sun 2018) both
belong to this category. Similar with Shu and Nakayama
(2017), they represent each word by a D-dimensional code
with a cardinality of K, but with different code assignment
strategies. The above VQ variations all have the ability to
reduce the computational complexity, but they have to face
the two potential problems at the same time.

Our Method
In this section, we introduce our proposed Partial Vector
Quantization algorithm in details.

Problem Formulation
In neural machine translation (NMT) models, words are rep-
resented by vectors, which form the word embedding matrix
W ∈ R|V |×d. Here V is the vocabulary of all the words,
while d is the length of the vectors which is also called the
hidden dimension. The parameter number Param. of W is:

Param. = |V | × d (1)

When focusing on the decoder, by reusing W ∈ R|V |×d
in the softmax layer, the probability P i

t of the i-th word in
the vocabulary at position t can be constructed as:

P i
t =

exp(Y i
t )∑

j∈V exp(Y
j
t )

(2)

where Yt ∈ R|V | is the logit values of all the words:

Yt = Wht−1 + b (3)

In the above function, b ∈ R|V | is the bias vector. The vector
ht ∈ Rd is the output context at position t between decoder
and softmax layer (e.g., output of the Transformer decoder),
which is also called the context vector.

We use the floating point operations (FLOPs) to repre-
sent the computational complexity. Following the descrip-
tion in Molchanov et al. (2016), for fully connected layers
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Figure 1: Partial Vector Quantization.

with bias, FLOPs can be calculated by 2I × O, where I
and O are the input and output dimensionality respectively.
Thus, to compute Yt, the number of required FLOPs is:

F = 2d× |V | (4)

This work is devoted to reducing Param. and F .

Partial Vector Quantization
Previous VQ variant works show excellent performance in
the word embedding compression. However, they have two
potential problems when reusing the word embedding ma-
trix in the softmax layer: (i) parameter oscillation problem
and (ii) ambiguity problem. To construct word probability
distribution, the word logits Yt is computed as Eq. (3). But
in these works, parameters of W are highly shared, which
results in a fact that word logits of each word is made up
of the word logits of the other words. In another word, each
contribution of the output probability of one word is always
affected by others. These words will try to adjust the same
embedding parameters during training, which may make the
model hard to converge ((i) parameter oscillation problem).
Due to the compression strategy, some of these works even
have a potential risk that different words may have the same
code representation (Chen, Min, and Sun 2018). That means
these words will always have the same probability during
predicting, which makes the model confusing in determin-
ing the final output word ((ii) ambiguity problem).

We note that the reason for the above problems is that
the words have no unique representations, the embedding
parameters of each word always share with the others. To
avoid these potential problems, we propose partial compres-
sion to keep the uniqueness of each word, which is also an
important technical innovation in our work.

In P-VQ, words in the vocabulary are allocated into k
groups, where k is much smaller than the vocabulary size

|V |. With a given window size w ∈ [1, . . . , d − 1], a group
embedding matrix Wb ∈ Rk×w, which is also named code-
book, is built to represent each group. Each word is assigned
a code c ∈ [1, ..., k] to find its own group. Meanwhile, an
exclusive embedding matrix We ∈ R|V |×(d−w) is also built
for each word to retain its exclusive embedding vector ve. In
another word, the full embedding vector vn of the n-th word
in the vocabulary is concatenated by a shared group vector
and an exclusive vector:

vn = f concat(f lookup(Wb, c
n), vne ) (5)

Here f lookup(a, b) means to find elements in a by the in-
dex b, while f concat(a, b) means to concatenate matrix a and
matrix b by the last dimension.

In practice, as shown in Figure 1, we first split the word
embedding matrix W ∈ R|V |×d into the shared part Ws ∈
R|V |×w and the exclusive part We ∈ R|V |×(d−w) by a fixed
window size w ∈ [1, . . . , d− 1], which means:

W = f concat(Ws,We) (6)

Then Ws is compacted into the codebook Wb ∈ Rk×w and
the code assignment matrix C = {cn} V

n=1 by VQ, where
cn ∈ [1, ..., k] is the code of the n-th word in the vocabulary.

