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Abstract

This paper presents our task-oriented dialog system UBAR
which models task-oriented dialogs on a dialog session level.
Specifically, UBAR is acquired by fine-tuning the large pre-
trained unidirectional language model GPT-2 on the sequence
of the entire dialog session which is composed of user utter-
ance, belief state, database result, system act, and system re-
sponse of every dialog turn. Additionally, UBAR is evaluated
in a more realistic setting, where its dialog context has access
to user utterances and all content it generated such as belief
states, system acts, and system responses. Experimental re-
sults on the MultiWOZ datasets show that UBAR achieves
state-of-the-art performances in multiple settings, improving
the combined score of response generation, policy optimiza-
tion, and end-to-end modeling by 4.7, 3.5, and 9.4 points re-
spectively. Thorough analyses demonstrate that the session-
level training sequence formulation and the generated dialog
context are essential for UBAR to operate as a fully end-to-
end task-oriented dialog system in real life. We also examine
the transfer ability of UBAR to new domains with limited
data and provide visualization and a case study to illustrate
the advantages of UBAR in modeling on a dialog session
level.1

Introduction
Task-oriented dialog (TOD) systems aim to assist users with
various tasks such as hotel reservations and ticket booking
through natural language conversations. Recent years have
seen a rapid growth of interest in developing data-driven ap-
proaches for this task from both the research community and
industry (Zhang et al. 2020b). The presence of wide range of
domains requires TOD systems to have better transfer ability
while remaining practical in real conversations.

The functions of a task-oriented dialog system can be un-
derstood by introducing the traditional pipeline approach
which consists of several consecutive modules. As shown
in Figure 1, a dialog state tracker (DST) is equipped to es-
timate the belief state from the user utterance. The belief
state can be used to query a task-related database (DB) for
results such as the number of entities that match the user’s
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1Code and technical appendix available at https://github.com/
TonyNemo/UBAR-MultiWOZ

Database

User System

Hi, I need a guest house with free WiFi please.
Belief State: hotel-{type=guest house, 

internet=yes}

I have 33 guest houses with Internet, which 
area would you prefer?

System Act :
hotel-request-{area}

hotel-inform-{Internet, 
choice}

I also need free parking, and I would prefer a 
4 star place.

Belief State: hotel-{type=guest house, 
internet=yes, parking=yes, stars=4}

You do have a few options, including Alexander b&b
which offers free WiFi as well as free parking. It is also 

inexpensive, and rated 4 stars.

Database System Act :
hotel-inform-{price, 

name, choice, Internet, 
parking, stars}

Great. Can you book that for 4 nights?
……

Figure 1: An example of the first two-turn interactions be-
tween a user and a TOD system.

goal. Then, a dialog policy learning module is applied to de-
termine the next system act, followed by a natural language
generation (NLG) module that maps the system act to a natu-
ral language response. These modules are often modeled and
evaluated separately. The apparent drawback of the pipeline
approach is that error propagation from the cascaded com-
ponents can be detrimental to the subsequent subtasks (Liu
and Lane 2018).

From a big picture perspective, the methodology for
task-oriented dialog systems is gradually progressing from
pipeline approaches to end-to-end modeling. Recently, some
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work attempts to incorporate the intermediate supervision,
i.e., the belief state and system act, and train systems in
joint learning settings (Chen et al. 2019; Wang et al. 2020).
They jointly generate system act and response, yet still us-
ing ground truth belief state. Some methods have come close
to modeling TOD in an end-to-end manner, but they tend
to use different decoders for each component. For example,
Lei et al. (2018) and Liang et al. (2020) use a seq2seq model
to generate belief spans and responses. Zhang, Ou, and Yu
(2020) propose multiple decoders to generate belief spans,
act spans, and responses.

