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Abstract

Current end-to-end neural conversation models inherently
lack the flexibility to impose semantic control in the response
generation process, often resulting in uninteresting responses.
Attempts to boost informativeness alone come at the expense
of factual accuracy, as attested by pretrained language mod-
els’ propensity to “hallucinate” facts. While this may be mit-
igated by access to background knowledge, there is scant
guarantee of relevance and informativeness in generated re-
sponses. We propose a framework that we call controllable
grounded response generation (CGRG), in which lexical con-
trol phrases are either provided by a user or automatically
extracted by a control phrase predictor from dialogue con-
text and grounding knowledge. Quantitative and qualitative
results show that, using this framework, a transformer based
model with a novel inductive attention mechanism, trained on
a conversation-like Reddit dataset, outperforms strong gener-
ation baselines.

1 Introduction
End-to-end neural models for open-domain response gener-
ation (Shang, Lu, and Li 2015; Sordoni et al. 2015; Vinyals
and Le 2015; Gao, Galley, and Li 2019) are capable of gener-
ating conversational responses that are both fluent and con-
textually appropriate. Although the earliest neural genera-
tion models were characterized by bland and evasive re-
sponses (Li et al. 2016a), surprisingly human-like conver-
sations can be generated using recent diversity-enhancing
strategies (Holtzman et al. 2020; Gao et al. 2019a) and mas-
sive GPT-2 style models (Radford et al. 2019; Zhang et al.
2020).1 While blandness may no longer present a challenge,
the downside has been a propensity towards “hallucinated”
or “fake” output (Zellers et al. 2019) of the kind illustrated
in scenario I in Figure 1.

Grounded response generation (Ghazvininejad et al.
2018; Dinan et al. 2019; Qin et al. 2019) approaches can
inhibit hallucination of facts. Yet grounding alone (e.g, the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For a related task (document creation), 72% of human judges
found GPT-2 credible vs. 83% for New York Times articles: https:
//openai.com/blog/gpt-2-6-month-follow-up/

A: You should check out the movie La La Land.

B: Tell me more about it.

 Damien 
Chazelle

…  musical film 
directed by 
Damien  Chazelle 
… Ryan Gosling 
as a jazz pianist ...

La La Land is a 2016 American romantic comedy-drama 
musical film written and directed by Damien Chazelle. It 
stars Ryan Gosling as a jazz pianist and Emma Stone as 
an aspiring actress, who meet and fall in love while 
pursuing their dreams in Los Angeles. Having been fond 
of musicals during his time as a drummer, Chazelle first 
conceptualized the film alongside Justin Hurwitz while 
attending Harvard University together. Moving to Los 
Angeles in 2010, Chazelle wrote the screenplay but did 
not find a studio willing to finance the production without 
changes to his design. Following the success of his 2014 
film Whiplash, the project was picked up by Summit 
Entertainment. Filming took place in Los Angeles from 
August to September 2015, with the film's score 
composed by Hurwitz and the dance choreography by 
Mandy Moore. La La Land premiered at the 
73rd………………….

A: I’m not sure 
… Might be a 
superhero 
movie ...

A: It is a 2016 
movie ...

A: It … stars 
Damien 
Chazelle.

A: It is a 
musical film 
directed by 
Damien 
Chazelle and 
Ryan Gosling 
is also in it!

I: No control, 
No grounding II: Grounding only 

III: Control only IV: Both Control 
and Grounding 

Figure 1: Generated responses tend to be generic or factu-
ally incorrect without grounding or control. Adding ground-
ing improves information reliability but may lead to vague
responses. Adding control boosts response specificity, but
using both leads to contentful and reliable responses.

Wikipedia page about La La Land in scenario II of Fig-
ure 1) without control and semantic targeting may induce
output that is accurate but vague or irrelevant. Controllable
text generation (Hokamp and Liu 2017; Keskar et al. 2019;
Tang et al. 2019; See et al. 2019) provides a level of se-
mantic control that can guide the decoder towards relevant
output, but in the absence of grounding the model is pre-
vented from associating control phrases with correct facts.
We posit that both grounding knowledge and lexical control
are essential to generating reliable information. We there-
fore introduce a generation framework called controllable
grounded response generation that incorporates both compo-
nents. Lexical controls not only enforce response specificity,
but filter lengthy, irrelevant or incoherent groundings.

