
GDPNet: Refining Latent Multi-View Graph for Relation Extraction

Fuzhao Xue1, Aixin Sun1,*, Hao Zhang1,2, Eng Siong Chng1

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore

{fuzhao001@e., axsun@, hao007@e., aseschng@}ntu.edu.sg

Abstract

Relation Extraction (RE) is to predict the relation type of two
entities that are mentioned in a piece of text, e.g., a sentence
or a dialogue. When the given text is long, it is challenging to
identify indicative words for the relation prediction. Recent
advances on RE task are from BERT-based sequence mod-
eling and graph-based modeling of relationships among the
tokens in the sequence. In this paper, we propose to construct
a latent multi-view graph to capture various possible relation-
ships among tokens. We then refine this graph to select impor-
tant words for relation prediction. Finally, the representation
of the refined graph and the BERT-based sequence represen-
tation are concatenated for relation extraction. Specifically,
in our proposed GDPNet (Gaussian Dynamic Time Warping
Pooling Net), we utilize Gaussian Graph Generator (GGG)
to generate edges of the multi-view graph. The graph is then
refined by Dynamic Time Warping Pooling (DTWPool). On
DialogRE and TACRED, we show that GDPNet achieves the
best performance on dialogue-level RE, and comparable per-
formance with the state-of-the-arts on sentence-level RE. Our
code is available at https://github.com/XueFuzhao/GDPNet.

Introduction
Given two entities and a piece of text where the two entities
are mentioned in, the task of relation extraction (RE) is to
predict the semantic relation between the two entities. The
piece of text serves as the context for the prediction, which
can be a short sentence, a long sentence, or even a dialog.

We use an example from TACRED (Zhang et al. 2017) to
illustrate the RE task. In this example, we are interested in
predicting the relation type between two entities: “Cathleen
P. Black” and “chairwoman”. Based on a sentence: “Carey
will succeed Cathleen P. Black, who held the position for
15 years and will take on a new role as chairwoman of
Hearst Magazines, the company said”, we aim to predict the
two entities’ relation to be “per:title”. Note that, the relation
types in RE tasks are predefined. For instance, TARCED de-
fines 41 types and a special “no relation” type if a predicted
relation is not covered in the 41 predefined types.

Observe from the example, only a few words (e.g., “take
a new role as”) in the given context are related to the seman-

*Corresponding Author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

S1: Hey Pheebs.
S2: Hey!
S1: Any sign of your brother?
S2: No, but he is always late.
S1: I thought you only met him once?
S2: Yeah, I did. I think it sounds y’know big sistery,

y’know, ‘Frank’s always late.’
S1: Well relax, he’ll be here.

Argument Pair Trigger Relation type
R1 (Frank, S2) brother per:siblings
R2 (S2, Pheebs) none per:alternate names

Table 1: An example from DialogRE dataset (Yu et al. 2020).

tic relation between the two entities. Most of the remain-
ing words in the given sentence are less relevant to the pre-
diction. Another example from DialogRE (Yu et al. 2020)
dataset is shown in Table 1. Observe that Relation 1 (R1) can
be easily predicted based on a trigger word (e.g., “brother”),
despite the long conversation between S1 and S2. DialogRE
even provides trigger word annotation, which is the smallest
span of text that most clearly indicates the existence of the
relation between two arguments (see Table 1). This obser-
vation motives us to find and rely more on such indicative
words for RE, particularly when the context is long.

Graph-based neural models have been widely adopted for
RE due to their outstanding performance. Typically, each
node in graph represents a token or an entity in the given
text. There are multiple ways to construct edges. Many stud-
ies rely on an external parser converting text sequences to
dependency trees to initialize the graph. Errors made by
the parser therefore propagate to the graph. Recent stud-
ies directly learn a latent graph from text (Christopoulou,
Miwa, and Ananiadou 2018, 2019; Hashimoto and Tsuruoka
2017). The challenge is to handle long texts, as in the exam-
ple shown in Table 1. It is difficult to learn latent graphs
from long sequences, with token level node representations.
Christopoulou, Miwa, and Ananiadou (2019) simplifies the
latent graph by using predefined rules and extra labels, but
these rules and labels are not readily available in raw data.

Similar to many other tasks, BERT-based models have
demonstrated effectiveness on both sentence-level RE (Wu

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

14194

and He 2019; Joshi et al. 2020) and dialogue-level RE (Yu
et al. 2020). In BERT-based models, the “[CLS]” token is
utilized as the task-specific representation for relation pre-
diction. Although BERT can be regarded as a special case
of a fully connected graph, it is too large and complex to be
treated as a task-specific graph for relation extraction. More
importantly, many words in the given context are less rele-
vant to the relation prediction task.

In this paper, we propose a more general solution for
constructing latent graphs without prior knowledge, for RE
tasks. We start with a large latent graph initialized with
all tokens/entities in the given context as nodes, based on
their representations computed by BERT. Then we refine the
graph through graph pooling operations with the aim of find-
ing indicative words for relation extraction. In this sense, we
focus on refining a task-specific graph on top of BERT, by
making full use of BERT token representations. We believe
that a small-scale task-specific graph is critical for RE model
to capture the relationships among indicative words that con-
tain rich semantic information for relation prediction.