On the other hand, the large pre-trained language model
GPT-2 (Radford et al. 2019) is shown to be capable of mod-
eling the dialog pipeline in a unified way. Initially, Ham et al.
(2020) propose to train a unified language model for task-
oriented dialogs with a single sequence in format of dia-
log history (all previous user utterances and responses), user
utterance, belief state, system act, response of the current
turn, and evaluate for DST and policy optimization. Simple-
TOD (Hosseini-Asl et al. 2020) and SOLOIST (Peng et al.
2020a) further generalize this idea to an end-to-end setting
where the belief states are also generated instead of using
ground truth values. They also incorporate database results
into the training process. In spite of the promising results
from leveraging pre-trained language models like GPT-2 for
end-to-end TOD systems, these methods do not fully explore
the process of training and evaluating towards a real-life
task-oriented dialog setting. Specifically, these GPT-2-based
TOD systems are trained and evaluated on a dialog turn level
instead of the dialog session level, which has several limita-
tions. First, the dialog history of these methods only consists
of user utterances and system responses but leaves out the in-
termediate information such as belief states and system acts
of the previous turns. These intermediate information could
be a helpful reference for the generation of the current turn.
Second, they use the ground truth responses from annota-
tions in the dialog history, which makes the generation of a
dialog turn independent of other turns in a dialog session.
Third, the assumption of having access to the ground truth
system responses is invalid in real conversations.

To address the aforementioned limitations and advance
towards a fully end-to-end TOD system, we propose UBAR
to model task-oriented dialogs on a dialog session level. We
fine-tune GPT-2 on the sequence of the entire dialog ses-
sion consisting of user utterance, belief state, database re-
sult, system act, and system response of every dialog turn.
Such training data formation resembles the workflow of a
real-life task-oriented dialog session, which allows UBAR
to learn task completion and language generation over the
course of a dialog session. UBAR is able to condition on
the previous belief states and system acts in the dialog con-
text, making the process of inference and planning easier for
the current turn. Since in real conversations, a TOD system
should be able to access the belief states it predicted and the
system acts and responses it generated throughout the entire
dialog session. We further propose to evaluate UBAR with
the dialog context of generated content instead of the ground
truth. This encourages UBAR to adaptively supplement and
make amends in response to the current user utterance in or-

der to stay consistent and coherent during the entire session,
and ultimately contribute to the task completion goal.

We conduct experiments on the MultiWOZ datasets
(Budzianowski et al. 2018; Eric et al. 2019) in multiple
settings including response generation, policy optimization,
end-to-end modeling and dialog state tracking, and compare
UBAR with its GPT-2-based predecessors and other strong
baselines. UBAR achieves state-of-the-art performances in
all compared settings. We perform thorough analysis to
show that the session-level training sequence formulation
and all-generated dialog context are essential for UBAR to
operate as a fully end-to-end TOD system in real life. We
also examine the transfer ability of UBAR to new domains
given limited data, and provide visualization and case study
to illustrate the advantages of modeling task-oriented di-
alogs on a session level.

Related Work
Towards End-to-End Task-Oriented Dialog
With the emergence of large-scale multi-domain TOD
datasets (Budzianowski et al. 2018; Shah et al. 2018; Peskov
et al. 2019), the methodology for task-oriented dialog sys-
tems can be roughly seen to gradually progress from classi-
fication and modularized modeling to generation and end-to-
end modeling over the recent years. Early methods for DST
are commonly formulated as a classification task, where
the dialog state representation maintains a distribution over
all possible states for each slot (Henderson, Thomson, and
Young 2013, 2014; Zhang et al. 2019b). To generalize to
tracking unknown slot values and multi-domain settings,
generative methods are proposed to extract slot values for
DST (Zhong, Xiong, and Socher 2018; Xu and Hu 2018;
Wu et al. 2019a). Similarly for dialog policy learning, sys-
tem acts are originally encoded in vector representations
such one-hot vectors and used for response generation (Chen
et al. 2019; Zhao, Xie, and Eskenazi 2019; Wen et al. 2017).
Then, they are jointly trained and generated with system re-
sponses (Wang et al. 2020; Zhang, Ou, and Yu 2020). For
end-to-end modeling, Lei et al. (2018) propose a two-stage
CopyNet (Gu et al. 2016) that generates belief spans and
system response jointly via a single seq2seq architecture.
Zhang, Ou, and Yu (2020) propose a domain-aware multi-
decoder model that uses separate decoders to generate belief
spans, act spans and responses. Recently, pre-trained lan-
guage model like GPT-2 is also leveraged for end-to-end
modeling in a unified way (Peng et al. 2020a; Hosseini-Asl
et al. 2020). Besides, end-to-end TOD systems that directly
operate on dialog history and interact with knowledge base
without any intermediate supervision (Eric and Manning
2017; Madotto, Wu, and Fung 2018; Wu, Socher, and Xiong
2019) also receive growing attention, but are not within the
scope of our discussion.