We consider two scenarios for lexical control of conversa-
tional text generation. Control can come from a human user,
as in applications where an editorial assistant helps a person
write a message. Figure 2 depicts a person typing keywords
to indicate their semantic intent, while the machine helps
construct the response to be sent out. Alternatively, control
could be predicted in a fully automated system.
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Damien    

A: You should check out the 
movie La La Land .

B: What’s about it?

A is typing ...

you may type ...

It’s a musical film directed by Damien 
Chazelle and Ryan Gosling is in it!

A drummer, Damien Chazelle wrote 
the screenplay for the movie in 2010.

La La Land was praised for Damien 
Chazelle’s screenplay and direction.

Figure 2: The machine acts as a response editorial assistant
that suggests candidate responses for the user A according
to the conversation history, the user’s partial input (Damien)
and grounding knowledge.

This work makes the following contributions: (1) We pro-
pose a novel framework called controllable grounded re-
sponse generation (CGRG) that generates a response from
the dialogue context, lexical control phrases and ground-
ings. To the best of our knowledge, this is the first work
to integrate both control and grounding into response gen-
eration, and to explore how they can be mutually benefi-
cial. (2) We combine recent success in transformer-based
generation models and a novel inductive attention mecha-
nism to this problem setting. (3) We show through quali-
tative and quantitative evaluations that CGRG outperforms
strong baselines where: a) the control phrases are provided
by a (simulated) user, and b) automatically extracted by a
control phrase prediction model.

2 Approach
We formalize the problem as follows: given dialogue con-
text X , p lexical control phrases C = (C1, · · · , Cp) and q
sentences of grounding G = (G1, · · · , Gq), generate a re-
sponse R = (r1, · · · , rm) that contains semantic informa-
tion guided by C. Control phrases can be either directly
provided by a user or automatically derived from a control
phrase predictor. The CGRG framework assumes we have a
grounded conversational dataset, such as in (Qin et al. 2019).
We assume that each data instance consists of a dialogue
context, grounding knowledge and a reference response. To
analyze this framework, we define a control mechanism that
defines one or more control phrases for each instance. The
controls are lexical phrases that are relevant to both the tar-
get response and some part of the grounding knowledge.

To leverage the recent success in transformer-based gener-
ation models 2 within CGRG, we concatenate X , C and GC

to be our input sequence, as shown in Figure 3 (left). Then
we have the model predict the next response word given the

2Although our model can be generalized to any attention-based
model, we illustrate our method with the basic auto-regressive gen-
eration model like GPT-2.

concatenated input sequence (denoted as S) and the previous
response tokens in R. GC is the subset of G that is relevant
to C. For example, in this work, we denote the grounding
sentences that contain any phrase in C as GC . To differenti-
ate the input elements, we insert an end-of-text token 〈eos〉
at the end of each dialogue utterance in X , a 〈c〉 token at the
end of each control phrase in C and a 〈s〉 token at the end of
each sentence in GC .

We first concatenate the input sequence S and the re-
sponse sequence R into a long text. We denote the source
sequence as S = (w1, · · · , wn), which is used to generate
target sentence R. The conditional probability of P (R|S)
can be written as the product of conditional probabilities:

p(R|S) =
m+1∏
k=1

p(rk|w1, · · · , wn, r1, · · · , rk−1)

where rm+1 is the additional end-of-text token.

2.1 Inductive Attention
As shown in Figure 3 (left), a standard transformer-based
generation model takes consecutive text sequences as input
to train a language model. In our setting, we have input ele-
ments X , C, GC in a segmented format. Simply concatenat-
ing all these input elements can induce noise, as segments
may have differential relevance, and we consider attention
links between such segments to be uninformative.

