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Abstract

We introduce a new dataset, MELINDA, for Multimodal
biomEdicaL experImeNt methoD clAssification. The dataset
is collected in a fully automated distant supervision man-
ner, where the labels are obtained from an existing curated
database, and the actual contents are extracted from papers
associated with each of the records in the database. We bench-
mark various state-of-the-art NLP and computer vision mod-
els, including unimodal models which only take either cap-
tion texts or images as inputs, and multimodal models. Ex-
tensive experiments and analysis show that multimodal mod-
els, despite outperforming unimodal ones, still need improve-
ments especially on a less-supervised way of grounding vi-
sual concepts with languages, and better transferability to low
resource domains. We release our dataset and the benchmarks
to facilitate future research in multimodal learning, especially
to motivate targeted improvements for applications in scien-
tific domains.

Introduction
Biocuration, the activity of manually organizing biological
information, is a crucial yet human-effort-intensive process
in biomedical research (ISB 2018). Organizing such knowl-
edge in a structured way is important for accelerating sci-
ence since it facilitates downstream tasks such as scientific
information retrieval (Craven, Kumlien et al. 1999; Mohan
et al. 2018; Burns et al. 2018; Burns, Li, and Peng 2019),
and question answering (Ben Abacha et al. 2019; Nguyen
et al. 2019; He et al. 2020).

One such curation task is recognizing experiment meth-
ods, which identifies the underlying experimental protocols
that result in the figures in research articles. It can be for-
mulated as a multi-class classification task, which takes as
inputs the figures and their captions, and outputs the corre-
sponding experiment types that generate the figures, as illus-
trated in Figure 1.

The task is inherently multimodal as biocurators need to
take both the figure and the caption into consideration to
make their decisions (Demner-Fushman et al. 2012).1 While

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Although different experiment methods tend to generate visu-
ally different results, the differences can be subtle and the captions
often help distinguish these subtle differences among figures.
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depletion experiments. Depletion of CeBUB-1, HCP-1, or
CeCLASP-2 had no effect on the kinetochore targeting of
KNL-1 (Fig. 6E). Because HCP-1 is functionally redun-
dant with HCP-2 (Moore et al. 1999), the reverse RNAi
was performed using a mixture of HCP-1/HCP-2 double-
stranded RNAs, and depletion was assessed using a mix-
ture of anti-HCP-1 and anti-HCP-2 antibodies.
The above results indicate that KNL-1 is upstream of

CeBUB-1, HCP-1, and CeCLASP-2 in the kinetochore
assembly hierarchy. None of these proteins was detected
in KNL-1 immunoprecipitates (Fig. 6F), suggesting that
KNL-1-dependent targeting of these three components is
likely to involve additional intermediates and/or a
higher-order structure formed on the chromosome. Cu-

mulatively, these results suggest that the kinetochore-
null phenotype of KNL-1-depleted embryos arises from a
failure to form the microtubule-binding outer domain of
the kinetochore.

Architectural logic of a metazoan kinetochore

The results described above lead us to propose an archi-
tectural hierarchy for the mitotic C. elegans kinetochore
(Fig. 7A). In this hierarchy, KNL-1 plays a central role by
linking the DNA-proximal elements of the kinetochore
to its outer microtubule-binding domain. One interest-
ing prediction of this hierarchy is that depletion of
CeNDC-80/HIM-10 should reduce the levels of other

Figure 5. KNL-1, CeNDC-80, and HIM-10 exhibit asymmetric dependencies during kinetochore assembly. (A) Wild-type, CeNDC-
80-depleted (n = 33), HIM-10-depleted (n = 36), and KNL-1-depleted (n = 67) embryos were stained for DNA (left panels), CeNDC-80
(middle panels), and HIM-10 (right panels). Chromosomes from prometaphase-stage one-cell embryos are shown. (B) Wild-type,
CeNDC-80-depleted (n = 37), and HIM-10-depleted (n = 40) embryos were stained for DNA (left panels), KNL-1 (middle panels), and
the depletion target (right panels). (C) Western blot of extracts prepared from wild-type, KNL-1-depleted, CeNDC-80-depleted, and
HIM-10-depleted worms. Serial dilutions of wild-type extract were loaded to quantify depletion levels.
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Figure 1: The MELINDA dataset & the biomedical ex-
periment classification task: We introduce a new dataset
which concerns learning to recognize the underlying ex-
periment methods used to produce an experimental figure
in biomedical research articles. The recognition is funda-
mentally multimodal, where justification of the experiment
methods takes both figures and captions into consideration.
The MELINDA dataset could serve as a good testbed for
benchmarking, as well as motivating multimodal models
particularly in biomedical and low-resource domains.

scientists can do the task with perfect accuracy, the require-
ments of manual labeling from experts hinder the scalabil-
ity of the process. It is thus imperative to develop advanced
language and computer vision multimodal tools to help ac-
celerate the aforementioned scientific discovery process.

