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Abstract

This paper proposes a human-interpretable learning approach
for aspect-based sentiment analysis (ABSA), employing the
recently introduced Tsetlin Machines (TMs). We attain in-
terpretability by converting the intricate position-dependent
textual semantics into binary form, mapping all the features
into bag-of-words (BOWs). The binary-form BOWs are en-
coded so that the information on the aspect and context words
are retained for sentiment classification. We further adopt the
BOWs as input to the TM, enabling learning of aspect-based
sentiment patterns in propositional logic. To evaluate inter-
pretability and accuracy, we conducted experiments on two
widely used ABSA datasets from SemEval 2014: Restau-
rant 14 and Laptop 14. The experiments show how each rel-
evant feature takes part in conjunctive clauses that contain
the context information for the corresponding aspect word,
demonstrating human-level interpretability. At the same time,
the obtained accuracy is on par with existing neural network
models, reaching 78.02% on Restaurant 14 and 73.51% on
Laptop 14.

Introduction
Sentiment analysis, which identifies people’s opinion on
specific topics, is a classic problem in natural language pro-
cessing (NLP). Under the umbrella of sentiment analysis,
aspect-based sentiment analysis (ABSA), which is a fine-
grained evaluation framework for sentiment classification
(Zhang and Liu 2017), has become a hot research topic (Pon-
tiki et al. 2014). Among various tasks in ABSA, this paper
focuses on the sentiment polarity (positive, neutral, nega-
tive) of a target word in given comments or reviews. For
example, let us consider a review: “Certainly not the best
sushi in New York, however, it is always fresh and the place
is very clean, sterile”. The target word “sushi” is closely
associated with its context words “not best”, assorting it
as a negative polarity. The target word, “place”, is asso-
ciated with its context words “clean” and “sterile”, clas-
sifying it as a positive sentiment. Such a complex form of
sentiment classification is highly dependent on where the
word appears in the sentence. To address this challenge, sev-
eral recent approaches to ABSA have been based on atten-
tion mechanisms (Ma et al. 2017). Although the accuracy
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of attention-based ABSA approaches are progressively im-
proved, the interpretability of these models is still question-
able, making them less trust-worthy. Not surprisingly, little
research has been done on ABSA learning techniques that
are interpretable at a human level (Do et al. 2019).

Recently, interpretable AI has taken a big leap in indus-
trial application (Samek et al. 2019). Indeed, the scientific
community has performed extensive research on ways to in-
terpret neural networks. In a modern neural network, one can
use the fact that the variants of attention (Bahdanau, Cho,
and Bengio 2015) assign soft weights to the input repre-
sentations, and then extract highly weighted tokens as ratio-
nales. However, these attention weights do not provide faith-
ful explanations for classification (Serrano and Smith 2019;
Wiegreffe and Pinter 2019; Brunner et al. 2020; Vashishth
et al. 2019). On the other hand, certain classic models, like
Decision Trees, are particularly easy to understand, yet still
compromise on accuracy compared with neural networks.
Hence, an effective trade-off between accuracy and inter-
pretability has still not been achieved.

In this article, we propose a Tsetlin Machine (TM)
(Granmo 2018) based ABSA that employs a binary repre-
sentation of the input features. The resulting architecture is
interpretable and achieves competitive accuracy compared
with state-of-the-art techniques. The ABSA task has two
important inputs: a context word and an aspect word. Such
aspect-based classification usually relies heavily on the po-
sition of the aspect word in the context. Such position in-
formation can be easily embedded in the neural network
models. However, in TM, as all patterns and outputs are ex-
pressed in bits, learning and classification depend on bit ma-
nipulation, making it a challenging task to embed all the in-
formation into binary form. We therefore also aim to propose
an extensive pre-processing approach for the ABSA inputs
so that the binary form retains as much useful information
as possible for the classification.

Our main contributions can be summarized as follows:

• We propose a novel pre-processing scheme to convert the
ABSA inputs into binary form with limited information
loss.

• We design an interpretable learning architecture using
TM. The architecture offers human-level interpretable re-
sults with comparable classification accuracy.
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• We employ additional knowledge from SentiWordnet
(Esuli and Sebastiani 2006) to enhance the accuracy of
the architecture. It provides additional knowledge to the
model and has significant impact on accuracy as explained
later.

The remainder of the paper is organized as follows: We
summarize related work in Section 2. The proposed pre-
processing and TM architecture along with its learning pro-
cess are described in Section 3. In Section 4, we report the
experiment results and the comparisons with state-of-the-
art. The interpretability of trained models is demonstrated
in Section 5 before we conclude this work in Section 6.