We remove potentially uninformative attention links for
each data example by injecting pre-established structural in-
formation between C and GC . For example, in Figure 3
(right), say that C consists of C1, C2, C3, and GC consists
of G1 and G2. If we know C1 is only found in G1, then we
only want to keep the attention link between C1 and G1, and
not between C1 and any of the other grounded sentences.
Since GC is a set of segmented sentences from G, we re-
move all cross-sentence links within GC tokens. Similarly,
we remove all links between non-identical phrases (e.g., to-
kens in C1 do not attend to tokens in C2). Thus, the attention
links for each data example are pre-determined by structural
information between C and GC . To implement this, in each
transformer layer, we manipulate attention masks by setting
undesired attention links to be 0. The others remain at 1.
We refer to this pre-calculated attention as inductive atten-
tion. Each response token still attends to all input tokens and
other response tokens on its left.

We denote the start and end positions of a control phrase
Ci ∈ C in S by csi and cei , and those of a grounding sentence
Gj ∈ GC by gsj and gej . GCi denotes the set of grounding
sentences in GC that contain Ci. Then we calculate the at-
tention mask M as follows:

Ma,b =



0 if a < b

0 if a ∈ [csi , c
e
i ], b ∈ [csi′ , c

e
i′ ], i 6= i′

0 if a ∈ [gsj , g
e
j ], b ∈ [gsj′ , g

e
j′ ], j 6= j′

0 if a ∈ [csi , c
e
i ], b ∈ [gsj , g

e
j ], Gj 6∈ GCi

1 otherwise

Then for each transformer head, we have the stacked ma-
trices Q, K and V to represent each example sequence (con-
catenated S and T ) as in (Vaswani et al. 2017). We calculate
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No Inductive Attention With Inductive Attention

Figure 3: Without Inductive Attention, the model considers all possible forward attentions, which can overwhelm the model
when the context contains context (X), grounding (G), and constraints (C). In contrast, Inductive Attention uses attentions that
are relevant to the constraints. Each dashed arrow applies to all tokens in the corresponding X or C phrase or G grounding.

the attention as follows (d is the model dimension):

Attention(Q,K, V ) = softmax(
M ◦QKT

√
d

)V

2.2 Control Phrase Selection
User Control. Our user control is defined by lexical
phrase(s). Since it is costly to have humans annotate the
control phrases associated with an existing set of human
comment-response pairs, we use lexical matching to sim-
ulate the human-controlled scenario. Specifically, we define
control phrases C to be informative n-grams (n ≤ 5) that
appear in both the grounding document and the reference
response, where informativeness is defined based on a doc-
ument frequency threshold. When two n-grams are identical
except for an added function word or punctuation, we use
only the shorter version. In addition, we remove the matched
n-grams that appear in dialogue context, with the goal of fo-
cusing on providing new information. We provide human
verification details for such control phrases in Section 3.

Automatic Control Phrase Predicting. For the fully au-
tomatic scenario, we experiment with two control phrase
predictors. We denote these as C̃ to differentiate from the
user-provided C. The first predictor uses a simple retrieval-
based strategy. Given a dialogue context, we rank sentences
in G by IDF-weighted word overlaps with X and select the
two most frequent n-grams in the top 50 sentences as C̃. In
order to reduce the search space, we use noun phrases only.

The second predictor leverages the BERT QA system,
which is fine-tuned using the dialogue context X as the
query, G as the document and the control phrases in C as
answers. Then we use the fine-tuned model to predict an-
swers on test examples. We obtain the top two answers as
predicted control phrases C̃. For both predictors, we drop
the second phrase if the string fully overlaps with the first.

3 Controllable Conversation Dataset
As a social media aggregator, Reddit is effectively a dataset
of multiple domains. We start with the grounded Reddit con-

versation dataset described in Qin et al. (2019). This dataset
features Reddit conversations about web pages such as news
stories and Wikipedia articles, and covers 178 subreddit top-
ics ranging from news/technology to literature/music and
multiple writing styles.