However, automatically identifying the experiment meth-
ods poses significant challenges for multimodal process-
ing tools. One major challenge is how to ground the visual
concepts to language. Most current visual-linguistics multi-
modal models (Li et al. 2019; Lu et al. 2019; Su et al. 2020;
Chen et al. 2020) rely on a robust object detection module to
identify predefined objects for grounding finer granularity of
visual and linguistics concepts. However, as it requires ex-
tra efforts from experts, scientific images often lack ground
truth object annotations, and the transfer of pretrained detec-
tion models suffers from significant domain shifts. As a re-
sult, this specific domain would appreciate multimodal mod-
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els particularly with less-supervised grounding paradigms.
In addition, it is expensive to collect annotations from do-
main experts; the lack of sizable benchmark datasets hin-
ders the development of multimodal models tailored to the
biomedical domain.

To spur research in this area, we introduce MELINDA,
a dataset for Multimodal biomEdicaL experImeNt methoD
clAssification that is created through a fully automated dis-
tantly supervised process (Mintz et al. 2009). Specifically,
we leverage an existing biomedical database, IntAct2 (Or-
chard et al. 2013), to get the experiment method labels,
and then properly extract the actual contents from papers
pointed by the records in IntAct to pair with the obtained la-
bels. MELINDA features 2,833 figures paired with their cor-
responding captions.We further segment captions into sub-
captions referring to different sub-figures in the images, re-
sulting in a total of 5,371 data records along with the labels
of the experiment methods used to generate the sub-figures.

We benchmark several state-of-the-art models on the
proposed experiment method classification task, includ-
ing unimodal vision and language models and multimodal
ones. Experiments suggest that multimodality is helpful for
achieving better performances. However, the performances
are still far from expert human-level, which suggests several
area of improvements, including less reliance on object de-
tection for grounding linguistic representations with visual
sources, as well as finer-grained multimodal groundings.

Our work sheds light on future research in: (1) more gen-
erally applicable multimodal models, and (2) better transfer
learning techniques in low resource domains such as scien-
tific articles (Gururangan et al. 2020). We summarize our
main contributions as follows:

• A multimodal dataset mapping compound figures and as-
sociated captions from biomedical research articles to the
labels of experiment methodologies , to help spur the re-
search on multimodal understanding for scientific articles.

• We conducted extensive experiments to benchmark and
analyze various unimodal and multimodal models against
the proposed dataset, suggesting several future directions
for multimodal models in scientific domain.

The MELINDA Dataset
We introduce a new multimodal dataset, MELINDA, for
biomedical experiment method classification. Each data in-
stance is a unique tuple consisting of a figure, an associated
sub-caption for the targeted sub-figure(s), and an experiment
method label coming from the IntAct database. IntAct stores
manually annotated labels for experiment method types,
paired with their corresponding sub-figure identifiers and ids
to the original paper featuring the figures3, and structures
them into an ontology. Each major category have different
levels of granularity. This work mainly focuses on two ma-
jor categories of experiments for identifying molecular inter-
actions: participant identification (Par) and interaction de-

2https://www.ebi.ac.uk/intact/
3IntAct only stores these ids as pointers, and our collection

pipeline extracts the actual contents according to these pointers.

Experiment Method Labels
Par(coarse) : predetermined
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Int(fine) : fluorescence
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Figure 2: Sample data: The basic structure of the data in
MELINDA is composed of a figure, a sub-caption associated
to one or multiple sub-figure(s), and a set of curated experi-
ment method labels as shown on top of each figure. These la-
bels represent the types of experiments conducted to gener-
ate the shown resulting sub-figures and captions. The above
left sample concerns sub-figures (C) and (D), while the right
sample concerns sub-figure (B), as indicated in their cap-
tions. Human experts tend to determine the labels leverag-
ing features such as scientific terms concerning assays and
methodologies in the captions, as well as indicative image
features such as blots, graphs, and microscopic images.

tection (Int) methods4, each has two levels of granularity,
coarse and fine (choice of the granularity depends on down-
stream applications). Samples of data and their labels are as
exemplified in Figure 2 (more are in the appendix).

Each record in IntAct consists of the aforementioned ex-
pert curated information to a specific article in the Open
Access PubMed Central5 (OA-PMC). According to the In-
tAct guideline, figure captions are sufficiently descriptive for
justifying the underlying methods of the figures, and hence
are properly extracted instead of including the body of text in
the articles. The details of the dataset collection procedures
and its statistics are described in the following sections.

Data Collection Pipeline
Our dataset is collected through three main procedures, as
illustrated in Figure 3: (1) Obtain the experiment method la-
bels and sub-figure identifiers from IntAct. (2) Localize the

4Molecular interaction experiments require two types of assay:
participant detection methods identify the molecules involved in
the interaction and the interaction detection methods identify the
types of interactions occurring between the two molecules.

