
Evidence Inference Networks for Interpretable Claim Verification

Lianwei Wu, Yuan Rao, Ling Sun, Wangbo He
Xi’an Key Lab. of Social Intelligence and Complexity Data Processing,

School of Software Engineering, Xi’an Jiaotong University, China
Shaanxi Joint Key Laboratory for Artifact Intelligence(Sub-Lab of Xi’an Jiaotong University), China

Research Institute of Xi’an Jiaotong University, Shenzhen, China
{stayhungry, sunling}@stu.xjtu.edu.cn, raoyuan@mail.xjtu.edu.cn, 744758858@qq.com

Abstract

Existing approaches construct appropriate interaction mod-
els to explore semantic conflicts between claims and relevant
articles, which provides practical solutions for interpretable
claim verification. However, these conflicts are not necessarily
all about questioning the false part of claims, which makes
considerable semantic conflicts difficult to be used as evidence
to explain the results of claim verification, especially those
that cannot identify the core semantics of claims. In this paper,
we propose evidence inference networks (EVIN), which focus
on the conflicts questioning the core semantics of claims and
serve as evidence for interpretable claim verification. Specifi-
cally, EVIN first captures the core semantic segments of claims
and the users’ principal opinions in relevant articles. Then, it
finely-grained identifies the semantic conflicts contained in
each relevant article from these opinions. Finally, EVIN con-
structs coherence modeling to match the conflicts that queries
the core semantic fragments of claims as explainable evidence.
Experiments on two widely used datasets demonstrate that
EVIN not only achieves satisfactory performance but also
provides explainable evidence for end-users.

Introduction
The explosive growth of false claims and their erosion on
democracy, justice, and public trust greatly aggrandize the
demand for false claim verification. Especially with the pop-
ularity of social media, the low-cost, large-scale production
and dissemination of false claims by malicious rumormon-
gers are unprecedented. Research indicates that although
false claims account for only 1% of total news consumption
on all platforms (Allen et al. 2020), while the proportion of
false claims on social media is more than 6% of total tweets.
Since the 2016 U.S. presidential election campaign (Grin-
berg et al. 2019), false claims have dominated the news cycle,
where the top twenty frequently discussed false election sto-
ries generated 8,711,000 shares, reactions, and comments on
Facebook (Silverman 2016). It has become quite critical to
detect the credibility of unverified claims on social media in
time to block their spread and refute them.

Claim verification is a tough and challenging task for in-
dustry and academia. Previous studies (Castillo, Mendoza,
and Poblete 2011; Jin et al. 2016) are devoted to extracting
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Claim: Here's a tip for disinfecting your face mask: Just heat it in the 
microwave for three minutes.  
R1: Falsely, overheating will destroy the internal structure of the mask, 
and the protective ability will be lost. 
R2: Really? I'll try it at home.  
R3: High temperature can kill the virus, may be useful, but not afraid that 
the mask will be ignited? 
R4: It doesn't feel real. Can a microwave oven heated with a mask continue 
to bake food? It's not clean. 

 

Conflict 1 

Conflict 2 

Conflict 3 

Figure 1: A false claim from Twitter. Among the three seman-
tic conflicts, only conflict 1 is able to provide an effective
explanation for the falsity of claim.

various linguistic and hand-crafted semantic features for dif-
ferentiating claims, which achieves excellent performance.
But it is difficult for these approaches to provide appropriate
explanations for the verification results of claims, i.e., why
claims are false. Thus, recent research has begun to focus on
interpretable claim verification, which generally establishes
interactive models to quest the difference (a.k.a. semantic
conflicts) between claims and their relevant articles (or com-
ments) as evidence to explain the verified results. Specifically,
Popat et al. (2018) devise joint interactions between claims
and their web sources to collect salient conflict words as
word-level evidence for explaining the correctness of claims.
Ma et al. (2019) propose interactive attention networks based
on natural language inference (NLI) to learn the sequence
consistency, so as to obtain semantic conflicts among relevant
articles as sentence-level evidence to verify claims. Wu et
al. (2020) construct an interaction fusion network to survey
the emotional and semantic conflicts between news and its
comments as multi-perspective evidence for enhancing the
capability of verification results.

These interaction models acquire the semantic conflicts
between claims and relevant articles to explain the final ver-
ification results, which is a feasible interpretable idea. The
reason is that: different relevant articles, as the opinions of
different users on a specific claim, are usually prone to call
into question on the wrong parts of the false claims (similar to
crowdsourcing rumor refutation), even if they are sometimes
incapable of providing an exact conclusion. These query
voices are rich in conflicting semantics that may include
the reasons for the wrong parts of claims. In consequence,
capturing semantic conflicts contributes to strengthening in-
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terpretability. However, these approaches ignore the fact that
the acquired semantic conflicts are not necessarily all about
questioning the false part of claims, which makes consid-
erable semantic conflicts difficult to be used as evidence to
explain the verification results, especially those that cannot
identify the core semantics of claims. Take a concrete ex-
ample, as shown in Figure 1, there are three conflicts. Only
conflict 1 could be taken as a valid piece of evidence which is
able to reveal the false part of false news due to it effectively
questions the key semantics (i.e., ‘just heat’) of the claim. But
conflict 2 focuses on the flammability of the mask, and con-
flict 3 considers whether the microwave continue to be used.
Neither of them discusses the key wrong parts of the claim
and debunks it. Therefore, how to capture the conflicts that
focus on the core semantics of claims is a critical problem
for enhancing the interpretability of claim verification.