We want to focus on contexts where controllable genera-
tion is useful. Thus, we keep only responses where at least
one matched phrase can be found in the grounding docu-
ment. Strict lexical matching between target response and
grounding assures that the retained examples have a high
ratio of grounding utilization. The number of utterances of
train, dev and test are 390K, 6.7K and 21K, respectively.
The average length of all reference responses is 26.5, which
is about 40% longer than in the full dataset due to the focus
on controllability. The average numbers of phrases in C for
train, dev and test set are 1.32, 1.27 and 1.38 respectively.
The average numbers of sentences in GC for train, dev and
test set are 4.37, 4.32 and 4.25 respectively.

To verify that the simulated user control phrases are ap-
propriate for the responses, we use crowd-sourced workers
to annotate whether the extracted control phrases are central
to the reference response, given the dialogue context. For
each response, we had 3 judges to enter a score on a scale
of 1 (completely unrelated) to 6 (very central), where 5 was
“somewhat central” and 4 was “neutral.” In 2000 annotated
examples, the median score was 4.33 and 67.4% of exam-
ples had a score over 4. Inter-rater agreement was “fair” with
Krippendorff’s alpha coefficient at 0.32.3

4 Experimental Setup
4.1 Training and Inference Setup
In our experiments, all transformer-based models have both
type and positional embedding for each input token. We treat
X , each sentence in GC , each phrase in C and response R
as separate segments. We set the maximum number of sen-
tences in GC to be 20 and maximum number of phrases in C

3This dataset is a filtered version of (Qin et al. 2019)’s pub-
lic dataset. To further facilitate reproducibility, we release our data
preparation and modeling code at https://github.com/ellenmellon/
CGRG.
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to be 10, then we have “0” for X; “1-20” for GC ; “21-30”
for C and “31” for R tokens as type embedding. For each
segment, we have the position embedding for each token as
its position in that segment.

We use GPT-2 as the basic transformer-based generation
model in our experiments for drawing fair comparison with
the DialoGPT (Zhang et al. 2020) architecture, a state-of-
the-art conversational response generation model trained on
147M Reddit comment chains on the basis of GPT-2. We use
the small version of GPT-2 with 117M parameters, with the
maximum length of the input or target response sequence
to be 512. We use BPE tokenization, following GPT-2. We
finetune our model and all other GPT-2-based baselines (in-
cluding DialoGPT) on our controllable and grounded Red-
dit dataset on top of the original DialoGPT. None of their
Reddit training or validation examples overlap with our test
examples. We use batch size 32. Learning rate (1e-5) and
warmup steps (1600) are tuned on the dev set perplexity,
with all other parameters being the same as DialoGPT 4.
Each training process is run on 2 Tesla K-80 nodes.

We use greedy search as the decoding strategy for all
GPT-2 and GPT2IA setups, except for a single experiment
setting where grid beam search (GBS) (Hokamp and Liu
2017) is applied for comparison with lexically constrained
decoding. We also compare our methods with GBS to in-
vestigate whether it helps to encode the constraints into the
hidden state during both training and inference, as GBS uses
lexical constraints only during inference.

4.2 Evaluated Systems
Models Although our designed model can be applied to
any transformer-based generation model, we use GPT-2 as
our base model for experiments. We use the following mod-
els for experiments: (a) GPT-2, which has the same archi-
tecture as DialoGPT (Zhang et al. 2020), under the input
setting X (see below) or the first line in both Table 1 and
Table 3; (b) GPT2IA model with inductive attention; (c)
GPT-2 + GBS that applies the attended GPT-2 model, while
control phrases C are given to the model at decoding time;5
and (d) CMR (Qin et al. 2019), which is a previous state-of-
the-art grounded response generation model on the Reddit
dataset that combines a MRC model and an LSTM decoder.

Input Settings We evaluate the above models according to
the following settings to analyze how control and grounding
help improve the response generation performance:

• X: This is the standard setting for non-controllable re-
sponse generation, where only the dialogue context is
given. We conduct experiments for the GPT-2 generation
model. Note that GPT-2 in this setting is the same as the
DialoGPT architecture.

4All model configurations in Section 4.2 share the same hyper-
parameter values (only tuned 3 times on top of the original values
from DialoGPT) except CMR, which has the same parameters in
the original paper.