5A publicly available subset of the PubMed collections:
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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To further investigate the role of ubiquitination in poli-
dependent foci formation, we assayed foci formation in the
presence of various concentrations of the 26S proteasome
inhibitor, NP-L3-VS (Figure 4B). It is thought that inhibition
of the 26S proteasome stabilizes ubiquitinated proteins
and thereby effectively functioning as a Ub sink, eventually
depleting the pool of free Ub available for subsequent de novo
Ub conjugation (Mimnaugh et al, 1997). Indeed, at the 50mM
dose of NP-L3-VS, a Western blot of whole-cell extracts
reveals that levels of both free Ub and mono-ubiquitinated
PCNA have decreased (Figure 4C). When cells were treated
with increasing concentrations of NP-L3-VS prior to UV-
irradiation, the number of nuclei exhibiting EGFP-poli foci
steadily decreased (Figure 4B). Our data therefore indicate
that poli foci formation depends upon de novo ubiquitination,
rather than by binding to proteins ubiquitinated prior to UV-
irradiation. The fact that we also saw a reduction in the
number of nuclei with foci in a nonirradiated cell, also argues
that at least one factor (most likely PCNA, see Discussion)
must be ubiquitinated in S phase, even in the absence
of exogenous DNA damage (Hoege et al, 2002; Watanabe
et al, 2004).

Identification of a region in polg involved in Ub binding
Having identified a key residue required for the poli–Ub
interaction, we were keen to do the same for polZ. Indeed,
by employing the yeast two-hybrid assay and various deletion
constructs of polZ, we mapped the Ub-binding site to a region
spanning polZ residues 587–641 (Supplementary Figure S2).
This region contains a conserved C2H2 or so-called ‘Zinc-
finger’ motif (Vaisman et al, 2004). Since Zn-finger motifs are
known to promote protein–protein interactions in a variety
of proteins (Krishna et al, 2003; McCarty et al, 2003), we
changed several residues of the polZ Zn-finger motif to
alanine and subsequently assayed the ability of the mutant
protein to interact with Ub. Interestingly, a single H654A
substitution in one of the conserved histidine residue of the
C2H2 motif abolishes the interaction between polZ and Ub
(Figure 5A). The inability of the polZ H654A mutant to
interact with Ub cannot be due to the fact that the protein
is simply unfolded or inactive, as the mutant retains its ability
to bind both poli and PCNA (Figure 5A), and also exhibits
catalytic efficiencies similar to the wild-type polZ in vitro
(Supplementary Figure S1B).

To confirm that the region is required for the interaction
between polZ and Ub, we used full-length C-terminal His-
tagged polZ or polZ-H654A and assayed the ability of each to
bind Ub. As shown in Figure 5B, the wild-type protein clearly
binds K48- and K63-linked polyUb chains. In contrast, the
H654A polZ mutant protein is unable to bind either form of
polyUb.

Like the poli P692R mutant (Figure 4A), the H654A polZ
mutant is also defective at forming damage-induced foci.
While wild-type polZ forms foci in 38% of untreated cells
and in 93% of UV-irradiated cells, the number of cells
expressing EGFP-polZ H654A foci drops dramatically in the
untreated cells (B4% cells with foci) and is reduced B2-fold
(to 47%) of UV-irradiated cells (data not shown). The fact
that 47% of the cells expressing EGFP-polZ-H654A still form
foci despite having a reduced ability to interact with Ub, can
potentially be explained by the observation that the mutant
nevertheless retains its ability to interact with both poli and
PCNA (Figure 5A) and such interactions may be sufficient
to help guide the mutant polZ protein into damage-induced
replication foci in vivo.

Ub binding enhances polymerase interactions with
Ub-PCNA
It is entirely conceivable that poli and polZ could bind to any
ubiquitinated protein after DNA damage in order to localize
at stalled replication forks. At the present time, however, Ub-
PCNA appears to be the most likely candidate protein
(Kannouche et al, 2004; Watanabe et al, 2004). We were
therefore interested in assaying the ability of both wild-type
poli and polZ and their respective Ub-binding mutants to
interact with Ub-PCNA in vitro. To do so, we first generated
His-tagged Ub-PCNA in vitro following the protocol recently
described for the ubiquitination of S. cerivisiae PCNA by Garg
and Burgers (2005) (Supplementary Figure S3A and
Supplementary Materials and Methods). As expected from
earlier studies (Hoege et al, 2002), the His-Ub is conjugated to
PCNA via K164, since a K164R PCNA mutant could not be
ubiquitinated under the same assay conditions in vitro
(Supplementary Figure S3B). Under our experimental condi-
tions, only B30% of the PCNA is ubiquitinated in vitro
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Figure 3 Identification of a mutant poli that cannot bind Ub.
(A) poli P692R has lost the ability to bind Ub, but can still bind
polZ and PCNA in the yeast two-hybrid assay. (B) Pull-down assay
using biotinylated peptides corresponding to the C-terminus of
wild-type poli or a P692R variant and either K48- or K63-linked
polyUb chains were analyzed as described in Figure 2B. Only the
peptide corresponding to the wild-type poli sequence is able to bind
either form of polyUb chain.
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To further investigate the role of ubiquitination in poli-
dependent foci formation, we assayed foci formation in the
presence of various concentrations of the 26S proteasome
inhibitor, NP-L3-VS (Figure 4B). It is thought that inhibition
of the 26S proteasome stabilizes ubiquitinated proteins
and thereby effectively functioning as a Ub sink, eventually
depleting the pool of free Ub available for subsequent de novo
Ub conjugation (Mimnaugh et al, 1997). Indeed, at the 50mM
dose of NP-L3-VS, a Western blot of whole-cell extracts
reveals that levels of both free Ub and mono-ubiquitinated
PCNA have decreased (Figure 4C). When cells were treated
with increasing concentrations of NP-L3-VS prior to UV-
irradiation, the number of nuclei exhibiting EGFP-poli foci
steadily decreased (Figure 4B). Our data therefore indicate
that poli foci formation depends upon de novo ubiquitination,
rather than by binding to proteins ubiquitinated prior to UV-
irradiation. The fact that we also saw a reduction in the
number of nuclei with foci in a nonirradiated cell, also argues
that at least one factor (most likely PCNA, see Discussion)
must be ubiquitinated in S phase, even in the absence
of exogenous DNA damage (Hoege et al, 2002; Watanabe
et al, 2004).