Pre-trained Language Models for Dialog Systems
Large pre-trained language models have shown superior per-
formance on a wide range of NLP tasks (Peters et al. 2018;
Devlin et al. 2019), and GPT-2 (Radford et al. 2019) is es-
pecially good at language generation tasks. Some work ex-
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Figure 2: An overview of UBAR.

tends GPT-2 (Radford et al. 2019) to generate responses in
chit-chat dialog (Zhang et al. 2020a; Wu et al. 2020). In task-
oriented dialog domain, Budzianowski and Vulić (2019) first
point out the possibility of fine-tuning all necessary infor-
mation in simple text on GPT-2 which inspires a line of
improved and simplified design of task-oriented dialog sys-
tems. SC-GPT (Peng et al. 2020b) is a pre-trained model that
converts ground-truth system acts into responses. Ham et al.
(2020) fine-tune GPT-2 in a similar fashion for DST and pol-
icy optimization, but employ heuristic rules to handle differ-
ent database query results. SimpleTOD (Hosseini-Asl et al.
2020) incorporates the database results into the training pro-
cess and is evaluated for end-to-end modeling where belief
state and system act are generated. SOLOIST (Peng et al.
2020a) follows a pre-train and fine-tune paradigm where
it first undergoes pre-training on a large number of out-of-
domain dialog turns, then fine-tune on the data of new do-
mains. It does not require the annotation of system acts. This
work follows its GPT-2-based predecessors and progresses
for a fully end-to-end TOD system by operating in terms of
a whole dialog session instead of a dialog turn during train-
ing and evaluating.

Method
In this section, we describe how UBAR models on a dia-
log session level and how we prepare the dialog data to be
trained in sequence. Figure 2 is an overview of UBAR.

Modeling on a Dialog Session Level
The workflow of a TOD system interacting with a user natu-
rally produces a sequence as it reads user utterances, tracks
dialog states and generates acts and responses over the turns
of a dialog session.

Given a dialog session composed of multiple turns, we
show how UBAR models the process of a task-oriented
dialog session. In the first turn t = 0, the user inputs user
utterance U0, UBAR generates a belief state B0 based on
U0. This belief state is used to query a database to retrieve
the matched number of entities that satisfy the constraint
imposed by the belief state, which is the database search
result D0. Conditioned on {U0, B0, D0}, UBAR then
generates system act A0 and the delexicalized response R0,
completing the interaction of the first turn. As the dialog
proceeds to turn t, UBAR generates Bt, At and Rt based on
context of user utterances and all previous generated outputs
{U0, B0, D0, A0, R0, ..., Ut−1, Bt−1, Dt−1, At−1, Rt−1, Ut},
eventually completing the entire dialog session. Therefore,
a single training sequence for a dialog session with

T turns can be formulated as {U0, B0, D0, A0, R0, ...,
UT , BT , DT , AT , RT }.

Note that UBAR is different from previous methods that
are trained and evaluated in turn-level sequences where they
are based on dialog history {U0, R0, ..., Ut−1, Rt−1, Ut} to
generate the response in turn t and their responses in the
dialog history are ground truth. While UBAR incorporates
the intermediate information B, D and A in the context.