Related Work
Sentiment analysis operates at three levels: document level,
sentence level and aspect level. This work focuses on as-
pect level. Most of traditional supervised approaches depend
heavily on handcrafted features to identify the sentiment of
a word based on its context (Jiang et al. 2011; Kiritchenko
et al. 2014). However, these models fail to capture the se-
mantic relatedness between the aspect word and its context.
This problem gives rise to the attention-based models that
are able to capture such a relationship (Shen et al. 2018;
Bahdanau, Cho, and Bengio 2015; Tang, Qin, and Liu 2016;
Liu and Zhang 2017). Furthermore, it is shown in (Tang
et al. 2016) how an attention layer captures the weightage
of the context words for predicting the sentiment of an as-
pect word. However, existing models cannot leverage the
syntactic structure of the sentence, thereby making it diffi-
cult to distinguish various sentiments for multiple aspects of
the sentence. To address this challenge, the RepWalk neural
network model was recentely proposed (Zheng et al. 2020).
It performs a replicated random walk on a syntax graph, ef-
fectively focusing on the descriptive contextual words.

Despite the fact that neural network-based models with
attention, including BERT and contextualized embedding
(Bahdanau, Cho, and Bengio 2015; Devlin et al. 2019; Peters
et al. 2018), capture the semantic relatedness among words
in the context, they still lack interpretability. This arguably
makes them black box models (Rudin 2018). Many applica-
tions of attention mechanisms show, however, that a model
can interpreted based on the weight assigned by the attention
vector to each input, but they do not provide a faithful ex-
planation of classification (Serrano and Smith 2019; Wiegr-
effe and Pinter 2019). Many researchers have attempted to
replicate human learning behavior in neural networks (Lei
et al. 2019), but have failed to answer the question of mak-
ing the learning interpretable. In order to overcome the is-
sue of interpretability in NLP, we explore the recently in-
troduced Tsetlin Machine (TM), which recognizes patterns
in the form of propositional logic (Granmo 2018; Zhang
et al. 2020). TMs have demonstrated promising results in
various classification tasks involving numerical data, image
data, text data, and board games (Granmo et al. 2019; Berge
et al. 2019).

In this paper, we aim to reduce the gap between inter-
pretability and accuracy with a significant margin on the
ABSA task. To the best of our knowledge, this is the first

The price is reasonable although the service is poor. price

The price is reasonable although the service is poor. service

Sentence Aspect word

Figure 1: Representation of an aspect word and its surround-
ing words.

study using TM to explore how each word in the context in-
cludes or excludes themselves to form conjunctive clauses
for sentiment classification. Once the model is trained,
clauses in the TM hold the information about which indi-
vidual features in the context take part in the sentiment clas-
sification of the aspect word.

Methodology
Input Binarization
For both datasets, the ABSA tasks have a context word and
an aspect word whose polarity is to be classified. Usually,
the sentiment of the aspect word is reflected by its surround-
ing words in a sentence, as shown in Figure 1. In this ex-
ample, the aspect word “price” has positive sentiment due
to the word “reasonable” in the context. Similarly, for “ser-
vice”, the context word “poor” describes its negative senti-
ment. This reveals that the sentiment of aspect words heavily
relies on its position in a sentence and thus position embed-
ding (Gu et al. 2018) is necessary. Such embedding creates
a probability distribution of the sentence based on the as-
pect word. Recently, position-aware modelling has shown
promising results on ABSA tasks (Zhou et al. 2020).

Since TM requires binary inputs, to utilize TM for inter-
pretability, the inputs must be binarized. It is challenging to
incorporate the required position-based word relations in bi-
nary form, to allow for ABSA. In particular, since a TM does
not employ any world knowledge like Word2vec (Mikolov
et al. 2013), Elmo (Peters et al. 2018) or BERT (Devlin et al.
2019), so as to retain the interpretability of the model, we re-
duce the size of vocabulary by replacing the sentiment car-
rying words with a common token. Understandably, without
pre-trained embeddings, a model cannot find the similarity
between two semantically related words such as “excellent”
and “good”. Hence, we adopt Opinion Lexicon (Hu and Liu
2004), which is a list of English positive and negative senti-
ment words. In more details, we replace every possible word
in the dataset by the common token “positive” or “negative”,
as shown in Figure 2. Such external knowledge also helps to
reduce the vocabulary size thereby decreasing the sparsity
of BOW representations.