5Such constrained decoding is based on grid beam search
(GBS) introduced in Hokamp and Liu (2017), where lexical control
phrases are added in decoding only, without involving training.

• X+G: This is the standard setting for grounded response
generation. We compare two models: CMR and GPT-2.
GPT-2 for this setting concatenates X and G as its input.
As both models have an input sequence length limit, only
a random subset of grounding is fed into each model.

• X+C: This is the controllable response generation set-
ting without grounding. We conduct GPT-2 experiments
by concatenating X and C.

• X+GC: This setting measures how the grounding only
relevant to C can help with response generation, without
explicitly providing C. We conduct experiments for GPT-
2, by concatenating X and GC as the input.

• X+C+GC: This setting measures how grounded control
can help with response generation. We conduct experi-
ments for GPT-2 and GPT2IA, by concatenating X , GC

and C as the input.
• X+C+G: This setting is for comparison against exist-

ing constrained generation methods like grid beam search
(GBS) introduced in Hokamp and Liu (2017), where lex-
ical control phrases are added in decoding only without
involving training. We conduct experiments for GPT-2
where X and G are the only encoded inputs and C is only
applied in decoding with GBS.

4.3 Automatic Evaluation
Previous work (Li et al. 2016b; Sun and Nenkova 2019) has
shown that automatic metrics for generation can be unreli-
able and have low absolute values, so we rely on human eval-
uation for our main conclusions. However, due to the high
cost of human evaluation, automatic evaluation metrics can
be useful for hyper-parameter tuning and model selection.
For automatic evaluation, we measure the relevance of the
generated responses with three metrics: BLEU-4 (Papineni
et al. 2002), NIST-4 (Doddington 2002) (a variant of BLEU
that weights n-gram matches by their information gain, pe-
nalizing uninformative n-grams), and diversity of bigrams in
generated responses (Div-2, the ratio between the number of
distinct vs. total bigrams). The human evaluation is used to
verify the improvements of the best case systems as deter-
mined by the automatic metrics.

We experiment with both user-controllable and fully au-
tomatic response generation, with simulated user-selected
and predicted lexical control phrases, respectively. As differ-
ent reference responses correspond to different “gold” con-
trol phrases, we use single-reference evaluation for the user-
controllable setting. Predicted control phrases are indepen-
dent of reference responses, so we use multi-reference eval-
uation. Comments in Reddit discussions are often associated
with multiple responses, which provide a multi-reference
test set. For each metric, we report the highest score among
up to 5 alternative human references.

4.4 Human Evaluation
Human evaluation was conducted using crowd-sourced
workers. Judges were presented with paired randomized out-
puts. The document title, a short snippet of the document
and up to two conversational turns were provided as con-
text. Relevance and appropriateness to the preceding dialog
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Setting Model NIST BLEU Div-2 Avg-L
1) X GPT-2 0.90 0.55% 4.9% 22.2
2) X+G CMR 0.34 0.17% 11.3% 15.1
3) X+G GPT-2 0.98 0.67% 7.5% 23.1
4) X+C GPT-2 1.67 2.65% 10.7% 28.7
5) X+GC GPT-2 1.34 1.58% 11.1% 26.6
6) X+C+G GPT-2+GBS7 1.60 2.38% 10.6% 26.8
7) X+C+GC GPT-2 1.77 3.22% 11.3% 27.0
8) X+C+GC GPT2IA 1.80 3.26% 11.6% 25.9

Table 1: User-controllable Response Generation automatic
evaluation.

GPT2IA Tied GPT-2

Relevance: Which response is more relevant
and appropriate to the preceding dialog?

X+C+GC 69.8% 14.1% 16.1% X+C+G+GBS
X+C+GC 42.1% 23.5% 34.4% X+C
X+C+GC 38.1% 28.6% 33.3% X+C+GC

Consistency: Which response is more
consistent with the grounding text?