When learning a latent graph, an edge between two tokens
denotes their relationship abstracted from the text sequence.
In RE tasks, the relationships between two tokens could
be complex, including complicated syntactic relations and
abstract semantic relations. Moreover, the relationships be-
tween two tokens are asymmetric in RE tasks. Following He
et al. (2015), we introduce the multi-view graph to fully
capture different possible asymmetric relations between two
arbitrary tokens. More specifically, we propose a Gaussian
Graph Generator (GGG) to initialize the edges of the latent
multi-view graph. In GGG, we first encode each node repre-
sentation into multiple Gaussian distributions. Then the edge
weights are computed by measuring the Kullback-Leibler
(KL) divergence between the Gaussian distributions of dif-
ferent nodes. Due to the asymmetry of KL divergence, the
graph generated by GGG is naturally a directed graph.

After initialization, the latent multi-view graph is very
large, if the input sequence is long. It is difficult for the RE
model to focus on the indicative tokens for relation predic-
tion. Thus, we propose a Dynamic Time Warping Pooling
(DTWPool) to refine the graph, and to obtain hierarchical
representations in an adaptive manner. By the regulation of
SoftDTW (Cuturi and Blondel 2017), DTWPool refines the
latent graph through a lower bound of pooling ratio, and re-
serves a flexible number of nodes in the multi-view graph.
As a result, we obtain a task-specific graph with adaptive
size to model the indicative tokens for relation extraction.
Our contributions are summarized as follow:

• We propose a Gaussian Graph Generator (GGG) to ini-
tialize edges for latent multi-view graph by measuring KL
divergence between different Gaussian distributions of to-
kens.

• We propose a graph pooling method, DTWPool, to refine
the latent multi-view graph learned from text sequence,
with a flexible pooling ratio. To the best of our knowledge,
this is the first work on multi-view graph pooling.

• We combine GGG and DTWPool to form the GDPNet,
and evaluate GDPNet on two benchmark datasets for

RE. Experimental results demonstrate the effectiveness of
GDPNet against SoTA baselines.

Related Work
We briefly review the related studies in four aspects, namely,
RNN-based, graph-based, and BERT-based relation extrac-
tion methods, and graph pooling methods.

RNN-based Relation Extraction

Early works of relation extraction rely on hand-crafted fea-
tures to represent pairs of entities (Miwa and Sasaki 2014;
Gormley, Yu, and Dredze 2015). Model effectiveness highly
depends on the quality of hand-crafted features. Current
works focus on learning based models, such as recurrent
neural network (RNN) for RE. Zhou et al. (2016) propose
bidirectional LSTM model to capture the long-term depen-
dency between entity pairs. Zhang et al. (2017) present PA-
LSTM to encode global position information to boost the
performance of RE.

Graph-based Relation Extraction

Graph-based models are now widely adopted in RE due to its
effectiveness and strength in relational reasoning. Zhang, Qi,
and Manning (2018) utilizes a graph convolutional network
(GCN) to capture information over dependency structures.
Guo, Zhang, and Lu (2019) propose an attention guided
GCN (AGGCN) to improve graph representations via self-
attention mechanism. AGGCN performs well on sentence-
level RE, but it relies on external parser which may cause er-
ror propagation in graph generation. To alleviate error prop-
agation, Christopoulou, Miwa, and Ananiadou (2018) and
Nan et al. (2020) propose to learn latent graph from text in
an end-to-end manner, without the need of dependency trees
generated by external parser. Guo et al. (2020) treats the de-
pendency structure as a latent variable and induces it from
the unstructured text in an end-to-end fashion. In our model,
we also generate a latent graph, but with two major differ-
ences. One is that our graph is a multi-view directed graph
aiming to model all possible relationships between tokens.
Second is that we focus on refining this multi-view graph to
capture important words from long texts, for RE.

BERT-based Relation Extraction

Recently, large-scale pre-trained language models, such as
BERT, have achieved SoTA performances on many tasks.
Several works show that BERT-based models outperform
both RNN and graph-based models with a large margin (Wu
and He 2019; Joshi et al. 2020; Yu et al. 2020). Joshi et al.
(2020) propose SpanBERT to learn better representations,
and achieve SoTA performance on TACRED (Zhang et al.
2017), a sentence-level RE dataset. For dialogue-level RE
task, Yu et al. (2020) present a BERTs model, which takes
the speaker information into consideration and achieves the
best result. In our solution, the multi-view graph is built on
top of token representations by BERT.

14195

[CLS] E1 W W E2 [SEP]

BERT Module

h0 h1 h2 h3 h4 h5

Softmax Classifier

Graph Module

G
aussian G

raph
G

enerator

D
T

W
Pool

G
raph C

onv

v0
v1

v2

v3

v4

h1
h2

h3

h4

h5

G
raph C

onv

D
T

W
Pool

v0

v3

v0

v3

v0
v1

v2

v3

Figure 1: The overall architecture of the proposed GDPNet. Entities E1 and E2 are single-token entities in the illustration.

Graph Pooling
Compared with graph convolution, graph pooling is another
important but less investigated direction for learning graph.
Graphs usually contain different substructures, and differ-
ent nodes in a graph may play different roles. Hence, sim-
ply applying pooling operations like sum or average to en-
code the global node representations in graph may cause
information loss (Atwood and Towsley 2016; Simonovsky
and Komodakis 2017). To tackle this issue, several ad-
vanced graph pooling methods are proposed, including Diff-
Pool (Ying et al. 2018), TopKPool (Gao and Ji 2019), SAG-
Pool (Lee, Lee, and Kang 2019) and StructPool (Yuan and Ji
2019). DiffPool generates a cluster assignment matrix over
the nodes, to construct a differentiable pooling layer. Top-
KPool samples a subset of essential nodes, by manipulat-
ing a trainable projection vector. SAGPool further applies
self-attention and graph convolution to improve TopKPool.
StructPool proposes a graph pooling method based on con-
ditional random fields, to improve the relation representa-
tions of different nodes. However, all these methods have not
been evaluated on multi-view graphs, which can model com-
plex relationships between nodes. In this paper, we propose
DTWPool to process the latent multi-view graph learned
from text sequence. Note that DTWPool is capable of uti-
lizing adaptive pooling ratio instead of a fixed one.