Once the vocabulary size is determined, the context word
and the aspect word can be converted into binary form,
named as BOWcontext and BOWaspect respectively. Since
BOW in binary form does not consider the frequency of the
replaced common tag (i.e., “positive” and “negative”), it be-
comes a rough representation of those tokens. In order to
determine the location of these sentiment-carrying tokens,
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The	price	is	reasonable	although	the	service	is	poor.

The	price	is	positive	although	the	service	is	negative.

Figure 2: Replacement of sentiment-carrying words with a
common sentiment token using Opinion Lexicon.

The	food	is	very	positive	and	the	place	is positive as	well.

The	food	is	very	positive	and	the is	positive	as	well.

Figure 3: 3-bit input feature representing the location of
common sentiment-carrying tokens: negative, no sentiment,
and positive.

the sentence is split into two parts, divided by the aspect
word. More specifically, we create additional binary vectors
LOC1

vec and LOC2
vec, representing the location of the com-

mon tokens. The dimension of LOC1
vec and LOC2

vec is three
(the 1st bit: negative, the 2nd bit: no sentiment, the 3rd bit:
positive) as shown in Figure 3. LOC1

vec represents the pres-
ence of the common tokens “positive” or “negative” in the
first part. If there are no sentiment tags, this is represented by
“no sentiment”. Similarly, LOC2

vec represents the presence
of the common tokens in the second part.

After the pre-processing of inputs, we use SentiWordNet
to obtain the sentiment score (SC) of the 1st part and the
2nd part of the split sentence. This involvement of such ad-
ditional knowledge enrich the input information. We adopt
the sentiment score in a 3-D binary form for each part of the
sentence. The SC vector SC1

vec for the 1st part of the con-
text is given by Eq. (1). Similarly, vector SC2

vec is utilized
for the second part of the context.

SC1
vec =


[0, 0, 1](positive), if SC > 0,

[1, 0, 0](negative), if SC < 0,

[0, 1, 0](no sentiment), if SC = 0.

(1)

After processing all these binary representations, we con-
catenate them all to make a final input vector of size (2n +
12) as shown in Figure 4.

The Tsetlin Machine Based ABSA
TM is a recent classification method that manipulates ex-
pressions in propositional logic based on a team of Tsetlin
Automata (TA) (Granmo 2018). TA is a fixed structure de-
terministic automaton that learns the optimal action from a
set of actions suggested by the environment. In TM, each in-
put bit corresponds to two TAs, i.e., TA and TA’. TA controls
the original bit of the input sample whereas TA’ controls its
negation. Here we use TA to represent a general Tsetlin au-
tomata that can be a TA or a TA’. Each TA corresponds to

Input	vector	=

n n 3 3 3 3dimension

Figure 4: Construction of binary input by concatenating all
the pre-processed features.

Action 1 Action 2

Penatly Reward

Figure 5: The two-action TA and its transition in TM.

one literal. A literal here indicates an input bit or its nega-
tion. For example, if the bit represents the word “food”, TA
controls “food” itself and then TA’ handles “not food”. Any
TA employed by a TM has two actions with 2N states in
total, as shown in Figure 5. When it operates in states from
1 to N , action “exclude” is selected while action “include”
is adopted for states from N + 1 to 2N . For each iteration,
a TA performs “include” or “exclude” based on the current
state. This in turn triggers a reward or penalty. If a reward
is received, the TA moves to the deeper side of the action
whereas if it obtains a penalty, it moves towards the center
and eventually jumps to the other side of the action. Clearly,
a TA, through its actions, decides whether to include or ex-
clude its corresponding literal.

TM has a novel game theoretic strategy that regulates a
decentralized team of TAs. This strategy guides the TAs to
learn an arbitrarily complex propositional formula by in-
cluding or excluding certain literals. More specifically, the
included literals, by the operation of conjunction, formulate
clauses. Each clause, after training, is expected to capture a
sub-pattern. The overall pattern is decided by summing up
the output of all clauses for any unknown input. The archi-
tecture for ABSA using TM is shown in Figs. 6 and 7.