X+C+GC 28.1% 44.3% 27.6% X+C+GC

X+C+GC 37.6% 31.4% 31.0% X+C

Table 2: Controllable Response Generation human evalu-
ation for relevance and background consistency, showing
preferences (%). A number in bold indicates that the sys-
tem is significantly better at p ≤ 10−5, computed using 10k
bootstrap replications.

and consistency with the background text (as a metric of fac-
tual correctness) were measured. Judgments were based on
a five-point Likert scale, and ties were permitted. Three to
four judges evaluated each pair, and metrics were imposed to
block poorly performing judges. Inter-rater agreement was
“fair” with Krippendorff’s coefficient at 0.32.6

5 Results and Analysis
5.1 User-controlled Response Generation
The user-controllable grounded response generation exper-
iments are summarized in Table 1, using single-reference
evaluation. The low BLEU/NIST scores are consistent with
differences between human references as seen in Sec. 5.2.

Lines 1-3 are not controllable settings, while lines 4-8
have control phrases as input, either explicitly or implicitly.
The performance gap between lines (1-3) and (4-8) demon-
strates the value of adding control. Additionally, we can
draw the following conclusions by comparing rows in Ta-
ble 1: (i) 1 vs. 3: Simply adding grounding to the model in-

6Sample sizes vary. The number was reduced from an ini-
tial 1,000 when we automatically removed a number of instances
where egregiously offensive content rendered them inappropriate
to display to judges.

7X+C+G (GBS) only takes X+G as the encoder input while
C is seen at decoding only.

Setting Model Phrase Predictor NIST BLEU Div-2
X GPT-2 - 1.42 1.31% 18.1%
X+GC̃ GPT-2 Retrieval-based 1.61 1.26% 19.4%
X+C̃+GC̃ GPT2IA Retrieval-based 1.67 1.23% 20.2%
X+C̃+GC̃ GPT2IA BertQA 1.67 1.26% 19.6%
Human - - 2.04 2.56% 62.8%

Table 3: Response Generation automatic evaluation (multi-
references) using constraints from control phrase predictor.
Note that results of Tables 1 and 3, as user constraints give
away significant information about the intended response.

put improves the performance somewhat; (ii) 2 vs. 3: GPT-
2 in general performs better than the LSTM-based model
CMR, indicating that the combination of pre-training and
having a transformer-based decoder helps improve genera-
tion; (iii) 3 vs. 5: providing constraint-sensitive grounding
boosts performance compared to having all the grounding
(iv) 5 vs. 7-8: providing control phrases in an explicit way
is important; (v) 6 vs. 7-8: applying control in hidden states
helps the model generate better quality responses than ap-
plying control at decoding only; (vi) 7 vs. 8: inductive atten-
tion helps reduce noise and improve the performance.

Comparing lines 6 vs. 7-8 we see that applying control
in hidden states is more effective than strict constraints at
decoding, but it is possible that controls at the training and
decoding stages could be complementary. Investigation of
methods of combining these are left to future research.

Human evaluation results in Table 2 confirm that
X+C+GC+GPT2IA outperforms other systems, except in
the case of Consistency, where there is no statistical differ-
ence between X+C+GC+GPT2IA and X+C+GC+GPT2,
both grounded systems.

5.2 Predictor-controlled Response Generation
In the fully automatic response generation scenario, we com-
pare two models for predicting control phrases. Table 3 com-
pares the two models to the setting where no control phrases
are provided to the model, using multi-reference evalua-
tion. We observe that both the retrieval-based and BERT QA
based control phrase predictors outperform X+GPT-2 (Di-
aloGPT) and achieve good Div-2 results, with NIST scores
similar to the user-controlled settings but low BLEU score.
For more insight into automatic scores, we also report scores
on human responses. When defining the multi-reference re-
sponses, we hold out one response in each set as the “hu-
man” system setting. These human responses have higher
diversity, but their NIST and BLEU scores remain low ow-
ing to the huge range of possible responses to any comment.

In paired comparisons using human judges our fully auto-
matic system X+C̃+GC̃ +GPT2IA was rated as having the
most informative and relevant response in 32% of cases, sig-
nificantly better than the 20-21% for X+GPT-2 (DialoGPT).