Preliminary
Problem Formulation
Let X = {x1, x2, . . . , xT } be a sequence, where xt is the
tth token in the sequence, and T is the number of tokens.
For sentence-level RE, X denotes the given sentence. For
dialogue-level RE, X represents the entire dialogue. That is,
in our problem formulation, we do not explicitly distinguish
sentence and dialogue. To predict relations, we are given two
entities, subject entityXs and object entityXo. BothXs and
Xo are sub-sequences of X . An entity may contain one or
more tokens, e.g., Xs = {xs, xs+1, . . . , xs+m−1} where s
denotes the starting position of Xs in sequence X and m
is the number of tokens in Xs. Given X , Xs, and Xo, the
goal of relation extraction is to predict the relation r ∈ R
between Xs and Xo, where R is a set of predefined relation

types in the dataset.

Multi-view Graph
In a multi-view graph, there exist multiple edges between a
pair of nodes, each edge from one view. Formally, we can
represent a multi-view graph as G = (V,A1, A2, . . . , AN),
where V is the set of nodes, A is an adjacent matrix, and N
is the number of views.

In our model, we aim to use multi-view graph to model the
complex (e.g., syntactic and semantic) relationships between
tokens in the given sequence. In this multi-view graph, each
token in sequence X corresponds to one node. Note that an
entity may contain multiple tokens, and there are multiple
ways of handling entity tokens (i.e., tokens in Xs and Xo).
For easy presentation, we treat tokens in entities the same as
other tokens in the sequence in following discussions.

Methodology
The overall architecture of GDPNet is shown on the left-
hand side in Figure 1. There are three key components:
BERT module, graph module, and SoftMax classifier. The
BERT module encodes tokens into the corresponding fea-
ture representations. Illustrated on the right-hand side of Fig-
ure 1, the graph module takes in token representations from
BERT and constructs a multi-view graph with a Gaussian
Graph Generator (GGG). Then the graph is refined through
multiple interactions of graph convolution and DTWPool.
Finally, the refined latent graph is fed into the SoftMax clas-
sifier to predict relation type.

BERT Module
We utilize BERT as the feature encoder to extract token rep-
resentations due to its effectiveness in representation learn-
ing (Joshi et al. 2020; Yu et al. 2020). Given a sequence
X with T tokens, we map X to a BERT input sequence
Xinput = {x0, x1, x2, . . . , xT , xT+1}. Here, x0 denotes the
“[CLS]” token which represents the start of sequence X ,
and xT+1 is the “[SEP]” token which represents the end of
the sequence. The corresponding token representations from
BERT are denoted byH = {h0, h1, h2, . . . , hT , hT+1}. Ex-
isting BERT-based solutions for RE only take h0, i.e., the
representation of “[CLS]” token, as the input of SoftMax

14196

classifier to predict the relation type (Joshi et al. 2020; Yu
et al. 2020). In GDPNet, we fully utilize the entire token
representations H through the graph module. To be detailed
shortly, the graph module learns a task-specific graph using
tokens {h1, h2, . . . , hT , hT+1}. The learned graph is then
combined with h0 to be the input to the SoftMax classifier.

Graph Module
The graph module consists of Gaussian Graph Generator
(GGG), multiple layers of graph convolution and DTW-
Pool. The GGG is designed to generate the latent multi-view
graph, while the graph convolution and DTWPool layers are
applied for graph refinement.

Gaussian Graph Generator The output representations
of BERT module are divided into two parts. h0 for token
“[CLS]” is considered as the task-specific token of the en-
tire sequence, which is the first part. The remaining repre-
sentations {h1, h2, ..., hT , hT+1} form the second part. We
generate a multi-view graph from the second part to model
the relationships between tokens.

We denote the initial node representations of the latent
graph as V 0 = {v01 , v02 , . . . , v0T+1}, where each node corre-
sponds to a token representation. Then, we propose a Gaus-
sian Graph Generator (GGG) to initialize the edges of the
latent multi-view graph, based on V 0. Specifically, we first
encode each node v0i into multiple Gaussian distributions as:

{µ1
i , µ

2
i , . . . , µ

N
i } = gθ(v

0
i)

{σ1
i , σ

2
i , . . . , σ

N
i } = φ

(
g′θ(v

0
i)
) (1)

where gθ and g′θ are two trainable neural networks, φ is
a non-linear activation function and N denotes the num-
ber of views in the multi-view graph. We set the activa-
tion function φ as the SoftPlus function, since the standard
deviation of Gaussian distribution is bounded on (0,+∞).
Consequently, we obtain a number of Gaussian distributions
{Nn

1 ,Nn
2 , . . . ,Nn

T+1} for the nth view of the multi-view
graph. Each Gaussian distribution here Nn

i (µni , σ
n
i
2) corre-

sponds to a node representation v0i .
The purpose of the multi-view graph is to capture all pos-

sible relations between tokens, so we encourage message
propagation between token representations with large se-
mantic differences. We adopt KL divergence between the
Gaussian distributions of two tokens to model edge weight.
Specifically, edge weight between ith node and jth node on
the nth view is computed as:

enij = KL
(
Nn
i (µni , σ

n
i
2)||N n

j (µnj , σ
n
j
2)
)

(2)

After computing edges between nodes on each view, we ob-
tain multiple adjacent matrices {A1, A2, ..., AN}, one for
each view. Thus, the generated multi-view graph is written
as G = (V 0, A1, A2, ..., AN). Due to the asymmetry nature
of KL divergence, G is a directed multi-view graph.