Let us consider the input feature as a vector with a vo-
cabulary size of n words, which is represented in BOW
as Xs = [x1, x2, x3, · · ·, xn, · · ·, x2n, x2n+1, x2n+2, · ·
·, x2n+12] with xk∈{0,1} and k ∈ {1, . . . , 2n + 12}.
Here, [x2n+1, x2n+2, x2n+3] and [x2n+4, x2n+5, x2n+6]
represent LOC1

vec and LOC2
vec respectively. Similarly,

[x2n+7, x2n+8, x2n+9] and [x2n+10, x2n+11, x2n+12] repre-
sent SC1

vec and SC2
vec respectively. Let q be the number of

classes (q = 3 in ABSA task: positive, neutral and negative).
If a pattern has m sub-patterns, the pattern can be captured
using q×m conjunctive clauses Cj

i , 1 ≤ j ≤ q, 1 ≤ i ≤ m:

Cj
i =

 ∧
k∈Ij

i

xk

 ∧
 ∧

k∈Īj
i

¬xk

 , (2)

where Iji and Īji are non-overlapping subsets of the input
variable indices, Iij , Ī

i
j ⊆ {1, · · · , 2n + 12}, Iij ∩ Īij = ∅.

The subsets decide which of the input variables take part
in the clause, and whether they are negated or not. The in-
dices of input variables in Iij represent the literals that are
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The food is very positive and the place is positive as well.

0, 1, 0, 0, 1, 0, ....,  0, 0, 1, 0, 0, 0, 1, ...., 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1

Figure 6: TA team forms a Clause Cj
i by either including or

excluding the input features.

Argmax
Operator

y

Figure 7: (a). The sum of the votes for the clauses offers a
score for a particular class. (b). Argmax operator decides the
output class based on the score of the clauses in each class.

included as is, while the indices of input variables in Īij cor-
respond to the negated ones. Among m clauses in each class,
clauses with odd indexes are assigned to positive polarity
(+) whereas those with even indices are assigned to nega-
tive polarity (-). The clauses with positive polarity vote for
the target class and those with the negative vote against it. A
summation operator aggregates them by subtracting the to-
tal number of negative votes from positive votes, as shown
in Eq. (3).

f j(Xs) = Σm−1
i=1,3,...C

j
i (Xs)− Σm

i=2,4,...C
j
i (Xs). (3)

For q number of classes, the final output y is given by the
argmax operator to classify the input based on the highest
sum of votes, as shown in Eq. (4).

y = argmaxj

(
f j(Xs)

)
. (4)

The Learning Process of TM Based ABSA
In this section, we will detail the learning process of TM
for the ABSA task. We explain the learning process with a
walk-through of a specific sample context: “The food is very
good and the place is clean as well”, using the aspect word
“place” whose sentiment is to be predicted. The context is
first changed to “The food is very positive and the place is
positive as well.” For ease of explanation, we use the text
word as a feature instead of the index in its binary form.
For additional features, we will use the index of the binary
input so as to differentiate the features that take part in clas-
sification. The indexes for additional features are LOC1

vec =

Exclude Include IncludeExclude

1 2 101 102 200

foodc

positivec
2n+12veryc

wellc

placea
placec

2n+3wellc

thec

placea
2n+12

100 1 2 101 102 200100

Figure 8: TAs with 100 states per action that learn whether to
exclude or include a specific word (or its negation), location
of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step 1.

Exclude Include IncludeExclude

foodc

positivec

2n+12
veryc
wellc

placea

placec

2n+3wellc

thec

placea

2n+12

positivec
1 2 101 102 200100 1 2 101 102 200100

Figure 9: TAs with 100 states per action that learn whether to
exclude or include a specific word (or its negation), location
of common token (or its negation) and the sentiment score
information (or its negation) in a clause at time step t.

[2n+1, 2n+2, 2n+3], LOC2
vec = [2n+4, 2n+5, 2n+6].

Since the sentiment scores for both the first part of the con-
text (“The food is very good and the”) and that for the sec-
ond part (“is clean as well”) are greater than zero, we have
SC1

vec =[2n + 7, 2n + 8, 2n + 9]= [0,0,1], and SC2
vec =

[2n + 10, 2n + 11, 2n + 12]= [0,0,1], according to Eq. (1).
Figures 8, 9, and 10 show the learning process of the