Domain-Adaptive Pre-processing
We pre-process the dialog data into the form of simple text
by delexicalizing the responses and converting intermediate
dialog information to spans. All sequences are surrounded
by special <sos ?> and <eos ?>2 tokens indicating the be-
ginning and end of a component. Figure 3 is an exemplar
pre-processed training sequence.

Figure 3: Example of different (colored) components in a
dialog session concatenated into a single training sequence.

Delexicalization It is important to generate delexicalized
responses for task-oriented generation, which allows the
model to learn value-independent parameters (Wen et al.
2015). Delexicalization replaces specific slot values by their
corresponding placeholders, which can be filled according
to database search results afterwards. We adopt a domain-
adaptive delexicalization scheme (Zhang, Ou, and Yu 2020)
to decouple the domain and slot name of placeholders. For
example, a hotel name in the generated response is just
<value name> instead of <hotel-value name>.
Belief State and System Act Spans Belief states are orig-
inally represented in domain-slot, value pairs. We decouple
domain and slot names to allow generalization cross dif-
ferent domains that share the same ontology. A schematic
example of belief state span with two mentioned domains

2The ? represents a component from {u, b, db, a, r}.
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would be {[domain1] slot value slot value [domain2] slot
value}. Each domain can follow several slot value pairs
specifying user’s goal.

For database search results, we use special tokens to indi-
cate the number of matched entities under the constraints of
the belief state of the current turn.

System acts are originally represented as domain-act, slot
pairs which aim to inform or request information about the
slot of a certain domain. We also decouple the domain and
act for system act span: {[domain] [inform] slot ... [request]
slot ...}. The decoupling of domains allows dialog ontology
as well as expressions to be learned across relevant domains.
The domains, acts and slot values are all bracketed as addi-
tional special tokens so that they can be learned specifically.

Architecture and Training Objective
GPT-2 (Radford et al. 2019) is a powerful pre-trained uni-
directional language model. It is a large Transformer de-
coder (Vaswani et al. 2017) that is trained on large corpora of
web text and can generate realistic and coherent natural lan-
guage. By fine-tuning GPT-2 on session-level task-oriented
dialog data, UBAR learns to ground generation with ontol-
ogy knowledge and decision making ability.

The training objective for UBAR is the language
modeling objective (Bengio et al. 2003), which maxi-
mizes the probability of next word prediction: L =∑

i logP (wi|w<i). UBAR does not require additional train-
ing objectives such as next-utterance classification.

Experiments
Dataset and Evaluation Metrics
MultiWOZ 2.0 (Budzianowski et al. 2018) is a large-scale
human-to-human multi-domain task-oriented dialog dataset
consisting of 8438 dialogues spanning over seven domains
(attraction, hospital, police, hotel, restaurant, taxi, train). It
provides additional validation set and test set each of 1000
dialogues, excluding hospital and police. Each dialog ses-
sion contains 1 to 3 domains and multiple domains might
be mentioned in a single turn (more dataset details in ap-
pendix). MultiWOZ 2.1 (Eric et al. 2019) is an improved
version of MultiWOZ 2.0 by fixing some noisy state annota-
tions. We conduct experiments and analyses on the 2.0 ver-
sion and also report results on the 2.1 version.

We follow the automatic evaluation metrics to evaluate
task completion and response quality: Inform measures
whether a system has provided a correct entity, Success mea-
sures whether it has answered all the requested information,
and BLEU (Papineni et al. 2002) is used to measure the flu-
ency of the generated responses (Budzianowski et al. 2018).
A combined score: (Inform+Success)×0.5+BLEU is also
reported as an overall quality measure suggested in Mehri,
Srinivasan, and Eskenazi (2019). We also use the joint goal
accuracy to evaluate dialog state tracking (DST).