Multi-view Graph Convolution Inspired by Guo, Zhang,
and Lu (2019), we further employ multi-view graph con-
volution with dense connections (Guo et al. 2019) to cap-
ture structural information on the graphs. With the usage of

dense connections, we can train a deeper model to capture
both local and non-local information. The multi-view graph
convolution is written as:

v(`)ni
= ρ

 T∑
j=1

AnijW
(`)
n k

(`)
j + b(`)n

 (3)

where W (`)
n and b

(`)
n are the trainable weight and bias of

the nth view, respectively. ρ denotes an activation function
and k

(`)
j is the concatenation of the initial node represen-

tation and the node representations produced in sub-layers
1, ..., ` − 1. The output of the first graph convolution layer
is V 1 = {v11 , v12 , . . . , v1T+1} = {k(`)1 , k

(`)
2 , . . . , k

(`)
T+1}. We

refer readers to the Densely Connected Graph Convolutional
Network (Guo et al. 2019) for more details.

Dynamic Time Warping Pooling After graph convolu-
tion updates node representations by message propagation,
a Dynamic Time Warping Pooling (DTWPool) is introduced
to refine the latent multi-view graph. In DTWPool, we first
refer to SAGPool (Lee, Lee, and Kang 2019) to calculate the
attention scores on each view of the graph:

sni = α

 T∑
j=1

AnijWpoolvj + bpool

 (4)

where Wpool and bpool are trainable weight and bias of
the pooling operation, respectively. α denotes an activation
function and sni is the attention weight before the SoftMax
activation. For nth view of the latent multi-view graph, we
obtain a score set Sn = {sn1 , sn2 , . . . , snT+1

}. We keep
the node selection method of SAGPool to retain a portion
of nodes in the input graph even when the sizes and struc-
tures of the graphs are varied. After node selection, the
retained nodes of nth view are a subset of the V 1, e.g.,
V 2
n = {v21 , v25 , ..., v2T }. As our latent graph has multiple

views, we can derive different subsets from V 1 from dif-
ferent views.

Existing graph pooling approaches, e.g., SAGPool, only
allow a fixed ratio for node pooling. Due to the nature of
multi-view graph, DTWPool refines the graph adaptively by
getting the union set of nodes from different views:

V 2 = V 2
1 ∪ V 2

2 ∪ . . . ∪ V 2
N (5)

where V 2 is the union set of the subsets selected from all
different views. If we set a fixed pooling ratio r ∈ [0, 1] on
each view, the pooling ratio of DTWPool, e.g., ratio of the
number of nodes in V 2 to the number of nodes in V 1, could
be a flexible decimal rreal ∈ [r, 1]. We operate the graph
convolution and DTWPool iteratively in the graph module,
so we have a sequence of graphs {G1, G2, . . . , GD}, where
D is the number of graph pooling layers.

The number of informative nodes varies in different text
sequences. It is important to preserve important information
along the process of graph pooling. The nodes in this graph
embed rich context information, so it would be beneficial to
summarize the context into the pooled nodes. To this end,
we propose to adopt SoftDTW to guide the graph pooling.

14197

Model Dev set Test set
F1 (σ) F1c (σ) F1 (σ) F1c (σ)

CNN (Lawrence et al. 1997) 46.1 (0.7) 43.7 (0.5) 48.0 (1.5) 45.0 (1.4)
LSTM (Hochreiter and Schmidhuber 1997) 46.7 (1.1) 44.2 (0.8) 47.4 (0.6) 44.9 (0.7)
BiLSTM (Graves and Schmidhuber 2005) 48.1 (1.0) 44.3 (1.3) 48.6 (1.0) 45.0 (1.3)
BERT (Devlin et al. 2019) 60.6 (1.2) 55.4 (0.9) 58.5 (2.0) 53.2 (1.6)
BERTs (Yu et al. 2020) 63.0 (1.5) 57.3 (1.2) 61.2 (0.9) 55.4 (0.9)
GDPNet (our model) 67.1 (1.0) 61.5 (0.8) 64.9 (1.1) 60.1 (0.9)

Table 2: Performance of all models on DialogRE. σ denotes the standard deviation computed from five runs of each model.

S1: Hey, you guys! Look what I found! Look at this!
That’s my Mom’s writing! Look.

S2: Me and Frank and Phoebe, Graduation 1965.
S1: Y’know what that means?
S3: That you’re actually 50?
S1: No-no, that’s not, that’s not me Phoebe, that’s her

pal Phoebe. According to her high school year-
book, they were like B.F.F. Best Friends Forever.

Argument Pair Trigger Relation type
R1 (S1, Frank) high school per:alumni

yearbook

Table 3: Text of the first dialogue in test set of DialogRE.
The tokens in bold are selected by GDPNet.

SoftDTW is a differentiable loss function, designed for find-
ing the best possible alignment between two sequences with
different lengths (Cuturi and Blondel 2017).

DTWγ(L1, L2) = minγ {〈M,∆(L1, L2)〉,M ∈M} (6)

Here, L1 and L2 are two sequences of different lengths,
∆(L1, L2) is the cost matrix, andM is a set of binary align-
ment matrices.