Identification of a region in polg involved in Ub binding
Having identified a key residue required for the poli–Ub
interaction, we were keen to do the same for polZ. Indeed,
by employing the yeast two-hybrid assay and various deletion
constructs of polZ, we mapped the Ub-binding site to a region
spanning polZ residues 587–641 (Supplementary Figure S2).
This region contains a conserved C2H2 or so-called ‘Zinc-
finger’ motif (Vaisman et al, 2004). Since Zn-finger motifs are
known to promote protein–protein interactions in a variety
of proteins (Krishna et al, 2003; McCarty et al, 2003), we
changed several residues of the polZ Zn-finger motif to
alanine and subsequently assayed the ability of the mutant
protein to interact with Ub. Interestingly, a single H654A
substitution in one of the conserved histidine residue of the
C2H2 motif abolishes the interaction between polZ and Ub
(Figure 5A). The inability of the polZ H654A mutant to
interact with Ub cannot be due to the fact that the protein
is simply unfolded or inactive, as the mutant retains its ability
to bind both poli and PCNA (Figure 5A), and also exhibits
catalytic efficiencies similar to the wild-type polZ in vitro
(Supplementary Figure S1B).

To confirm that the region is required for the interaction
between polZ and Ub, we used full-length C-terminal His-
tagged polZ or polZ-H654A and assayed the ability of each to
bind Ub. As shown in Figure 5B, the wild-type protein clearly
binds K48- and K63-linked polyUb chains. In contrast, the
H654A polZ mutant protein is unable to bind either form of
polyUb.

Like the poli P692R mutant (Figure 4A), the H654A polZ
mutant is also defective at forming damage-induced foci.
While wild-type polZ forms foci in 38% of untreated cells
and in 93% of UV-irradiated cells, the number of cells
expressing EGFP-polZ H654A foci drops dramatically in the
untreated cells (B4% cells with foci) and is reduced B2-fold
(to 47%) of UV-irradiated cells (data not shown). The fact
that 47% of the cells expressing EGFP-polZ-H654A still form
foci despite having a reduced ability to interact with Ub, can
potentially be explained by the observation that the mutant
nevertheless retains its ability to interact with both poli and
PCNA (Figure 5A) and such interactions may be sufficient
to help guide the mutant polZ protein into damage-induced
replication foci in vivo.

Ub binding enhances polymerase interactions with
Ub-PCNA
It is entirely conceivable that poli and polZ could bind to any
ubiquitinated protein after DNA damage in order to localize
at stalled replication forks. At the present time, however, Ub-
PCNA appears to be the most likely candidate protein
(Kannouche et al, 2004; Watanabe et al, 2004). We were
therefore interested in assaying the ability of both wild-type
poli and polZ and their respective Ub-binding mutants to
interact with Ub-PCNA in vitro. To do so, we first generated
His-tagged Ub-PCNA in vitro following the protocol recently
described for the ubiquitination of S. cerivisiae PCNA by Garg
and Burgers (2005) (Supplementary Figure S3A and
Supplementary Materials and Methods). As expected from
earlier studies (Hoege et al, 2002), the His-Ub is conjugated to
PCNA via K164, since a K164R PCNA mutant could not be
ubiquitinated under the same assay conditions in vitro
(Supplementary Figure S3B). Under our experimental condi-
tions, only B30% of the PCNA is ubiquitinated in vitro
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Figure 3 Identification of a mutant poli that cannot bind Ub.
(A) poli P692R has lost the ability to bind Ub, but can still bind
polZ and PCNA in the yeast two-hybrid assay. (B) Pull-down assay
using biotinylated peptides corresponding to the C-terminus of
wild-type poli or a P692R variant and either K48- or K63-linked
polyUb chains were analyzed as described in Figure 2B. Only the
peptide corresponding to the wild-type poli sequence is able to bind
either form of polyUb chain.
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Figure 3: Data collection pipeline: Our collection pipeline is distantly supervised and fully automatable. It consists of three main
steps: (1) Retrieve the PDF article in the OA-PMC set using the PubMed id from the IntAct database. (2) Extract the caption
blocks using an in-house PDF interpreter, and localize the nearby corresponding figures. (3) Segment the caption blocks into
sub-captions. Combining all three steps with the paired labels gives a single data record in our MELINDA dataset.