Implementation Details
We implement UBAR with HuggingFace’s Transformers
(Wolf et al. 2019) and DistilGPT2 (Sanh et al. 2019), a dis-
tilled version of GPT-2. The model is trained on session-

level sequences with a max sequence length of 1024. Se-
quences that exceed 1024 tokens are pre-truncated. We
use the AdamW optimizer and standard greedy decoding
method with temperature of 0.7. We select the best perform-
ing model on validation set through hyperparameters search
of learning rate and batch size, then evaluate on test set to get
the final results. We also report the performances of UBAR
on validation set in technical appendix. Code and models are
included in the supplement and will be released.

Baselines
We compare UBAR with SimpleTOD (Hosseini-Asl et al.
2020) and SOLOIST (Peng et al. 2020a), the GPT-2-based
methods that are trained on turn-level data without generated
belief state and system act in dialog history (Hosseini-Asl
et al. 2020; Peng et al. 2020a), and other several compet-
itive methods HDSA (Chen et al. 2019), SFN+RL (Mehri,
Srinivasan, and Eskenazi 2019), ARDM (Wu et al. 2019b),
and DAMD (Zhang, Ou, and Yu 2020). UBAR is evalu-
ated and compared in three context-to-response settings: re-
sponse generation based on ground truth belief state and sys-
tem act, policy optimization to generate system act and re-
sponse based on ground truth belief state, and end-to-end
modeling to generate belief state, system act and response.
Experiments with ground truth belief state use ground truth
database search result. All content UBAR generated during
a dialog session will remain in the dialog context for the
generation the current turn.

Since the proposed UBAR can generate belief state
throughout the entire dialog session, we compare the perfor-
mance of UBAR on dialog state tracking with GPT-2-based
model SimpleTOD (Hosseini-Asl et al. 2020) and other
state-of-the-art methods such as TRADE (Wu et al. 2019a),
DSTQA (Zhou and Small 2019), DST-Picklist (Zhang et al.
2019a), SST (Chen et al. 2020). As DST requires extract-
ing slot values from non-delexicalized responses, we train a
new DST-UBAR using non-delexicalized responses for DST
evaluation.

Overall Results
Response Generation with Ground truth Belief State and
System Act The first group in Table 1 shows the results of
response generation based on the ground truth belief state
and system act. UBAR applies the same domain-adaptive
delexicalization and domain-aware belief, act spans as pre-
vious state-of-the-art DAMD, yet outperforms all compared
methods in response generation in terms of inform rate, suc-
cess rate and combined score, including DAMD. The BLEU
score is slightly lower but inform rate and success rate are
much higher than HDSA, which indicates UBAR is more
grounded in task completion than language surface.
Policy Optimization with Ground truth Belief State In the
setting of policy optimization, the context of UBAR con-
sists of ground truth belief states and database results and
generated act and responses. As shown in the second group
of Table 1, UBAR achieves the best performance in terms
of inform rate, success rate and combined score, improv-
ing the previous state-of-the-art SOLOIST by a large margin
(3.5 points on the combined score). Note that SOLOIST is
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Model Belief State System Act Inform Success BLEU Combined
HDSA oracle oracle 87.9 78.0 30.4 113.4
DAMD oracle oracle 95.4 87.2 27.3 118.5
SimpleTOD oracle oracle 92.3 85.8 18.67 107.7
UBAR (ours) oracle oracle 96.9 92.2 28.6 123.2
SFN+RL oracle generated 82.7 72.1 16.3 93.7
HDSA oracle generated 82.9 68.9 23.6 99.5
ARDM oracle - 87.4 72.8 20.6 100.7
DAMD oracle generated 89.2 77.9 18.6 102.2
SimpleTOD oracle generated 88.9 67.1 16.9 94.9
SOLOIST oracle - 89.6 79.3 18.0 102.5
UBAR (ours) oracle generated 94.0 83.6 17.2 106.0
SFN+RL generated generated 73.8 58.6 16.9 83.0
DAMD generated generated 76.3 60.4 16.6 85.0
SimpleTOD generated generated 84.4 70.1 15.0 92.3
SOLOIST generated - 85.5 72.9 16.5 95.7
UBAR (ours) generated generated 95.4 80.7 17.0 105.1

Table 1: Comparison of generation results on MultiWOZ 2.0. The oracle/generated denotes either using ground truth or gener-
ated intermediate information. The results are grouped according to how belief state and system act are modeled.