In GDPNet, we use the SoftDTW loss to minimize the dis-
tance between the original graph and the last pooled graph:

L = CSE(r, r̂) + λDTWγ(V 1, V D) (7)

where L denotes the overall training objective, CSE is the
Cross Entropy loss function, λ is a hyper-parameter to bal-
ance the contribution of DTW, and V D is the nodes in the
graph after the last DTWPool layer. Because SoftDTW loss
is designed for aligning two sequences, we employ it to en-
courage the nodes after pooling to cover more local context
representations. With SoftDTM loss, DTWPool is guided to
refine the graph without losing much context information.

To minimize information loss, we concatenate the node
representations of the intermediate graphs created during
the pooling process to derive the final graph V , similar to
learning graph dense connections (Guo et al. 2019). As our
pooled graphs have different sizes, we only concatenate the
node representations in {V 2, V 4, ..., V D} for all nodes that
are included in graph V D. Thus, the number of nodes in the
final graph V is the same as that in V D.

Classifier Given the final graph V , we adopt a neural net-
work with max-pooling to compute the representation of the
graph. The computed representation is then concatenated
with the representation of “[CLS]” token h0 to form the final
representation.

hfinal = [h0; f(V)] (8)
Here, f is a neural network with max-pooling, which maps
the V ∈ RQ×T ′

to f(V) ∈ Rq×1, Q = D ∗ q. D is the
number of graph pooling layers in graph module, q is the
dimension of token representation, and T ′ is the number of
nodes in V .

Experiments
Our proposed GDPNet can be applied to both sentence-level
and dialogue-level RE tasks. Due to the differences in data
formats, applicable baseline models, and the way in han-
dling subject and object entitiesXs andXo, we conduct two
sets of experiments, comparing GDPNets to SoTA models
on the two tasks. We also show how GDPNet can be easily
modified to achieve a fair comparison with SoTA models on
each task.

Dialogue-level Relation Extraction
DialogRE is the first human-annotated dialogue-level RE
dataset (Yu et al. 2020). It contains 1, 788 dialogues origi-
nating from the complete transcripts of a famous American
television situation comedy. There are 36 relation types pre-
defined in DialogRE. An example is given in Table 1.

Baseline Models and Experimental Setup We evaluate
GDPNet against the recently proposed BERTs (Yu et al.
2020). BERTs is a speaker-aware modification of BERT,
and achieves best performance on dialogue-level RE. For the
completeness of experiments, we also include popular base-
line models: CNN, LSTM, BiLSTM and BERT models.

For fair comparison, we use the same input format and
hyperparameter settings as in BERTs. Specifically, the given
X , Xs, and Xo, are concatenated with classification token
[CLS] and separator token [SEP] to form an input sequence
[CLS]X[SEP]Xs[SEP]Xo[SEP]. All token representations
except [CLS] are fed into our graph module. To incorporate
speaker information, for the sentences that contain Xs or
Xo, the text indicating speaker e.g., “Speaker 1”, is replaced
by a specific token, [S1] or [S2]. Note that the trigger words
are treated as normal tokens. Adam (Kingma and Ba 2015)
with learning rate of 3e−5 is employed and the lower bound

14198

Figure 2: GDPNet and BERTs on different dialogue lengths.

of pooling ratio is set to 0.7. We use 3 DTWPool layers.
As graph pooling operation is performed in each DTWPool
layer, only a few nodes are included in the final graph. We
use both F1 and F1c scores as the evaluation metrics. F1c
is proposed by Yu et al. (2020), and it is computed by only
taking in the early part of a dialogue as input, instead of the
entire dialogue.

Results on DialogRE Table 2 summarizes the results on
DialogRE. Observe that BERT-based models significantly
outperform CNN and LSTM-based models. BERTs is supe-
rior to BERT because BERTs incorporates speaker-related
information. Following the same input format and setting,
GDPNet is built on top of BERTs. That is, BERTs acts as
the BERT module for feature extraction in GDPNet (see Fig-
ure 1). Shown in Table 2, GDPNet outperforms BERTs by
3.7 and 4.7 points in F1 and F1c, respectively, on test set.

GDPNet is designed to find key information from long
sequences for effective RE. Thus, we expect that GDPNet is
capable of tackling long sequences better. We group the dia-
logues in DialogRE test set into five subsets by their length,
i.e., number of tokens. Figure 2 reports F1 scores of GDP-
Net and BERTs on the five subsets. GDPNet consistently
outperforms BERTs when dialogue length is more than 100
tokens. In particular, GDPNet surpasses BERTs by a large
margin on the dialogues with over 400 tokens. This com-
parison shows that GDPNet is effective in modeling long
sequences through refining the latent graph built on top of
token representations.

As an example, Table 3 shows the tokens selected by
GDPNet on the first dialogue in the test set of DialogRE.
Our model selects informative tokens like “her” ”school” to
predict the “per:alumn” relation. Some less related tokens,
like “you’re actually 50?”, are ignored by our model.

Ablation Study We conduct ablative experiments on Di-
alogRE to evaluate the effectiveness of the two main com-
ponents in GDPNet, i.e., Gaussian Graph Generator and Dy-
namic Time Warping Pooling. The results are reported in
Table 4.