ABSA task with the TM model. The subscripts c and a in
the figures represent the word from context and aspect re-
spectively. The TA or TA’ that received reward will move
away from the center while those that received penalty will
move towards the center. In this way, the TA (or TA’) can be
trained to either “include” or “exclude” a word (or its nega-
tion), helping the clauses, which are composed by the liter-
als, learn different subpatterns. Consequently, the TM, com-
posed by clauses, will gradually converge to the intended
pattern. The feedback (reward or penalty) given to the TM
follows two types: Type I and Type II feedback. Based on
these feedback types, rewards or penalties are fed to the TA
for the training samples. Type I Feedback is activated when
a given input feature is either correctly assigned to the target
sentiment (true positive) or mistakenly ignored (false nega-
tive). This feedback provides two countering effects: (1) in-
volving more literals from the sample to refine the clauses;
(2) trimming of the clauses by a factor specificity s that
makes all clauses eventually evaluate to 1. The s-parameter
is also responsible for avoiding overfitting. Type II Feedback
is activated when an input feature is wrongly assigned to the
target sentiment (false positive). It is responsible for intro-
ducing literals that make the clause evaluate to false, every
time a false positive occurs. Type I Feedback and Type II
Feedback are summarized in Tables 1 and 2 respectively.

Let us consider an example: a clause C1
1 = [foodc ∧

14206



Clause formed and its learning in each stepInput
features

Clause
Output

Feedback I

Feedback I

Feedback I

Feedback I

Feedback
type

Pred Class
for true

class = 1
time

Figure 10: The illustration of the clause update until reaching to an intended pattern at time step t.

Input Clause 1 0
Literal 1 0 1 0

Include Literal P(Reward) s−1
s NA 0 0

P(Inaction) 1
s NA s−1

s
s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal P(Reward) 0 1
s

1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s 0 0 0

Table 1: The Type I Feedback (Granmo 2018).

¬positivec ∧ placec ∧ (2n + 3) ∧ ¬(2n + 12)] that is
formed at time step t = 1, as shown in Figure 8. Here,
the time step indicates the instant the clause is updated dur-
ing training iterations. The clause is composed by a combi-
nation of literals that are “included” by its associated TAs.
At the current step, the excluded literals in this case (i.e,
2n + 12, placea, thec, wellc) are controlled by TA, and the
negated literals (i.e, placea, veryc, wellc) are governed by
TA’. Clearly, this clause evaluates to 0, thereby contributing
to predict class 0 despite the true class being 1, as shown in
Figure 10. This indeed triggers the Type I feedback. With
Type I feedback, the reward or penalty for each literals is
decided by Table 1. Since the literal ¬positivec is included,
its feature is 0 (¬1) and the clause output is 0. Therefore,
it receives penalty for being included with the probability
of 1

s , making it slowly move towards the center and even-
tually jumping to the side with action “exclude”. Similarly,
the literal ¬(2n + 12) also receives the penalty with prob-

Input Clause 1 0
Literal 1 0 1 0

Include Literal P(Reward) 0 NA 0 0
P(Inaction) 1.0 NA 1.0 1.0
P(Penalty) 0 NA 0 0

Exclude Literal P(Reward) 0 0 0 0
P(Inaction) 1.0 0 1.0 1.0
P(Penalty) 0 1.0 0 0

Table 2: The Type II Feedback (Granmo 2018).

ability 1
s , making it slowly moving towards the center, as

well, eventually jumping to exclude action. Once this hap-
pens, the clause C1

1 becomes [foodc ∧ placec ∧ (2n + 3)]
as shown in time step t = 2 that outputs 1, making a predic-
tion of class 0 as depicted in Figure 10. Table 1 shows if the
clause output is 1, the literals are of value 1, and the actions
of the literals are “excluded”, such literals obtain inaction
or penalty with probability 1

s or s−1
s respectively, making

them slowly move towards the center and eventually jump
to “include” action. Once it happens, the clause becomes C1

1
= [foodc ∧ positivec ∧ placec ∧ (2n + 3) ∧ (2n + 12)] as
shown in time step t = 3. Based on reward and penalty,
TM reaches to the intended pattern at time step t by the
arrangement of literals controlled by their respective TAs,
as shown in Figure 9. The final clause is given by C1

1 =
[foodc∧positivec∧placec∧(2n+3)∧placea∧(2n+12)].
The clause will still obtain Type I feedback when more train-
ing samples are given and they reinforce the true positive oc-
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Algorithm 1 Training Process of TM based ABSA

Require: Given Input = [Context sentence, Aspect Word,
Sentiment Score]

1: Pre-processed Input = Concat(BOWcontext,
BOWaspect, LOC1

vec, LOC2
vec, SC1

vec, SC2
vec)

2: Final Input: Xs,tr = [x1, · · · , xn, · · · , x2n, · · · , x2n+12]
and y . y is the label of the input sample

3: Output: trained TM.
4: for Each training sample do
5: ŷ = TM(Xs,tr, T , s) . Current sentiment estimate

for the input sample
6: if y = 1 then:
7: for each clause Cj

i with odd index do
8: Use Type I Feedback(Xs,tr, ŷ, T , Cj

i , s) to
update all Tsetlin automata in Cj

i .
9: end for

10: else . if y = 0
11: for each clause Cj

i with odd index do
12: Use Type II Feedback(Xs,tr, ŷ, T , Cj

i , s) to
update all Tsetlin automata Cj

i .
13: end for
14: end if
15: end for
16: return Trained TM.