Belief Act Inf. Succ. BLEU Comb.
oracle oracle 95.4 91.4 28.8 122.2
oracle generated 92.7 81.0 16.7 103.6

generated generated 95.7 81.8 16.5 105.7

Table 2: UBAR in different settings on MultiWOZ 2.1.

first pre-trained on large-scale task-oriented dialog data and
then fine-tuned on MultiWOZ, and they did not leverage the
system act. UBAR achieves higher inform and success rate
than SOLOIST without additional pre-training data. These
results show that UBAR can effectively learn dialog policy
and response generation.
End-to-end Modeling The third group in Table 1 shows re-
sults in end-to-end modeling setting, where UBAR has to
generate belief state, query database result with the gener-
ated belief state, and then generates act and response. UBAR
achieves the state-of-the-art performance on all metrics and
lifts almost 10 points on the combined score. Like Simple-
TOD and SOLOIST, UBAR has a very simple architecture
and is trained on sequences with language modeling objec-
tive. Unlike SimpleTOD and SOLOIST, UBAR uses all gen-
erated content in dialog context instead of ground truth re-
sponses. UBAR demonstrates incredible ability in modeling
a complete task-oriented dialog session in an arguably fully
end-to-end fashion, much closer to a task-oriented conversa-
tion in real life.
Results on MultiWOZ 2.1 We also report the performance
of UBAR in the three settings on MultiWOZ 2.1 for future
comparison. As shown in Table 2, the results are consistent
with that on MultiWOZ 2.0.
Dialog State Tracking As shown in Table 1, The small gap
between the performances in policy optimization and end-
to-end modeling suggests that UBAR is relatively good at
generating belief states. Even though UBAR is designated
for response generation and end-to-end modeling, we eval-
uate the design of UBAR on dialog state tracking task by
training a DST-UBAR with training data consisting of user

Model Joint Accuracy (%)
MultiWOZ 2.0 MultiWOZ 2.1

TRADE 48.62 45.60
DSTQA 51.44 51.17
DST-Picklist - 53.3
SST - 55.23
SimpleTOD - 55.72
DST-UBAR 52.59 56.20

Table 3: Comparison of Dialog state tracking (DST) on Mul-
tiWOZ 2.0 and 2.1.

utterances, belief states, database results, system acts and
non-delexicalized responses of dialog sessions. The belief
states are generated by DST-UBAR based on dialog context
of user utterances, generated belief states and ground truth
system acts and non-delexicalized responses. Table 3 shows
that DST-UBAR also outperforms the state-of-the-art meth-
ods on both versions of MultiWOZ.

Analysis and Discussion
In this section, we try to answer three questions: (1) How
much and what kind of dialog context does UBAR need for
end-to-end modeling? (2) What are the advantages of the
proposed training and evaluating on a dialog session level
over turn level? (3) How well can UBAR transfer to unseen
domains in end-to-end modeling?