5.3 Qualitative Analysis
To understand how grounding knowledge assists generation,
we plot the token-level probability (Figure 4a) for both X+C
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Grounding (GC ): Sam got his bachelor degree in Physics at University of Science and Technology of China. He spent 6 months at University
of Tokyo in Japan as a visiting student, when he was a master student in Computer Science at University of Hong Kong from 2010-2012. And
he finished his PhD at University of Toronto in Canada with his research focused on interpretability of neural networks on text generation in
2017.
Context (X): Do you know the education background of the new faculty, Sam?
Control phrases (C): University of Toronto; Neural networks
Model predictions:
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(a) The grounded model (X+C+GC+GPT2IA) offers better discrim-
ination vis-à-vis an ungrounded model (X+C+GPT2), given a docu-
ment about a person’s education background.

Lo
g 

Pr
ob

.
Lo

g 
Pr

ob
.

Lo
g 

Pr
ob

.

ungrounded (X, GPT2)

grounded (X+G, GPT2)

controllable+grounded (X+G+GC , GPT2)

Maryland  Arkansas    Florida   Michigan Tennessee  Canada

Hong        Tokyo       China         HK        Toronto    Canada

Toronto     Canada     Ontario     Quebec    Alberta   Vancouver

(b) The top 5 tokens (plus Canada) generated after the partial
response Sam just graduated from University of. The ungrounded
model prefers generic predictions. The grounded model is more topi-
cally relevant. The constraint further positively influences the hidden
state.

Figure 4: Effect of grounding and control on text generation.

and X+C+GC systems. We intentionally select an exam-
ple about an uncommon entity to eliminate the possibility
that the knowledge is captured in pre-training. The figure
shows the token-level probability of a potential response,
given a dialogue context, two control phrases, and grounding
sentences. The grounded model assigns higher probabilities
to contextual words from grounding such as graduated and
thesis and to factually correct entity tokens like 2017. It as-
signs lower probability to factually incorrect tokens like eco-
nomics. These observations suggest that grounding knowl-
edge can help controllable generation: contextualize control
phrases and distinguish correct vs. incorrect facts.

Figure 4b illustrates the functions of control and ground-
ing. We list the top 6 tokens after a partial response
given the same dialogue context and grounding, and control
phrase Canada. The ungrounded non-controllable model
gives equally distributed probabilities to well-known Ameri-
can state names after University of. Adding grounding helps
the model rank locations based on background knowledge.
Further adding controls helps the model locate the correct or
intended answer.

To quantify the observations in Figure 4a and Figure 4b,
we sample 100 test examples and randomly pick an entity
from each reference response to calculate the entity’s prob-
ability from each model. We restrict the entity to be non-
occurring in control phrases. Then we calculate the average
probability ratio for X+C/X+C+GC and X+G/X+C+GC ,
to be 0.773 and 0.886 respectively. Both of them are smaller

than 1.0, which indicates having both grounding and con-
trol phrases gives higher probability to correct entities than
either of these alone. Explicit control phrases can be lever-
aged to dissect the generation process. Table 4 shows how
controls may guide or perturb the GPT2IA model to pro-
duce responses with diverging semantics. An example with
sample outputs of different systems in the user-controlled
scenario is shown in Table 5.

6 Related Work
6.1 Grounded Response Generation
Although some relevant work draws on external knowledge
sources, none incorporates user control. Ghazvininejad et al.
(2018) develop a memory network based model that lever-
ages grounding information from Foursquare tips. Moghe
et al. (2018) and Zhou, Prabhumoye, and Black (2018) col-
lect movie discussion datasets via crowdsourcing. These are
limited to specific domains. Dinan et al. (2019) crowdsource
conversations where each utterance is grounded in up to one
single sentence. We focus on a more realistic, scalable set-
ting in which a response may constitute a blend of multiple
grounding informations, rather than a single factual sentence
rephrasing. Other researchers propose a copy mechanism to
import tokens from dialogue context and grounding (Yavuz
et al. 2019) or leverage a reading comprehension model to
co-encode dialogue context and grounding (Qin et al. 2019).

Other work incorporates relational knowledge bases (Zhu
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Dialogue
Context

With “nihonium”, Japanese scientists become first from an Asian country to name
atomic element.