Algorithm 2 Testing Process of TM based ABSA

Require: Given Input = Xs,te

1: Output: predicted class
2: f j(Xs,te)= 0, for all j
3: for all j do . For all classes
4: for all i in class j do . For all clauses in this class
5: f j(Xs,te) = f j(Xs,te)+(−1)i+1Cj

i (Xs,te)
6: end for
7: end for
8: return argmaxjf

j(Xs,te)

currences until the sum of the votes by these clauses reaches
a threshold parameter T .

The overall training and testing processes of TM-based
ABSA are summarized in Algorithm 1 and Algorithm 2 re-
spectively. For conciseness, we present, in Algorithm 1, the
training procedure for the clauses with positive polarity, i.e.,
the clauses with odd index number. Clearly, the feedback
types for the negative ones are just opposite. The complete
training approach of a TM can be found in (Granmo 2018).

Once the class is predicted, we can explore its clauses
for interpretability. The clauses that are triggered (i.e.,
Cj

i (Xs,te) = 1) are explored and their literals are converted
into the original words for interpretation with the help of
the additional information like LOC1

vec, LOC2
vec, SC1

vec,
or SC2

vec.

Dataset Positive Negative Neutral Total
res14 (train) 2164 807 637 3608
res14 (test) 728 196 196 1120
lap14 (train) 994 870 464 2238
lap14 (test) 341 128 169 638

Table 3: The statistics of SemEval-2014 dataset.

Experiment Results
Datasets
The datasets are obtained from SemEval-2014 Task 4. The
task has two domain-specific datasets, namely, Restaurant
14 (res14) and Laptop 14 (lap14). These datasets are pro-
vided with training and testing data. The statistics of the two
datasets is shown in Table 3. The code and the datasets are
available online1.

Baselines
In our experiment, we evaluate the proposed method and
compare it with related approaches for ABSA as baselines.

• ContextAvg averages the word embedding to form a con-
text embedding (Tang, Qin, and Liu 2016).

• LSTM uses the last hidden vector of the LSTM for clas-
sification (Hochreiter and Schmidhuber 1997).

• TD-LSTM utilizes two LSTMs to learn the language
model from the left and the right contexts of the aspect
(Tang, Qin, and Liu 2016).

• ATAE-BiLSTM is an attention-based LSTM with Aspect
Embedding model (Wang et al. 2016).

• MemNet integrates the content and the position of the as-
pect word into a deep neural network (Tang, Qin, and Liu
2016).

• RAM is a multi-layer architecture where each layer con-
sists of attention-based aggregation of word features and
a GRU cell (Chen et al. 2017).

• IAN is an Interactive Attention Network model that cal-
culates the attention weights of the word in its sentiment
and aspect interactively (Ma et al. 2017).

• PRET+MULT uses two approaches of transfer knowl-
edge from document level using pretraining and multitask
training (He et al. 2018).

• HCSN proposes a Human-like Semantic Cognition net-
work for the ABSA task, motivated by the human beings’
reading cognitive process (Lei et al. 2019). We show that
performance of our proposed scheme is quite similar to
this technique with high interpretability.

• TNet employs a CNN layer instead of attention layer to
extract features from the transformed word representa-
tions originated from a bi-directional RNN layer (Li et al.
2018).

1https://github.com/rohanky/tm absa
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• AGDT is an Aspect-Guided Deep Transition model that
uses the given aspect to direct the sentence encoding from
scratch with specially designed deep transition architec-
ture. This model generates the aspect-based sentence rep-
resentation and hence predicts sentiment more accurately
(Liang et al. 2019).