indicated figures and their captions in the pointed PDF arti-
cles. (3) Segment the captions into sub-captions so each can
target a sub-figure of the figures obtained in step (2). As the
overall procedure adopts a fully automated distant supervi-
sion approach, our dataset could be seamlessly expanded as
additional articles being added to the OA-PMC set.

Ground Truth IntAct Label Extraction. By properly pars-
ing and mapping the PSI-MI2.56 formatted IntAct records,
each individually extracted instance can form a unique tu-
ple of (experiment-method-labels, sub-figure-id), where the
sub-figure-id is a concatenation of the PubMed id of an arti-
cle and the sub-figure identifier.

Text and Image Extraction. The OA-PMC paper ids are
then used to search and download the indicated PDF articles.
The textual and image contents are extracted using an in-
house PDF interpreter, which leverages spatial indexing over
each page to support content extractions. We extract contigu-
ous word blocks across the articles, and the figure captions
are localized by detecting the keywords ‘Fig’ or ‘Figure’.
The corresponding figures are cropped out by searching for
large rectangular regions with low text densities nearby the
captions. Note that although the classification task concerns
sub-figures, we do not further segment a figure into sub-
figures as we expect the models to be equipped with the
capability of attending to the right sub-figures given the cap-
tions. Moreover, there are captions cross-referencing multi-
ple sub-figures, and thus full figures should be preserved.
Sub-Caption Segmentation. Captions for compound fig-
ures are first tokenized into sentences followed by a text
cleansing preprocessing, and then grouped into proper cor-
responding sub-captions through the following steps: (1)
Descriptions before the first sentence containing sub-figure
identifiers, e.g. ”(A)”, ”(A-C)”, are extracted as the opening

6An XML format: http://psidev.info/mif

common text. (2) The sentence containing a detected sub-
figure identifier and all of its subsequent ones until the next
sentence containing different identifier(s) is found, are ex-
tracted as the main sub-caption for that particular identifier.
(3) Descriptions after the last sentence containing identifiers,
are regarded as the closing common text, as researchers may
put some summary texts at the end. Hence, a proper sub-
caption is a concatenation of all of the above, which ensures
no relevant contents of a sub-caption is overlooked. More
details of our data collection pipeline can be found in the
appendix and our released code repository7.

Data Quality Assessment
Since our dataset is created by distant supervision from In-
tAct, for which if we perfectly pair the labels with corre-
sponding figures and subcaptions, the expert human per-
formances should remain ∼100%. Therefore, the quality of
the data instances rely on the quality of content extraction
and pairing. In order to estimate the quality of the extracted
contents, we randomly sample 100 instances for a man-
ual inspection. With the corresponding original papers pro-
vided, we ask three non-domain-expert annotators to assess
the quality mainly in terms of how good the image crop-
ping is and how accurate the caption extractions are (the re-
sults were computed via majority vote). The inter-annotator
agreement Fleiss’ Kappa for the following results are 0.804
for images and 0.676 for captions assessments.

Table 1a shows the inspection results of the extracted
(and cropped) images on if they are missing any important
regions, or containing any noises. Among the sampled im-
ages, 92% (i.e. 34+58) of the images are showing reasonably
good quality, with 8% of them missing some details due to
the cropping. The quality of the extracted (and segmented)

7The data collection pipeline and our benchmark models can be
found at https://github.com/PlusLabNLP/melinda.
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Quality Descriptions %

� Imperfect crop of the figures, i.e. acci-
dentally cropped out some parts 8

�

Perfect crop of figures but with some
small additional nuisances e.g. partial
captions, other figures, etc.

34

Perfect nuisance-free crop of figures
with proper boundaries 58

(a) Image cropping quality assessments

Quality Descriptions %

�

Extracted captions do not match the
original captions in the PDF or the
extracted figures (caption-figure mis-
match)

4

�

Extracted and segmented sub-captions
match the original sub-captions in the
PDF and caption-figure matched

10

Sub-captions matched the original sub-
captions in the PDF with common parts
preserved and caption-figure matched

86

(b) Caption extraction & segmentation quality assessments

Table 1: Data quality assessments out of 100 random sam-
ples: For both (a) image cropping and (b) caption extraction
and segmentation, the assessments show there are over 90%
of samples regarded as good (�), while there is a small pro-
portion with certain noises in the extractions (�).

sub-captions, as well as whether they match the associated
sub-figure images, is summarized in Table 1b. Over 96% of
the sampled data can be regarded as good, while 4% of them
have issues such as partial texts missing. It is worth noting
that even in this proportion of data which misses some de-
tails, the majority parts of the captions (and the figures) are
still properly preserved.