Dialog Context
A large portion of the information of user’s goal is stored in
belief states. Since UBAR incorporates belief states in the
context, it can figure out the new belief states based on just
the previous turn and user utterance of the current turn. As
shown in Table 4, UBAR based on the previous turn under-
performs UBAR based on all previous turns, but still out-
performs other state-of-the-art methods. Therefore, UBAR
can operate properly with much shorter context length than
turn-level methods that require full dialog history, which is
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#Turns Belief Act Inf. Succ. BLEU Comb.
All GT GT 88.4 76.6 17.6 100.1
All GT Gen 95.4 82.3 17.2 106.1
All Gen Gen 95.4 80.7 17.0 105.1

Prev GT GT 87.2 75.3 16.8 98.0
Prev GT Gen 92.7 79.0 16.6 102.5
Prev Gen Gen 92.7 77.7 16.4 101.6

Table 4: Results of UBAR evaluated with different kinds
of dialog context in end-to-end setting. #Turns denotes the
number of previous turns in context, All means all previous
turn, Prev means just the last turn. GT or Gen denotes if the
belief states and system acts in the context are ground truth
or generated. We provide a more comprehensive evaluation
of UBAR with different kinds of dialog context in multiple
settings in the technical appendix.

more computationally efficient. On the other hand, if UBAR
is granted with ground truth belief states in the context, the
results would increase slightly. This is because the ground
truth belief states in the context make generating belief
states of the current turn easier. However, if UBAR takes
all ground truth content in the context including system acts
and responses, the results actually drop quiet a lot. This is
somewhat unexpected yet understandable given the acts and
responses in the context are not committed by UBAR, and
could mislead UBAR to think that it already committed such
acts and responses. We will discuss more on this in the case
study next section. In a realistic setting, a TOD system can
have access to the context it generated, but not any ground
truth, which is why we report all-generated results for over-
all comparison.

Session-Level vs. Turn-Level
The main difference between UBAR and other GPT-2-based
models is that UBAR is trained on session-level sequences
with intermediate information such as belief states and sys-
tem acts in the context, while others are trained on turn-level
sequences with only dialog history of user utterances and
system responses. To study the effect of session-level train-
ing and the incorporation of belief states and system acts
in the context via ablation, we implement a model URUR
trained on turn-level sequences. We evaluate URUR in the
end-to-end modeling setting where every turn it makes gen-
eration conditioned on previous user utterances and system
responses. As shown in Table 5, the turn-level URUR under-
performs UBAR. Specifically, URUR with ground truth re-
sponses in dialog history has comparable performance with
SimpleTOD and SOLOIST. What’s more, URUR with gen-
erated responses in history shows significant improvement
over ground truth responses, which suggests that Simple-
TOD and SOLOIST miss out a convenient boost evaluating
on a turn-level. They could achieve better performances by
simply using generated responses in their dialog context.

On the other hand, we constrain UBAR to generate based
on the context consisted of only user utterances and re-
sponses or only belief states and system acts. With B&A
outperforming U&R as well as URUR, we confirm that the

Model Context Inf. Succ. BLEU Comb.
URUR GT 82.6 73.1 17.0 94.8
URUR Gen 91.2 79.5 16.5 101.8
UBAR U&R 92.5 70.8 14.3 95.9
UBAR B&A 94.1 77.1 16.3 101.9

Table 5: Results in the end-to-end setting. URUR is trained
in turn-level. GT or Gen means it uses ground truth or gen-
erated responses in its context. U&R denotes the context of
UBAR only consists of user utterances and generated re-
sponses. B&A denotes the context of UBAR only consists
of belief states, database results and system acts.

belief states and system acts are more important than user ut-
terances and responses in dialog context and that it is more
difficult for models to infer belief states and system acts
from the dialog history of every turn.

Domain Transfer
The ontology are often shared across domains. For example,
Hotel and Restaurant share the same requestable slots such
as address, postcode, price range. Therefore, it is possible
for UBAR to generalize to new domains.

To examine the transfer ability of UBAR to generalize to
unseen domains, we run zero-shot and few-shot end-to-end
modeling experiments by excluding one domain out of the
five domains that are available in validation and test set, and
training UBAR on other four domains. As shown in Table 6,
after trained on 4 domains, the base model (BM) performs
generally well in-domain. In zero-shot setting, the perfor-
mances vary across different domains. The Train domain
achieves the highest combined score, while Restaurant per-
forms badly. This is because Train domain has a high over-
lap in ontology with other domains, while Restaurant has a
unique food slot which is mentioned frequently.