By sharing the embedding vectors of the shared part
among words in the same group, the embedding matrix now
have k × w + |V | × (d − w) floating point parameters
(Wb ∈ Rk×w and We ∈ R|V |×(d−w)) and |V | integer pa-
rameters (C ∈ R|V |). Compared with Eq. (1), the reduced
floating point parameter number ∆Param. is:

∆Param. = (|V | − k)× w (7)

The above function shows, when the vocabulary size |V | is
fixed, the bigger the w is or the smaller the k is, the higher
the compression rate is.

Efficient Computing in Softmax
After compact the word embedding matrix by P-VQ, we
now are able to construct the word probability distribution
efficiently by reducing the computational complexity of the
logit value calculation in the softmax layer. According to
Eq. (5), the full word embedding matrix W ∈ R|V |×d can
be restored by the codebook matrix Wb ∈ Rk×w, the code
assignment matrix C ∈ R|V | and the exclusive embedding
matrix We ∈ R|V |×(d−w):

W = f concat(f lookup(Wb, C),We) (8)

For the sake of more concise expression, we hide the sub-
script of the position t. Combined with Eq. (3), the con-
text vector h ∈ Rd can be projected onto the logit values
Y ∈ R|V | by Eq. (8) separately.

We first reuse the window size w to split h into hb ∈ Rw

and he ∈ Rd−w, which means:

h = f concat(hb, he) (9)

Then the logit values Y ∈ R|V | can be computed as:

Y = Yvq + Yp + b (10)
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Figure 2: The efficient way to compute the word logits Y .
The operations in the dashed box are the core operations to
reduce the computational complexity. Here k, w, d, |V | are
all matrix shapes.

where

Yvq = f lookup(Wb, C)hb (11)

and

Yp = Wehe (12)

To compute Yvq , considering the efficiency difference be-
tween different operations, we change the order of opera-
tions in Eq. (11) into a more efficient way:

Yvq = f lookup(Wbhb, C) (13)

which means instead of first reconstructing the embedding
matrix of the shared part Ws and then computing the logit
values Yvq for all the words respectively, we first compute
the logit values of all groups by the group embedding ma-
trix Wb and then restore Yvq by looking-up the group logit
values with the code assignment matrix C. In another word,
we use more efficient looking-up operations instead of mul-
tiplication operations with highly computational complexity.
This is the key reason why our method can reduce the com-
putational complexity.

Figure 2 shows how we compute the logit values over all
the words in the vocabulary efficiently with P-VQ in the soft-
max layer at each position.

Curriculum Learning for Compression
When applying P-VQ algorithm, a strategy is necessary to
compress the embedding matrix. In this subsection, we will
discuss on this issue.

A good strategy for compression is quite important for
vector quantization (VQ) methods, which significantly in-
fluences the compression quality and thus the performance
of the whole model. For one compression step in previ-
ous VQ variations, Shi and Yu (2018) use k-means to learn
the codebook and code assignment in each slice, while Shu

Figure 3: Curriculum learning phase. In each quantitative
learning step, we first use P-VQ to compress the shared part
and then replace the shared part by the quantization result.

and Nakayama (2017) and Chen, Min, and Sun (2018) use
a straight-forward method based on the Gumble-Softmax
reparameterization trick (Maddison, Mnih, and Teh 2016;
Jang, Gu, and Poole 2016). They have achieved good effects
in their respective tasks. However, they compress the word
embedding matrix directly with a very large compression
rate. This results in a big information gap between word em-
bedding matrix and other parameters in the model, or worse
yet, harms the model quality.

Inspired by curriculum learning which is widely used in
machine learning area (Han, Mao, and Dally 2015; Pentina,
Sharmanska, and Lampert 2015; Matiisen et al. 2019) espe-
cially in machine translation (Platanios et al. 2019; Kocmi
and Bojar 2017), we set the compression rate from small to
large during the curriculum learning phase (i.e. compression
phase) and compress the embedding matrix gradually to help
training process.