Control periodic table
Grounding ... The periodic table is a great legacy in chemistry ...
X+C+GC

+GPT2IA
I’m not sure if this is a good thing or not, but I’m pretty sure the periodic table is a
great legacy in chemistry.

Control artificially
Grounding ... The artificially synthesized element has 113 protons in its nucleus ...
X+C+GC

+GPT2IA
I wonder if they will be able to name a chemical that artificially produces atomic
elements.

Table 4: For the same dialogue context, GPT2IA generates varied responses given different control phrases.

Context 76 % of all known serial killers in the 20th century were from the United States.
Control law enforcement
Grounding ... and may include more stringent policies for military personnel in law enforcement

or security ... Should the cases cross multiple jurisdictions, the law enforcement sys-
tem in the US is fragmented and thus not configured to detect multiple similar murders
across a large geographic area ...

X I’m pretty sure the US had a police force of around 100,000 people.
XC I’m pretty sure the USA had a large number of serial killers in the US. I’m sure the

USA had a large number of law enforcement officers in the US.
XCGC I’m not sure if this is true, but I’m pretty sure that the US has a lot of law enforcement

officers that are from the US.
XCGC

+IA
I’m not sure if this is true, but I’m pretty sure that the law enforcement in the US is
not very good at detecting serial killers.

Table 5: Sample outputs of the systems, with baseline outputs for comparison.

et al. 2017; Liu et al. 2018) or commonsense knowl-
edge graphs (Young et al. 2018) to conversational models.
More recently, Liu et al. (2019) develop a graph-path-based
method on knowledge graphs augmented with unstructured
grounding. Our present work focuses on text based ground-
ing and does not require preconstructed knowledge graphs.

6.2 Controlled and Content-Planned Generation
Prior work on machine translation and language generation
has sought to enforce user-specified constraints, primarily in
the form of lexical constraints (Hokamp and Liu 2017; Hu
et al. 2019b,a; Miao et al. 2019). These approaches exploit
constraints at inference time only; in our case, constraints
are applied during training, with the option also of appli-
cation at inference. Application during training enables the
constraints to be incorporated into the latent space for better
predictions.

In other related work, (See et al. 2019; Keskar et al. 2019;
Tang et al. 2019) have explored non-lexical constraints, but
do not examine how these could facilitate use of ground-
ing and external knowledge. We see this line of research as
complementary to ours. These papers also make the assump-
tion that (gold) constraints can always given to the system,
which limits the potential to demonstrate broader benefits
of the approaches. To address this concern, we also evaluate
our models in settings where gold constraints are unavailable
(e.g., based on predicted constraints produced by a control
phrase predictor).

Controllable text generation has also been employed in

text style transfer (Hu et al. 2017) and other tasks (Ficler
and Goldberg 2017; Dong et al. 2017; Gao et al. 2019b),
to disentangle high-level style information from contextual
information such that the former can be independently ma-
nipulated. (Zhao, Lee, and Eskenazi 2018) uses discrete la-
tent actions to learn an interpretable representation for task-
oriented dialogue systems. While these works use “style” la-
bels (e.g. positive/negative, formal/informal) as controlling
signals, our framework controls generation with specific lex-
ical constraints, allowing for fine-grained semantic control.

Content planned generation (Hua and Wang 2019; Wise-
man, Shieber, and Rush 2017) targets selection of a few
keyphrases or table entries as the focus of text generation.
However this line of work does not need to consider dia-
logue context, which is essential for response generation.

7 Conclusion
The CGRG framework allows users to inject soft semantic
control into the generation process. It incorporates ground-
ing to contextualize users’ semantic intents as well as to
boost information reliability. We introduce an inductive at-
tention mechanism for self-attention-based generation mod-
els like GPT-2 in order to boost its performance. We also
demonstrate that this framework can benefit standard auto-
matic response generation when integrated with a control
phrase predictor. Some interesting future directions include
exploring various types of user desired control and extend-
ing the controllable grounded generation concept to broader
generation tasks like document writing assistance.
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