We first replace the multi-view graph by a simple homo-
geneous graph, which is the same as setting the number of
views to one. The performance degradation suggests that
multi-view graph is beneficial as it models complex rela-
tionships among tokens. Next, we evaluate GGG by replac-
ing GGG with multi-head attention. The results show that

Model F1(σ) F1c(σ)

GDPNet 64.9 (1.1) 60.1 (0.9)
with Homogeneous GGG 63.5 (0.7) 58.4 (0.6)
w/o GGG 62.1 (1.6) 58.1 (1.1)
w/o DTWloss 63.4 (1.4) 58.6 (1.3)
w/o DTWPool 48.9 (1.1) 22.4 (1.0)
w/o GGG & DTWPool 48.2 (1.4) 21.8 (1.0)

Table 4: An ablation study on GDPNet model. For mod-
els without GGG, we replaced GGG by multi-head atten-
tion to initialize the edges of the multi-view graph. For the
model without DTWloss, we remove the second term in
Equation 7. All DTWPool layers are removed for the mod-
els without DTWPool.

without GGG, performance drops. GGG initializes the latent
graph by measuring the difference between two Gaussian
distributions generated from node representations, which de-
couples the dependency between token representations and
graph edges. To evaluate the impact of DTWPool, we first
drop DTWloss by removing the second term in Equation 7,
and there is a slight performance drop. Without DTWloss,
DTWPool degenerates into the multi-view version of SAG-
Pool (Lee, Lee, and Kang 2019). This result indicates that
DTWPool outperforms SAGPool when tackling the multi-
view graph learned from token sequence. When all the
DTWPool layers are removed, the performance of GDPNet
decreases dramatically, which shows that DTWPool is cru-
cial for the GDPNet. After removing both GGG and DTW-
Pool, the performance of GDPNet is even worse. To summa-
rize, DTWPool is crucial for learning a task-specific graph
from a large latent multi-view graph. The final graph learned
effectively filters out less useful information from a long se-
quence for effective relation extraction.

Sentence-level Relation Extraction
We evaluate GDPNet for sentence-level RE on two datasets
TACRED (Zhang et al. 2017) and TACRED-Revisit (Alt,
Gabryszak, and Hennig 2020). TACRED is a widely used
large-scale sentence-level relation extraction dataset. It con-
tains more than 106K sentences drawn from the yearly
TACKBP4 challenge, and 42 different relations (41 com-
mon relation types and a special “no relation” type). The
subject mentions in TACRED are person and organization,
while object mentions are in 16 fine-grained types, including
date, location, etc. The TACRED-Revisit dataset, released
recently, corrects the wrong labels in the development and
test sets of TACRED.

Baseline Models and Experimental Setup To the best of
our knowledge, SpanBERT (Joshi et al. 2020) is the best
performing sentence-level RE model without incorporating
any external knowledge and parser. We consider SpanBERT
as a strong baseline to benchmark our GDPNet. We also in-
clude RNN- and graph-based models. Meanwhile, we report
the results of KnowBERT, which incorporates external re-
sources for training (Peters et al. 2019).

14199

Model TACRED TACRED-Revisit
Pr Re F1 Pr Re F1

LSTM (Zhang et al. 2017) 65.7 59.9 62.7 71.5* 69.7* 70.6*
PA-LSTM (Zhang et al. 2017) 65.7 64.5 65.1 74.5* 74.1* 74.3*
C-AGGCN (Guo, Zhang, and Lu 2019) 73.1 60.9 68.2 77.7* 73.4* 75.5*
LST-AGCN (Sun et al. 2020) - - 68.8 - - -

SpanBERT (Joshi et al. 2020) 70.8 70.9 70.8 75.7* 80.7* 78.0*
GDPNet (Our model) 72.0 69.0 70.5 79.4 81.0 80.2
KnowBERT (Peters et al. 2019) 71.6 71.4 71.5 - - 79.3

Table 5: Performance of all models on TACRED and TACRED-Revisit. For the models without reported performance on
TACRED-Revisit, we run the released code if available, and mark results obtained by asterisk(*). We also run the released code
of SpanBERT on TACRED-Revisit, and we obtain the same results as reported in (Alt, Gabryszak, and Hennig 2020).

Type of tokens DialogRE TACRED

All tokens 15.6 66.3
Non-repetitive tokens 23.5 67.6
Repetitive tokens 10.0 58.1
Trigger tokens 32.1 -

Table 6: Percentage (%) of the tokens selected in the final
graph from sequence. Non-repetitive tokens are the tokens
that appear only once in the sequence; repetitive tokens ap-
pear two or more times in the sequence. Trigger tokens are
key tokens annotated in DialogRE.

We use the same input format and hyperparameter set-
tings as in SpanBERT. Subject entity Xs and object entity
Xo are each replaced by a sequence of “[SUBJ-NER]” or
“[OBJ-NER]” tokens. Then [CLS]X[SEP] forms the input
to the models. This is different from the settings in DialogRE
whereXs andXo are appended to the input sequenceX . Pa-
rameter optimization is again performed by Adam (Kingma
and Ba 2015) with learning rate of 2e−5. Since the sequence
length in TACRED is much shorter than that in DialogRE,
we set the lower bound of pooling ratio to 0.8.

Results on TACRED The results on TACRED and
TACRED-Revisit are summarized in Table 5. Similar ob-
servations hold, that BERT-based models (i.e., SpanBERT
and KnowBERT), significantly outperform non-BERT mod-
els (i.e., LSTM, PA-LSTM, C-AGGCN and LST-AGCN) on
both versions of TACRED.