To divide words into groups by the word embeddings, a
pre-trained embedding matrix is required, which means we
first need to pre-train a base model. Then we compress the
pre-trained embedding matrix by curriculum learning.

In curriculum learning phase, to make the information gap
small, we start with a small compression rate and set a big
cluster number kbegin as current cluster number kcurr. Then
we decrease kcurr by stepk gradually until kcurr reaches
the expected target number kend. We implement quantita-
tive learning every stepc step. In each quantitative learning
step, we first take the word embedding matrix from the train-
ing model. Second, we quantize the shared part by cluster-
ing words into kcurr groups to learn the codebook and code
assignment. Third, we replace values of the shared part by
looking-up the codebook with the code assignment. Finally,
we assign the new embedding values to the word embedding
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Algorithm 1: Curriculum Learning for Compression
params: Embedding matrix W = f concat(Ws,We);

Other parameters Po;
Codebook Wb;
Code assignment I;
Total learning step stepmax;
Cluster step stepc;
Begin cluster number kbegin;
End cluster number kend;
Decay step of cluster number stepk.

while pre-training do
train(Ws,We, Po);

end
kcurr = kbegin;
stepcurr = 0;
while curriculum learning do

if stepcurr%stepc == 0 then
Wb, I = f cluster(Ws, kcurr); //quantize
Ws = f lookup(Wb, I); //replace
if kcurr > kend then

kcurr = fmax(kcurr − stepk, kend);
end

end
train(Ws,We, Po);
stepcurr + +;
if stepcurr ≥ stepmax then

break;
end

end
while fine-tuning do

train(Wb,We, Po);
end

matrix in the training model. The other training steps be-
tween two quantitative learning steps are just the same with
pre-training. The word embedding matrix stays the uncom-
pressed form (Eq. (6)) during curriculum learning phase. Af-
ter curriculum learning, we first change the word embedding
matrix into the compact form (Eq. (8)). Then we fix the code
assignment and fine-tune the codebook to better fit the other
parameters.

Figure 3 shows the operations in quantitative learning
step during curriculum learning phase while Algorithm 1
shows the details through the pseudo code. In Algorithm 1,
f cluster(a, b) means to cluster elements into b groups by the
element weight matrix a, and return back the centroids and
the group ids of all the elements, while fmax(a, b) means to
return back the bigger value between a and b. The operation
train(∗∗args) means to update parameters in the parameter
set args by common step loss.

Experiments
To test our method, we conducted a set of experiments on
the Chinese-to-English translation task and the English-to-
French translation task. We report the experimental results
of Chinese-to-English translation task in the main part while

another in appendix. In the main part, we mainly compare
the embedding matrix compression rate, the computational
complexity reduction rate of the softmax layer, and the trans-
lation quality among different methods, measured by the
number of parameters, the FLOPs, and the BLEU-4 (Pap-
ineni et al. 2002) score respectively. Please note that we only
focus on the target embedding matrix and the softmax layer
when measuring the number of parameters and the FLOPs.

Corpus
We use the Chinese-to-English WMT corpora as our train-
ing corpus. In data preparation phase, we clean the corpus
by erasing some noisy characters and deleting sentences
with length rules. After data cleaning, the corpus contains
about 30 million Chinese-to-English parallel sentences. In
vocabulary preparation phase, we first use the Moses tok-
enizer (Koehn et al. 2007) for subword tokenization of the
English sentences while using the in-house tool for the Chi-
nese sentence segmentation. Then we use BPE (Sennrich,
Haddow, and Birch 2015) for the vocabulary reduction to
the best of our ability. We set the BPE code size to 15, 000
for both source and target language in the BPE code learning
step. After applying BPE to the corpus, we build the vocab-
ulary with the size of 25, 000 for the source sentences and
20, 000 for the target sentences. In the evaluation step, we
use WMT17, WMT18, and WMT19 test sets to evaluate the
translation quality for each method.

Implementation
We use the standard Transformer (Vaswani et al. 2017) as
implemented in OpenNMT-tf (Klein et al. 2017; Abadi et al.
2016) with 6 layers, 512 embedding dimensions and 8 at-
tention heads as our baseline model. Due to the low overlap
between the vocabularies of the source and target side, we
require two word embedding matrices for the two sides re-
spectively, and reuse the target word embedding matrix in
the softmax layer.