Results
In our experiment, the main selling-point of the architecture
is transparent learning and interpretability rather than ac-
curacy. Better accuracy may be achieved when grid search
is adopted. As we have used the integer weighted TM
(Abeyrathna, Granmo, and Goodwin 2020), the parameters
available are the number of clauses, the threshold T , and the
specificity s, which are configured as 700, 90× 100, and 15
respectively for both datasets. For pre-processing of text, we
substitute the short form to its full form, such as “isn’t” to
“is not”. Additionally, we stem the words to reduce the vo-
cabulary size created due to spelling mistakes and variants
of words2. The remaining pre-processing procedure has al-
ready been explained before. We train the TM model on both
the datasets for 100 epochs each.

Since the output sentiment label has imbalanced train-
ing samples, we use two evaluation metrics: Accuracy and
Macro-F1 (Manning and Schütze 2002). Following most of
the related studied within the ABSA task, we report the
best reproducible results by running the ABSA TM for 100
epochs, as shown in Table 4. We have reported the high-
est reproducible accuracy along with its mean and standard
deviation obtained during 5 experiments. As we can see,
Context2vec and LSTM perform quite poorly as they do
not consider the aspect information when deciding the sen-
timent polarity. However, due to the consideration of left
and right context information, TD-LSTM performs slightly
better than LSTM. The variants of attention perform con-
sistently better than LSTM and TD-LSTM. This is due to
the fact that attention captures important information with
regard to the aspect word. Other methods like RAM and
MemNet perform slightly better because of the integrated
memory in sentiment modeling. Another kind of the neu-
ral network-based model is HCSN. HCSN utilizes a human-
being-like cognitive network for ABSA, which is moti-
vated by the principles of human beings’ reading cognitive
processes. Its pre-reading, active reading, and post-reading
technique mimics the human behavior, which is then fed to
the GRU network. As interesting as it seems, the involve-
ment of the neural network still brings this below human-
level interpretation on what drives the model to make the
decision. Our model, which offers a transparent view of the
learning process, obtains quite similar or higher accuracy
compared to HCSN and PRET+MULT techniques. How-
ever, the TNet architecture with a CNN layer, which ex-
tracts salient features from transformed word representa-
tion, achieves higher accuracy compared to TM. AGDT is a
model that uses Aspect guided GRU along with Max pooling
to obtain Aspect Concatenated Embedding. It obtains quite
similar accuracy compared to TM on Restaurant 14, whereas

2In this work, we adopt the Porter Stemmer.

accuracy is lower on Laptop 14. Note that we do not use any
pre-trained word2vec or glove embedding for TM and our
model still performs better than LSTM, TD-LSTM as well
as attention based BilSTM for both datasets. The Macro-
F1 score shows that TM does not only greedily learn a par-
ticular class but also creates a set of features for each and
every class. Even though the performance of our proposed
model does not outperform the state-of-the-arts models, it
reaches to comparable accuracy and Macro-F1 with trans-
parent learning and interpretable prediction.

In addition to the above comparisons, we demonstrate
here the necessity of including both LOCs and SCs vectors.
First we only used the LOCs in the model and observed that
the accuracy of the model reaches 76.51%. Secondly, we re-
placed LOCs with SCs and the performance of the model
decreased to 75%. This shows that both vectors add useful
information when employed together thereby reaching the
stated accuracy of 78.02%.

To compare the performance of TM with classical inter-
pretable models such as Logistic Regression (LR), we use
our preprocessed BOW as input to LR. We observed that
the TM performs better than LR in terms of accuracy. LR
obtains the accuracy of 75.38% as compared with TM’s
78.02% on the Restaurant 14 dataset. Indeed, those two ap-
proaches operate based on different concepts. LR is trained
by adjusting weights and bias. TMs, on the other hand, re-
lates words using propositional logic to represent a class.
Employing propositional logic for knowledge representation
provides rules rather than a mathematical computation. This
crucial difference between a rule-based approach and regres-
sion methods is explored in (Haghighi et al. 2016). One can
analyze why a LR model assigns a particular class to an in-
put by inspecting the weights and bias. However, assigning
them meanings requires understanding of the mathematical
computation that LR carries out. Since TM creates a list of
patterns for a particular class based on the interaction of as-
pect words and the sentiment words in the context, its con-
junctive clauses hold information of words in a rule-based
form. It is well-known that evaluating a conjunctive clause
is particularly easy for humans, making them natively inter-
pretable and easier to explain than LR.

Interpretability and Analysis
Characteristics of Clauses
In this section, we will explain one phenomenon of a TM
after training with the datasets. When analyzing the clauses
after training, we noticed that the TM employs more negated
literals to form a clause. This is a bit counter intuitive as
there should be, intuitively, more literals in their original
forms than their negations in a clause. To explain this be-
havior, let us study two general sentences having positive
sentiments for aspect word “laptop”:

• This laptop is in excellent condition.