GDPNet achieves comparable performance with Span-
BERT1 on TACRED, and better results on TACRED-Revisit.
Compared to KnowBERT, which utilize external knowledge
in its training, GDPNet’s F1 is lower by 1 point on TA-
CRED, but is higher by almost 1 point on TACRED-Revisit.

Compared to dialogue, sentence is much shorter and
BERT-based models are effective in capturing the key in-

1A very recent study (Chen et al. 2020) also combines Span-
BERT with GCN, but it still relies on external parser for graph
generation. In contrast, our GDPNet regards the graph as latent
variable, which is more general and feasible.

formation. As GDPNet is designed for handling long se-
quences, we do not expect it to outperform SoTA models,
but GDPNet remains competitive for sentence-level RE.

Quantitative Analysis
Our last experiment is to analyze DTWPool in GDPNet.
DTWPool aims to identify indicative tokens for relation ex-
traction through refining the latent multi-view graph. Ta-
ble 6 reports the percentage of tokens selected in the final
graph after the DTWPool, on both DialogRE and TACRED
datasets. We separate the repetitive tokens and non-repetitive
tokens based on the original input, i.e., whether the word
appears only once or multiple times in the input sequence.
Repetitive tokens, in general, define the topic of the sentence
or dialogue. However, the relation type between two entities
is seldom described repetitively. In fact, given the same di-
alogue, we may predict different relation types between dif-
ferent pairs of entities. With this in mind, we consider repeti-
tive tokens are less important compared to non-repetitive to-
kens for RE tasks. Shown in Table 6, DTWPool selects more
non-repetitive tokens than repetitive tokens on both datasets.
More interestingly, DialogRE provides manually annotated
trigger tokens that are indicative to the relation type. DTW-
Pool selects 32.1% of trigger tokens, given that only 15.6%
of tokens are selected among all tokens. That is, trigger to-
kens are selected with a much higher chance than random.
This analysis shows that DTWPool is capable of selecting
indicative tokens for relation extraction.

Conclusion
In this paper, we propose GDPNet for relation extraction.
GDPNet is designed to find indicative words from long se-
quences (e.g., dialogues) for effective relation extraction.
We show that GDPNet achieves the best performance on
dialogue-level RE. In particular, GDPNet achieves much
better performance than BERT-based models when the di-
alogue is long. The key of the GDPNet is to construct a la-
tent multi-view graph to model possible relationships among
tokens in a long sequence, and then to refine the graph by
DTWPool. From the results on DialogRE and TACRED, we
show there is a great potential of this mechanism in dealing
with long sequences.

14200

Acknowledgments
This research is supported by the Agency for Sci-
ence, Technology and Research (A*STAR) under its
AME Programmatic Fund (A19E2b0098, A18A1b0045,
and A18A2b0046).

Appendix
Software Packages and Hardware Specification
The GDPNet is implemented by using PyTorch 1.4 with
CUDA 10.1. Our implementation also uses the SoftDTW2

toolkit. All experiments are conducted on a desktop with
Intel i7-8750H CPU, DDR4 16GB memory, and a single
NVIDIA GeForce RTX 1070 GPU. We also reproduced our
results on Quadro RTX 8000 GPU.

Hyper-Parameter Settings
The hyper-parameter settings on the two datasets, DialogRE
and TACRED, are listed as follows.

Parameter DialogRE TACRED

Epoch 20 10
Batch Size 24 32
Learning rate 3e-5 2e-5
Dropout 0.5 0.5
Hidden units of graph 300 300
Number of views 3 3
Number of DTWPool layers 3 3
Pooling ratio lower bound 0.7 0.8
Weight of SoftDTW loss 1e-6 2e-4

We set hyper-parameters (epoch, batch size, learning
rate and dropout rate) of the backbone model the same as
the corresponding SoTA models for fair comparison, i.e.,
BERTs (Yu et al. 2020) for DialogRE, and SpanBERT (Joshi
et al. 2020) for TACRED.

The hidden units of graph, number of views, and num-
ber of DTWPool layers are set according to AGGCN (Guo,
Zhang, and Lu 2019). Although AGGCN does not contain
graph pooling operation, we use the same number of GCN
layers and DTWPool layers in our evaluation.

We set a higher pooling ratio for the TACRED dataset
due to its shorter sequence length compared to DialogRE.
Consequently, the ratio of nodes retained in the final graph
of TACRED is higher than that of DialogRE, which leads to
lower SoftDTW loss for TACRED compared to DialogRE.
For this reason, we set a larger weight of SoftDTW loss for
TACRED.

References
Alt, C.; Gabryszak, A.; and Hennig, L. 2020. TACRED Re-
visited: A Thorough Evaluation of the TACRED Relation
Extraction Task. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, 1558–
1569. Online: Association for Computational Linguistics.

2https://github.com/Maghoumi/pytorch-softdtw-cuda

Atwood, J.; and Towsley, D. 2016. Diffusion-Convolutional
Neural Networks. In Advances in Neural Information Pro-
cessing Systems, volume 29, 1993–2001. Curran Associates,
Inc.

Chen, J.; Hoehndorf, R.; Elhoseiny, M.; and Zhang, X.
2020. Efficient long-distance relation extraction with DG-
SpanBERT. ArXiv abs/2004.03636.

Christopoulou, F.; Miwa, M.; and Ananiadou, S. 2018. A
Walk-based Model on Entity Graphs for Relation Extrac-
tion. In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Pa-
pers), 81–88. Melbourne, Australia: Association for Com-
putational Linguistics.