We first train a baseline model as the pre-trained model.
Then we only implement the compression methods to the
target word embedding matrix, to test the effects of these
methods in both compression and computational complexity
reduction. For those methods requiring a pre-trained embed-
ding matrix, we implement them on the pre-trained model
separately and then fine-tune these models. Implementation
details are as follows:

• Factorized Embedding Parameterization (FEP) (Lan et al.
2019): the lower rank is set to 128. We first train the model
with FEP from scratch. To improve its translation quality,
we further use the baseline model as the teacher and fine-
tune it by knowledge distillation (Kim and Rush 2016).

• Structure Pruning (SP) (Anwar, Hwang, and Sung 2017):
the final pruning rate of the pre-trained embedding matrix
is set to 75%. During pruning phase, we adopt curriculum
learning and set the learning step number T to 10000. We
prune the hidden dimensions at every 10 steps. At each
pruning step, the pruning rate is updated by 75% × t/T ,
where t is the current step number.
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Param. FLOPs Speed (tok/s) BLEU (%)
N(×106) r(%) N(×106) r(%) GPU CPU WMT17 WMT18 WMT19 ∆̄

Baseline 10.24 - 20.48 - 52.98 8.41 24.23 23.50 25.68 -
FEP 2.63 74.35 5.38 73.72 0.95× 1.67× 22.68 20.88 23.12 -2.24
+kd - - - - - - 23.67 22.02 24.52 -1.06
SP 2.56 75 5.25 74.36 0.97× 1.65× 23.89 23.01 24.76 -0.58
DC 3.38 67.03 5.49 73.19 0.52× 1.10× 23.64 22.40 24.28 -1.03
LR 0.11 98.89 0.32 98.44 0.99× 1.89× 19.53 18.15 19.68 -5.35
SE 2.72 73.42 5.26 74.32 0.83× 1.41× 23.65 22.99 24.83 -0.64
P-VQ (ours) 2.63 74.35 5.24 74.42 1.02× 1.76× 24.26 23.54 25.48 -0.04

Table 1: Measurements over different methods. N(×106) means the number of the parameters or FLOPs while r(%) means
the reduction rate. Speed is the real translation speed of the whole model, while tok/s means how many output tokens per
second when translating. ∆̄ means the average reduction of the BLEU score. DC, LR, SE and P-VQ (ours) are variant methods
of vector quantization.

code weights indices Size
length ×106 ×106 MB

DC 64 2.10 1.28 12.88
LR 2 0.07 0.04 0.43
SE 8 2.56 0.16 10.38
P-VQ (ours) 1 2.61 0.02 10.02

Table 2: Real compressed embedding sizes on the disk.

• Deep Composition (DC) (Shu and Nakayama 2017): the
code length and the code depth are both set to 64. We fol-
low the original work to learn the code assignment from
the pre-trained embedding matrix.

• LightRNN (LR) (Li et al. 2016): the word allocation table
size is set to 150×150. We follow the bootstrap procedure
given in Li et al. (2016) to build the table. Different from
the original work, due to the large difference between the
model structures, we use the pre-trained embedding ma-
trix to guide the table learning and only learn the word
allocation table once. We use the minimum square error
as the table learning loss.

• Structured Embedding (SE) (Shi and Yu 2018): the code
length is set to 8 while 5000 for the code depth to ensure
a comparable parameter number, and k-means++ (Arthur
and Vassilvitskii 2006) as implemented in SciPy (Virtanen
et al. 2020) is used to learn the code assignment by the
pre-trained embedding matrix. When clustering, we run
the cluster algorithm 10 times and use the best result, the
max iteration in each run is 100.
• Partial Vector Quantization (P-VQ, our method): we set

the window size w = 384 and the end cluster number
kend = 128. To get a balanced cluster result, we use the
balanced k-means (Malinen and Fränti 2014) as our clus-
ter algorithm, while the running settings are the same with
in SE. For curriculum learning, we set the learning step
stepmax = 10000, the cluster step stepc = 1000, the be-
gin cluster number kbegin = 1024, and the cluster number
decay step stepk = 128.