Dataset Details
General Statistics. There are in total 5,371 data instances
in our dataset, generated from 1,497 OA-PMC articles, with
2,833 uniquely extracted images, as summarized in table 2.
The total unique label counts of each level in the original
IntAct database as well as our collected dataset is summa-
rized in Table 3. Figure 4a shows the histogram of caption
word counts of the whole dataset, where the words are to-
kenized by applying simple NLTK word tokenizer on each
caption, and the histogram of sentence counts in a caption
is as shown in Figure 4b. The top-30 frequent words (stop
words and punctuation excluded) of the whole dataset are
visualized in Figure 5, with lemmatization applied.
Data Splits. We split the whole dataset into three subsets:
train, validation, and test sets, with a ratio of 80% − 10% −
10%. In order to prevent models from exploiting certain pat-
terns in the same article to make predictions, we assure that
no data records extracted from the same paper is split into

Type Counts

Total Unique Articles 1,497
Total Unique Images 2,833
Total Data Instances 5,371

Train / Val / Test 4,344 / 449 / 578
Type-Token Ratio 29,384 / 501,091 = 0.059

Type Mean Std Min Max

Tokens in a Caption 93.29 47.33 3 491
Sentences in a Caption 5.23 2.36 1 27
Tokens in a Sentence 17.83 12.27 1 256

Table 2: General statistics of MELINDA: We provide the de-
tailed component counts of our dataset, including the sizes
for each split (upper half), and the statistics of tokens and
sentences from the captions (lower half).

Method
Category Hierarchy # IntAct Labels # Labels in

Our Dataset

Participant Coarse 7 7
Fine 48 45

Interaction Coarse 18 15
Fine 122 85

Table 3: Unique IntAct label counts: For each of the main
categories, participant and interaction, we list the number
of unique labels in the original IntAct database and our col-
lected dataset, for both the coarse and fine-grained labels.

(a) Word Counts. (b) Sentence Counts.

Figure 4: Word & sentence histograms: the histograms of
per caption word and sentence counts. The charts can be
examined jointly with Table 2 for better understandings.

different subsets. Additionally, we ensure that the labels are
distributed evenly in the three sets according to the coarse
participant method, as illustrated in Figure 6.

Benchmark Models
We benchmark several state-of-the-art vision, language and
multimodal models against our dataset, that differ primarily
by the modalities they encode. Specifically, we consider uni-
modal models which take either an image (image-only) or a
caption (caption-only) as input, and multimodal models that
take both. All the output layers for classification are multi-
layer perceptrons (MLPs) followed by a softmax layer.
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Figure 5: Top-30 frequent words: extracted from all the
figure captions in the MELINDA dataset. We normalize the
word counts w.r.t the most frequent word, protein, which has
4280 appearances (i.e. protein is denoted as 100%). Lemma-
tization is performed to group words with the same lemmas.

Figure 5: Top-30 frequent words: We normalize the word
counts w.r.t the most frequent word (lemmatization applied),
protein, which has 4280 appearances (i.e. denoted as 100%).

Unimodal Models
• Image-Only: We adopt a variant of convolutional neu-

ral networks, ResNet-101 (He et al. 2016), and initialize
the networks with two sets of pretrained weights: (1) Ima-
geNet classification task (Deng et al. 2009), and (2) back-
bone of Mask R-CNN on object detection task (He et al.
2017). We finetune the final three ResNet blocks (from a
total of five), given the consistency of early level features
across visual domains (more details in the appendix).

• Caption-Only: We mainly consider the two de-facto
variants of language models: LSTM-based (Hochreiter
and Schmidhuber 1997), and transformer-based (Vaswani
et al. 2017) models. Our LSTM models take input word
embeddings from Bio-GloVe (300-d) (Burns, Li, and
Peng 2019). For transformer-based models, we consider
two state-of-the-art pretrained masked language models
(MLM): BERT (Devlin et al. 2019) trained on scientific
corpora, dubbed SciBERT (Beltagy, Lo, and Cohan 2019),
and RoBERTa (Liu et al. 2019b).

We experiment caption-only models with and without the
masked language finetuning on the caption sentences
of our dataset, by constructing a corpus where each sen-
tence is a caption from the train and validation sets. We use
RoBERTa-large and uncased version of SciBERT to initial-
ize the language models’ weights.

Multimodal Models
• Naive Late Fusion (NLF): The images and captions are

encoded by its best performing unimodal models – ResNet
(ImageNet weights) and SciBERT respectively, which are
then concatenated (late fusion) and fed into MLPs.