• Battery life of this laptop is better compared to other
brands.

In this example, we assume a vocabulary containing both
positive and negative sentiment words of size 6, V = [excel-
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Methods Restaurant 14 Laptop 14
Accuracy Macro-F1 Accuracy Macro-F1

ContextAvg 71.5 58.0 61.5 53.9
LSTM 74.3 63.0 66.5 60.1
TD-LSTM 75.6 64.5 68.1 63.9
ATAE-BiLSTM 77.6 65.3 68.7 64.2
MemNet 76.9 66.4 68.9 62.8
RAM 78.5 68.5 72.1 68.4
IAN 78.6 NA 72.1 NA
PRET+MULT 79.1 69.7 71.2 67.5
HCSN 77.8 70.2 76.1 72.5
TNet 80.79 70.84 76.01 71.47
AGDT 78.85 NA 71.50 NA

TM based ABSA 78.02 67.85 73.51 70.82
(76.40 ± 1.0) (64.01 ± 0.8) (71.47 ± 0.9) (67.48 ± 1.5)

Table 4: Experiment results of various approaches for SemEval-2014 dataset. The upper results show the best reproducible
accuracy and lower ones represent the mean and standard deviation of the last 50 epochs when running the model for five times.

lent, bad, condition, worst, costly, better, laptop]. When lit-
erals in their original forms are utilized to compose a clause,
the two sentences require two clauses to follow the senti-
ment, i.e., C1 = [laptop ∧ excellent ∧ condition] and
C2 = [battery ∧ better ∧ laptop ∧ others]. On the con-
trary, when negated form of literals are employed, only one
clause is sufficient to satisfy the sentiment in both sentences:
C1 = [laptop ∧ ¬bad ∧ ¬worst ∧ ¬costly]. As the nega-
tion is a more efficient way to represent a pattern in NLP, the
trained TM employs naturally more negated literals to form
a clause.

A Case Study for Interpretability
In this case study, we demonstrate the interpretable result
from trained model. We randomly select a sentence from
the dataset as an example and demonstrate its literals that
are responsible to form the clause. The selected sentence is
“Looks nice, but has a horribly cheap feel.” with a aspect
word “looks” whose sentiment prediction of TM is positive.
The sentence after pre-processing becomes “Looks positive,
but has a negative negative feel.” Among various clauses that
are triggered by the given input, we randomly select a clause
for interpretation. The clause is given by:

• Cj
i = positive∧(2n+6)∧¬(words not in the sentence

and aspect).

The above clause can be interpreted as: the aspect word
“looks” has positive sentiment because it has words “posi-
tive” and it lies in the second part of the sentence (indicated
by 2n + 6, i.e LOC2

vec = [0, 0, 1]) when split from aspect
word “looks”. Similarly, if the aspect word in the sentence
is “feel” then its sentiment is predicted to be negative and a
randomly selected clause is:

• Cj
i = negative ∧ (2n + 1) ∧ ¬(words not in the

sentence and aspect).

This clause means that the sentiment is negative because
it has words like “negative” and it lies in the first part of
the sentence (indicated by 2n + 1, i.e LOC1

vec = [1, 0, 0])

Looks AND nice AND (not other words in the
vocabulary) looks positive

horribly AND feel AND (not other words in the
vocabulary) feel negative

Looks nice, but has a horribly cheap feel.

Figure 11: Interpretation of a randomly selected sample
from ABSA task.

when split from aspect word “feel”. In both the cases,
¬(words not in the sentence and aspect) represents the
words in negated form that are presented in the input fea-
tures. Finally, reversing back all the information and bina-
rization to the original form of the words, we can obtain in-
terpretation that shows the influence of words in the classi-
fication as in Figure 11.

Conclusions

In this paper, we aim to reduce the gap between the inter-
pretability and the accuracy of aspect based sentiment anal-
ysis (ABSA) by employing the recently introduced Tsetlin
Machine (TM). Our proposed model embeds the aspect-
based inputs into binary form for classifying the sentiment of
a particular word in a sentence. Such binary representations
are then fed to a TM architecture where the learning process
is transparent, which gives a clear picture of what actually
drives the TM to learn the particular sentiment for a given
input. Additionally, we show the involvement of words car-
rying the sentiment for the aspect words in the case study. In
short, the proposed model successfully provides an human-
interpretable learning approach on ABSA task with compa-
rable accuracy.
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