In any training phase, we use the lazy Adam optimizer

(Kingma and Ba 2014) with β1 = 0.9, β2 = 0.98 and
ε = 10−9. We use the Noam decay as the learning rate
scheduler with 4000 warmup steps and a factor of learn-
ing rate of 2.0. With batch size of 128 in the sentence level
on 4 P40 GPUs, the training step for baseline and FEP is
at least 300k, the fine-tuning step is at least 200k. We stop
each model when the model loss is stable within 10k steps.
In predicting phase, we set beam size to 4, and select the best
BLEU score of the models in the last 10k steps to represent
the model quality. The batch size is set to 1 when testing the
real translation speed. The speed test environment configu-
ration of GPU is Tesla P40 with CUDA 10.2 while that of
CPU is GNU/Linux x86 64.

Results
Considering that FLOPs is not the only factor that affects the
real inference time, we report the real translation speed on
both GPU and CPU environments. Since GPUs have the ca-
pability of parallel computing which abates the impact of the
matrix size on the efficiency in matrix multiplication, the ac-
tual acceleration effect in GPU environment is not obvious,
or even worse because some extra operations have low effi-
ciency in GPUs. For more concise expression, we use the ab-
breviations defined in subsection to represent each method.
Table 1 shows the measurements over different methods.

According to the overview of Table 1, with approximately
the same number of parameters and FLOPs, P-VQ (our
method) has the fastest translation speed and the best trans-
lation quality among these comparable works. Although LR
shows the best compression and acceleration rate, it sacri-
fices extremely high translation quality.

Comparison results over VQ variations show that the real
translation speed in disproportion to the number of FLOPs.
This problem is more serious in DC and SE. They both use
a number of codes to represent words (64 in DC while 8 in
SE), which means they both require the looking-up opera-
tion for multiple times. The complexity of the looking-up
operation is O(1) theoretically, but it seems that this oper-
ation cannot go down well with our test environments. Al-
though it is possible to eliminate this effect by optimizing
the bottom algorithm, the incompatibility is a potential trou-
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BLEU
WMT17 WMT18 WMT19 ∆̄

P-VQ 24.26 23.54 25.48 -0.04
w/o CL 23.82 22.93 24.90 -0.58

Table 3: BLEU score comparison.

0 2000 4000 6000 8000 10000 12000

Train step
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Figure 4: Training loss comparison.

ble when deploying these translation models to applications.
We also report the true storage size of the embedding ma-

trices compressed by the VQ variations in Table 2. The float-
ing points and integers are stored with the format of float32
and int32 respectively. Results show that, in VQ variations,
when the code length increases, the code assignment matrix
also occupies a relatively large memory.

In Table 1, we note that with curriculum learning, both
SP and P-VQ perform better than other methods on each
measurement. To show the influence of curriculum learn-
ing, we conduct another experiment about P-VQ by discard-
ing the curriculum learning. In this experiment, we run only
one quantitative learning step by the target cluster number
kend = 128 to compress the embedding matrix, and then
fine-tune the compressed matrix with the other parameters.
Detailed comparisons of the BLEU score and the training
loss are reported in Table 3 and Figure 4 respectively.

Table 3 shows curriculum learning significantly improves
the translation quality, which can be explained in Figure 4.
In Figure 4, steps before 0 are the pre-training steps. As
shown in Figure 4, without curriculum learning, because of
the large compression rate, a huge information gap occurs
in the quantitative learning step (step 0). Even after a long
fine-tuning, the embedding parameters still cannot well fit
the model. With curriculum learning, when we run the quan-
titative learning step at every 1000 steps, an information gap
also occurs. But these gaps are smaller and are soon elimi-
nated with training.