Christopoulou, F.; Miwa, M.; and Ananiadou, S. 2019. Con-
necting the Dots: Document-level Neural Relation Extrac-
tion with Edge-oriented Graphs. In Proceedings of the
2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
4925–4936. Hong Kong, China: Association for Computa-
tional Linguistics.

Cuturi, M.; and Blondel, M. 2017. Soft-DTW: a Differen-
tiable Loss Function for Time-Series. In Precup, D.; and
Teh, Y. W., eds., Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, 894–903. International Con-
vention Centre, Sydney, Australia: PMLR.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 4171–4186. Asso-
ciation for Computational Linguistics.

Gao, H.; and Ji, S. 2019. Graph U-Nets. In Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
2083–2092. Long Beach, California, USA: PMLR.

Gormley, M. R.; Yu, M.; and Dredze, M. 2015. Improved
Relation Extraction with Feature-Rich Compositional Em-
bedding Models. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 1774–
1784. Lisbon, Portugal: Association for Computational Lin-
guistics.

Graves, A.; and Schmidhuber, J. 2005. Framewise Phoneme
Classification with Bidirectional LSTM and Other Neural
Network Architectures. Neural Networks 18(5–6): 602–610.

Guo, Z.; Nan, G.; LU, W.; and Cohen, S. B. 2020. Learning
Latent Forests for Medical Relation Extraction. In Proceed-
ings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, 3651–3657. International
Joint Conferences on Artificial Intelligence Organization.

Guo, Z.; Zhang, Y.; and Lu, W. 2019. Attention Guided
Graph Convolutional Networks for Relation Extraction. In
Proceedings of the 57th Annual Meeting of the Association

14201

for Computational Linguistics, 241–251. Florence, Italy:
Association for Computational Linguistics.
Guo, Z.; Zhang, Y.; Teng, Z.; and Lu, W. 2019. Densely
Connected Graph Convolutional Networks for Graph-to-
Sequence Learning. Transactions of the Association for
Computational Linguistics 7: 297–312.
Hashimoto, K.; and Tsuruoka, Y. 2017. Neural Machine
Translation with Source-Side Latent Graph Parsing. In Pro-
ceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, 125–135. Copenhagen, Den-
mark: Association for Computational Linguistics.
He, S.; Liu, K.; Ji, G.; and Zhao, J. 2015. Learning to Rep-
resent Knowledge Graphs with Gaussian Embedding. In
Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM ’15,
623–632. New York, NY, USA: Association for Computing
Machinery.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Joshi, M.; Chen, D.; Liu, Y.; Weld, D. S.; Zettlemoyer, L.;
and Levy, O. 2020. SpanBERT: Improving Pre-training by
Representing and Predicting Spans. Transactions of the As-
sociation for Computational Linguistics 8: 64–77.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations.
Lawrence, S.; Giles, C. L.; Ah Chung Tsoi; and Back, A. D.
1997. Face recognition: a convolutional neural-network ap-
proach. IEEE Transactions on Neural Networks 8(1): 98–
113.
Lee, J.; Lee, I.; and Kang, J. 2019. Self-Attention Graph
Pooling. In Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, 3734–3743. Long Beach, Cal-
ifornia, USA: PMLR.
Miwa, M.; and Sasaki, Y. 2014. Modeling Joint Entity
and Relation Extraction with Table Representation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1858–1869. Doha,
Qatar: Association for Computational Linguistics.
Nan, G.; Guo, Z.; Sekulic, I.; and Lu, W. 2020. Reasoning
with Latent Structure Refinement for Document-Level Re-
lation Extraction. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, 1546–
1557. Online: Association for Computational Linguistics.
Peters, M. E.; Neumann, M.; Logan, R.; Schwartz, R.; Joshi,
V.; Singh, S.; and Smith, N. A. 2019. Knowledge Enhanced
Contextual Word Representations. In Proceedings of the
2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
43–54. Hong Kong, China: Association for Computational
Linguistics.
Simonovsky, M.; and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on

graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3693–3702.
Sun, K.; Zhang, R.; Mao, Y.; Mensah, S.; and Liu, X.
2020. Relation Extraction with Convolutional Network
over Learnable Syntax-Transport Graph. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
8928–8935.
Wu, S.; and He, Y. 2019. Enriching Pre-Trained Language
Model with Entity Information for Relation Classification.
In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, CIKM ’19,
2361–2364. New York, NY, USA: Association for Comput-
ing Machinery.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018. Hierarchical Graph Representation
Learning with Differentiable Pooling. In Advances in Neu-
ral Information Processing Systems, volume 31, 4800–4810.
Curran Associates, Inc.
Yu, D.; Sun, K.; Cardie, C.; and Yu, D. 2020. Dialogue-
Based Relation Extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Lin-
guistics, 4927–4940. Online: Association for Computational
Linguistics.
Yuan, H.; and Ji, S. 2019. StructPool: Structured graph pool-
ing via conditional random fields. In International Confer-
ence on Learning Representations.
Zhang, Y.; Qi, P.; and Manning, C. D. 2018. Graph Convolu-
tion over Pruned Dependency Trees Improves Relation Ex-
traction. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, 2205–2215.
Association for Computational Linguistics.
Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; and Manning,
C. D. 2017. Position-aware Attention and Supervised Data
Improve Slot Filling. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, 35–
45. Copenhagen, Denmark: Association for Computational
Linguistics.
Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; and Xu,
B. 2016. Attention-Based Bidirectional Long Short-Term
Memory Networks for Relation Classification. In Proceed-
ings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), 207–212.
Berlin, Germany: Association for Computational Linguis-
tics.

14202