Figure 6: Label distributions: with respect to the participant
(coarse) label type for each data split. We compute the num-
ber of data records of each unique ground truth labels. The
y-axis is log scaled. The top two classes are: predetermined
participant, and identification by antibody.

• Stacked Attention Network (SAN) (Yang et al. 2016):
is a multi-step co-attention based framework that has
demonstrated good performances on Visual Question An-
swering (VQA) benchmark (Antol et al. 2015). The image
and caption encoders are same as in NLF.

• ViL-BERT: Vision-and-Language BERT (Lu et al.
2019), an extension of BERT model which learns a
joint visual-and-linguistics representation through co-
attentional transformer layers on top of unimodal visual
and textual streams. The model has two major proxy pre-
training objectives: (1) textual and visual masked learn-
ing, where the visual stream requires the model to pre-
dict missing masked-out regions of input images (visual-
MLM), and (2) image-text alignment prediction, which
extends BERT’s next sentence prediction (NSP).

• VL-BERT: As the concurrent work to ViL-BERT, the
visual-linguistics BERT model (Su et al. 2020) (VL-
BERT) performs the multimodal co-attention in an early
fusion manner with a single stream of transformer models.
VL-BERT also adopts textual and visual masked learn-
ing pretraining objectives, while excluding the image-text
multimodal alignment prediction.

The two multimodal BERT models are initialized with the
SciBERT pretrained weights directly to their textual parts.
For both ViL-BERT and VL-BERT, the visual-MLM lever-
ages region of interests (ROIs) proposed by the object de-
tection module, as well as the predicted class labels with
high confidences. Due to significant domain shifts between
the pretrained object detectors and our dataset, we experi-
ment inclusion and exclusion of various of their proposed
pretraining objectives (mainly concerning the visual masked
prediction) when finetuning on our dataset.
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Modalities Models Variants Parcoarse Intcoarse Parfine Intfine

— Majority Baseline — 55.88 63.67 48.96 23.18

Image-Only ResNet-101 init. from ImageNet 63.84 70.24 50.87 28.50
init. from MSCoCo 59.52 70.07 50.35 29.20

Caption-Only

LSTM w. BioGloVe — 59.20 68.02 49.00 35.30

RoBERTa w/o MLM finetuning 74.60 86.00 60.00 64.70
w. MLM finetuning 75.40 88.60 63.00 67.10

SciBERT w/o MLM finetuning 76.60 86.70 62.10 65.70
w. MLM finetuning 77.70 87.00 64.90 67.10

Multi-Modal

NLF w/o language part MLM finetuning 76.60 88.10 61.10 67.30
w. language part MLM finetuning 73.70 87.90 62.80 70.20

SAN w/o language part MLM finetuning 72.30 88.60 61.90 70.40
w. language part MLM finetuning 71.60 88.90 62.80 70.40

ViL-BERT
w. MLM 78.20 90.64 66.26 72.15
w. MLM & NSP 78.60 90.83 65.57 72.84
w. MLM & NSP & visual-MLM 76.47 90.48 64.19 71.80

VL-BERT w. MLM 78.02 89.96 66.49 74.65
w. MLM & visual-MLM 77.90 89.76 65.82 74.02

Table 4: Model accuracies on the test set: the two label categories are denoted as Par, and Int for participant and interac-
tion method respectively. The label hierarchy is indicated as the subscript, e.g. Parcoarse indicates coarse types of participant
method. The best performances for each type of labels are bolded, and in all cases the two advanced multimodal models achieve
the best performances. Particularly for the two multimodal models, the variants without the visual-MLM objectives are the best.

Experiments and Analysis

Our experiments aim to: (1) Benchmark the performances of
the baseline models described in the previous section, and
(2) compare and analyze how and what these models learn.

Quantitative Results. Table 4 summarizes the model per-
formances on the test set, including the majority baseline
that selects the most frequent classes in different label types.
All the models, after training on the train set, outperform
the majority baseline by large margins, which indicates the
sizable training set is effective in transferring knowledge
learned from these pretrained models. The image-only mod-
els, despite not having indicators of which sub-figure to look
at, still surpass the majority baseline, which we hypothesize
that the models still learn the salience in the images to make
the correct predictions. Both transformer-based caption-only
models benefit from the masked language finetuning on
our dataset, we hypothesize that such finetuning objective
can alleviate severe domain shifts between the original pre-
training corpora and our MELINDA corpus. Among all the
models, the two visual-linguistics multimodal models show
the best performances on all types of labels, especially on
the fine-grained types (i.e. Parfine and Intfine). We believe
that when granularity is finer, more subtle complementary
multimodal understanding is required. The non-transformer-
based multimodal models (NLF and SAN), however, are
either on par or worse than the best caption-only models,
SciBERT, suggesting that the attention mechanism in trans-
formers may be a substantially better basis for grounding
multimodal and complementary information.