We also compare the BLEU scores of P-VQ without cur-
riculum learning (P-VQ w/o CL in Table 3) and VQ vari-

w Param. FLOPs BLEU
×106 ×106 WMT17

128 7.73 15.45 24.36
256 5.21 10.39 24.30
384 2.68 5.34 24.20
448 1.41 2.81 23.47

Table 4: Impact of window size w on model performance.

k Param. FLOPs BLEU
×106 ×106 WMT17

512 2.78 5.53 24.32
256 2.68 5.34 24.20
128 2.63 5.24 24.26
64 2.60 5.19 24.04
32 2.59 5.16 23.28

Table 5: Impact of group number k on model performance.

ations (DC, SE in Table 1). Result shows that, in terms of
approximately the same number of parameters, with the ex-
clusive part, even the simplest VQ achieves a higher model
quality. However, previous works already show that the per-
formance of these VQ variations is much better than that
of simple VQ. This confirms the importance of the word
uniqueness, and also reflects the parameter oscillation prob-
lem we were worried about when using these methods in the
softmax layer.

Furthermore, we analyze the impact of the two hyper-
parameters in P-VQ, namely, the group number k and the
window size w. We fix k in Table 4 to 256 and w in Table
5 to 384. As revealed by Table 4, the BLEU score remains
stable during w is set from 128 to 384 and has a sharp drop
when w raise to 448, which means a suitable w can well
balance the model performance. Table 5 further shows that
k has a smaller effect than w on the parameter number and
FLOPs, which is reasonable according to Eq. (7).

Conclusion
In this work, we propose a simple but very effective method,
the Partial Vector Quantization, to address the problem
brought by large vocabulary in neural machine translation
models. Based on partial compression, our method can re-
duce the computational complexity of the softmax layer
by replacing multiplication operations with the efficient
looking-up operations. To improve the compression quality,
we follow the idea of curriculum learning and compress the
embedding matrix gradually. Experimental results show that
our method can significantly reduce the number of both the
embedding parameters and the FLOPs of the softmax layer
while keeping a high translation quality.
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Appendix
Different from the Chinese-to-English translation task, some
translation tasks share a joint vocabulary between source and
target languages (i.e., English and French) because of the
high overlap between their vocabularies after tokenization.
To verify the effectiveness of our method, we further evalu-
ate our method on one of these tasks - the English-to-French
translation task.

Corpus
We use English-to-French WMT corpora as our training cor-
pus. In data preparation phase, we first clean the corpus by
deleting sentences with length rules. After data cleaning, the
corpus contains about 34 million English-to-French parallel
sentences. We use Moses tokenizer for subword tokeniza-
tion of the parallel sentences. To build the joint vocabulary,
we set the BPE code size to 30,000 in the BPE code learning
step and learn the BPE codes by all the parallel sentences.
After applying BPE to the corpus, we get the joint vocabu-
lary from the processed corpus with the size of 35,106. In
the evaluation step, we use WMT14 test set to evaluate the
translation quality.

Implementation
Compared with the Chinese-to-English translation task, the
differences in implementation are as follows: (i) the English-
to-French translation task requires only one word embed-
ding matrix for the joint vocabulary and also reuse it in the
softmax layer (which is also called the three-way weight ty-
ing method); (ii) for curriculum learning, we set the learning
step stepmax = 30000, the cluster step stepc = 2000. The
other settings are the same as before (w = 384, kend = 128,
kbegin = 1024, stepk = 128).

Results
Experimental results of the English-to-French translation
task are shown in Table 6. As the embedding size is larger
than the Chinese-to-English translation task, our method in
this task shows larger improvement in both compression and
acceleration.

Due to the three-way weight tying method, the quality of
the embedding compression has great impact on the model
performance. As shown in Table 6, the translation quality
only drops slightly in the English-to-French translation task

Baseline P-VQ (ours)

Param. N(×106) 17.97 4.57
r(%) - 74.54

FLOPs (×106) 35.95 9.12
r(%) - 74.63

Speed GPU 51.39 1.06×
(tok/s) CPU 6.45 1.96×
BLEU WMT14 39.87 39.58

∆̄ - -0.29

Table 6: Evaluation of P-VQ on English-to-French transla-
tion task.

after compression, which also verifies the effectiveness of
our method.
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