In few-shot setting, the base model is fine-tuned with 100
dialog sessions from the held-out domain. The few-shot BM
is evaluated on the held-out domain and achieves better per-
formance than zero-shot BM, improving the combined score
by 20 points in average, which demonstrates the transfer
ability of UBAR. However, we also see a drop in the per-
formance of the few-shot BM evaluated on the original four
domains, which indicates catastrophic forgetting to some ex-
tent. What’s more, the big gap between few-shot BM and
UBAR trained on all domains underscores the data hungry
nature of end-to-end task-oriented dialog modeling.

Visualization and Case Study
In this section we provide an attention weights visualization
to demonstrate how UBAR generates belief states based on
user utterance and the belief states of the previous turn, and
a case study to explain why UBAR can improve task com-
pletion by conditioning on the generated context. More vi-
sualizations and case studies are in the technical appendix.

Figure 4 visualizes the attention weights of the last layer
of the transformer blocks in UBAR, demonstrating that
UBAR appropriately attends to the belief state from the pre-
vious turn and copies those that remain consistent, which are
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Evaluation on 4 Domains Except Hotel Except Train Except Attraction Except Restaurant Except Taxi
Base Model trained in-domain 99.03 99.40 99.68 101.87 95.30
Few-shot BM on new domain 84.88 84.66 96.96 100.79 88.14
Evaluation on New Domain Hotel Train Attraction Restaurant Taxi

Zero-shot BM 58.40 64.19 49.96 40.55 59.03
Few-shot BM on new domain 78.48 70.52 79.51 74.19 74.02

UBAR on all domains 103.06 106.40 102.24 104.44 103.20

Table 6: Results of domain transfer. The first row is the base model trained on the four domains and evaluated in-domain. The
second row is the results of the base model fine-tuned with 100 new domain examples on the four domains. The last three rows
are evaluations on the new domains with zero-shot or few-shot BM or UBAR trained on full data, respectively.

Figure 4: Visualization of attention weights of the generated belief states attending to the context. The X-axis is the belief states,
response from the previous turn and the current user utterance. The Y-axis is the generated belief states.

Figure 5: Two consecutive dialog turns in dialog session
SNG0855 from MultiWOZ2.0. The green boxes and purple
box indicate responses of UBAR based on generated context
and response based on oracle context, respectively. The task
related entities are highlighted in yellow.

the destination and departure of a train. Then it attends to
user utterance for an update with new specifications, which
is the day of the train. It makes sense to keep track of the
belief states and add in or make adjustment to them given
incoming user utterance, instead of going through all previ-

ous user utterances and responses every turn.
Figure 5 shows a case where the user wants to book a 4-

stars hotel with free parking. In the first turn, UBAR did not
provide the hotel entity, but asked for additional information
about the hotel’s price range or area. However in the second
turn, the user directly requests to book the unmentioned ho-
tel. If using the generated content, UBAR would provide a
specific hotel entity in response to the user utterance in the
second turn. While if using the ground truth response which
contains the hotel entity as the dialog context, UBAR would
be mistaken that it had already provided such entity, failing
to mention the important entity.

This explains why UBAR with generated context can out-
perform UBAR with ground truth context, as UBAR can
adaptively supplement and make amends in response to the
current user utterance in order to stay consistent and coher-
ent throughout the entire session, ultimately improving task
completion.

Conclusion
In this paper, we attempt to approach end-to-end task-
oriented dialog system in a more realistic setting. The pro-
posed UBAR is trained and evaluated on a dialog session
level. It generates belief states, system acts and responses
based on the user utterances and all content it generated. We
conduct extensive experiments and analyses to demonstrate
the superiority of the modeling on a dialog session level and
the power of GPT-2. We hope that UBAR can inspire more
future work to model task-oriented dialog system on a ses-
sion level.
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