The image-only models initialized with classification
weights outperforms the one with detection weights, which
may hint that the object detectors can be more prone to the
common objects seen in their original training datasets. Such

hypothesis is also shown in the performance comparisons
within the visual-linguistics multimodal models, where they
tend to perform better without the visual-MLM objective.
However, within ViL-BERT, the multimodal alignment ob-
jective shown to be beneficial in most label types. In general,
there are still huge gaps between model accuracies and ex-
pert human performances (~100% accuracy), especially for
the fine-grained types.

Visualizing What Models Learn. We utilize Grad-
CAM (Selvaraju et al. 2017) for visualizing the model
salience on the images and SmoothGrad (Smilkov et al.
2017) on the captions. Figure 7 shows a sampled side-by-
side comparisons between unimodal models (left) and mul-
timodal models (right) of label type Intcoarse. It can be seen
that the salience on the images clearly transition from being
more dispersed to more detailed and finer-grained from uni-
modal to multimodal models. Likewise, multimodal mod-
els attend less on the common words such as from, and, of,
and weight more on domain specific words. The image-only
models, without the disambiguation from the captions, tend
to focus more on spurious patterns as hinted in the first and
second row. While the multimodal models exhibit diverged
attentions in the images, it captures the keyword fluores-
cence that the unimodal language model fails to grasp. The
third row of Figure 7 shows a failure case of multimodal
models, where both unimodal models focused closer to the
ideal regions in their inputs (note the sub-figure identifier
”(a)” in the caption), and hence make the correct predic-
tions. We hypothesize that multimodal models may capture
wrong information due to relatively stronger influences by
the ROIs proposed by the inherited object detection module
(refer to the overlaid yellow-colored ROIs).
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(a) Image-only & Text-only (b) Multimodal

Figure 7: Saliency on Intcoarse (highest-lowest attention →
images – red-blue, and captions – dark red-light yellow: In
each row: (a) independent unimodal models – ResNet-101
& SciBERT, (b) multimodal model – VL-BERT. From top
to bottom the correctness of predictions between (a, b) are:
(3, 3), (7, 3), and (3, 7). Top ROIs are shown on the failure
case of multimodal model (third row), where they co-locate
with the highest attended regions.

Related Works
Multimodal Datasets. There are numerous datasets for
multimodal machine learning in existence, including visual
storytelling (Huang et al. 2016), visual-linguistics reason-
ing (Johnson et al. 2017; Hasan et al. 2019; Wang et al.
2019; Liu et al. 2020), and multimodal question answering
(QA) (Antol et al. 2015; Tapaswi et al. 2016; Kembhavi
et al. 2016, 2017; Lei et al. 2018; Yagcioglu et al. 2018; Das
et al. 2018; Zellers et al. 2019). As these works focus on
more general domains, our work offers a dataset in the hope
of motivating research in domains that often require exper-
tise for labelling, such as biomedical.
Experiment Method Classification. The closest prior
work (Burns, Li, and Peng 2019) has used the figure captions
from OA-PMC set to perform similar experiment method
classification task. In our MELINDA dataset, we put forth to
extract the visual information in conjunctions with the cap-
tion texts, and collect a larger-scale dataset.
Automating Biocuration & Biomedical Tasks. Integrat-
ing computational approaches into the workflow of biocu-
ration can be seen in many applications such as construct-
ing genomics knowledge base (Baumgartner Jr et al. 2007),
biomedical document classification (Cohen 2006; Shatkay,
Chen, and Blostein 2006; Jiang et al. 2017; Simon et al.
2019), biomedical text mining (Dowell et al. 2009), and
human-in-the-loop curation (Lee et al. 2018). Some prior
works also adopt multimodal machine learning for gen-
eral biomedical information extractions (Schlegl et al. 2015;
Eickhoff et al. 2017; Zhang et al. 2017), as well as textual
extraction (Burns, Dasigi, and Hovy 2017), medical image
captioning (Shin et al. 2016), and automated diagnosis from
medical images (Jing, Xie, and Xing 2018; Wang et al. 2018;
Liu et al. 2019a).

Our work aims to further facilitate research in automat-
ing biocuration by providing a sizeable multimodal dataset,
along with the data collection tool. We benchmark vari-
ous unimodal and multimodal models with analysis on their
strengths that suggest potential improvements.

Conclusions and Future Work
In this work, we introduce a new multimodal dataset,
MELINDA, for biomedical experiment method classifica-
tion. Our dataset comprises extracted image-caption pairs
with the associated experiment method labels. As our data
is collected in a fully automated distant supervision manner,
the dataset is easily expandable.

We benchmark the proposed dataset against various base-
line models, including state-of-the-art vision models, lan-
guage models, and multimodal (visual-linguistics) models.
The results show that despite multimodal models gener-
ally demonstrate superior performances, there are still huge
rooms for improvements in the current visual-linguistics
grounding paradigms, especially for domain specific data.
Hence, we hope this work could motivate the future ad-
vancements in multimodal models, primarily on: (1) low
resource domains and better transfer learning. (2) a less-
supervised multimodal grounding method with less reliance
on robust pretrained object detectors.
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