To deal with the above issues, we propose EVidence
Inference Networks (henceforth, EVIN) for interpretable
claim verification, which strives to capture the conflicts that
focuses on the core fragments of claims as interpretable evi-
dence. Specifically, in EVIN, we first design co-interactive
shared layer to enable claims to interact with relevant articles
for adaptively capturing the core semantic segments widely
concerned by users in claims, as well as the users’ holistic
opinions in relevant articles, respectively. Then, we design
a fine-grained conflict discovery layer that allows the holis-
tic opinions to interact with the individual opinion of each
relevant article for exploring the potential semantic conflicts.
Finally, to select the conflicts that can be the real evidence,
we present evidence-aware coherent layer to construct coher-
ence modeling between the core semantic segments of claims
and the obtained conflicts, which matches the conflicts that
revolve around the core semantics of claims.

Experiments on two real-world competitive datasets
demonstrate that our model outperforms several state-of-the-
art approaches by 3.0% and 3.4% points in terms of micF1.
Moreover, experimental analysis strongly confirms the inter-
pretability of our model to end-users. To sum up, our main
contributions are as follows:
• A novel and refined interpretable claim verification frame-

work (EVIN) is explored, which can distill the conflicts
that question the core semantics of claims to act as evi-
dence for explaining the verified results.

• Co-interactive shared layer relying on gate affine absorp-
tion module has ability to adaptively focus on the core
semantic segments of claims and the holistic opinions
of relevant articles, respectively. And evidence-aware co-
herence layer based on coherence modeling effectively
matches the conflicts concentrated on the questioned core
semantics of claims.

• Experimental results reveal that our model achieves supe-
rior performance on two widely-used datasets.

Related Work
In recent years, the task of claim verification on social media
has attracted considerable attention. In addition to manual
feature extraction for claim verification, existing work has
gone through the following two stages.

Automatic Claim Verification
The methods for automatic claim verification basically rely
on neural networks to automatically capture numerous fea-
tures around the perspective of claim content and its social
context, and construct effective classification models for veri-
fication. The content-based methods mostly learn the features
of n-grams (Wang 2017), semantics (Khattar et al. 2019),
emotions (Ajao, Bhowmik, and Zargari 2019), stances (Ma,
Gao, and Wong 2018), and writing styles (Gröndahl and
Asokan 2019) from claim text. For concrete examples, Karimi
et al. (2019) capture style features based on content structure
at various language levels, like discourse level by employing
rhetorical structure theory for claim verification. Zhou et al.
(2020) study news content at four levels: lexicon, syntax,
semantic, and discourse, and conduct a supervised machine
learning framework to explore potential fake news patterns.
Besides, auxiliary information around social context has also
been widely investigated. The context-based methods put
great emphasis on collecting user profile-based (Shu et al.
2019), propagation structure-based (Wei, Xu, and Mao 2019),
comment-based (Ma et al. 2020), source-based (Pennycook
and Rand 2019), and platform-based features (Shu, Wang,
and Liu 2019). For instance, Zhou et al. (2019) learn prop-
agation network patterns from multiple aspects, i.e., node,
ego, triad, community, and the overall network to detect fake
news. These methods avoid the heavy labor of the methods
based on manual feature extraction, and deeply learn high-
level feature representations, which effectively improve the
accuracy of the task.

Interpretable Claim Verification
Due to the methods for automatic claim verification are dif-
ficult to provide reasonable explanations for the verification
results, the demand for interpretable claim verification is ever-
growing, which aims at presenting end-users with reasons to
refute rumors through revealing the wrong parts of claims.
In this task, existing methods explore semantic conflicts be-
tween claims and relevant articles by means of establishing
different interactive models to explain verification results.
The interactive models could be divided into attention-based
interaction models (Popat et al. 2018), gate fusion interac-
tive models (Wu and Rao 2020), and coherence modeling
interactive models (Ma et al. 2019), and graph-aware inter-
action models (Lu and Li 2020). The granularity of captured
semantic conflicts involves word-level (Popat et al. 2018),
fragment-level (Lu and Li 2020), sentence-level (Ma et al.
2019), and multi-feature (Wu and Rao 2020) conflicts. These
methods, which employ semantic conflicts to verify claims,
reflect a certain degree of interpretability. But not all conflicts
can be used as valid evidence to reasonably explain the re-
sults, and they also include considerable conflicts unrelated
to claims or even interfere with the verified results. There-
fore, we struggle to purify available evidence from semantic
conflicts for interpretable claim verification.

The Proposed Method
In this section, we propose evidence inference networks
(EVIN) for interpretable claim verification. The core idea
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Figure 2: The architecture of our EVIN model.

of EVIN is to strengthen the conflicts that question the core
semantics of claims and serve as explainable evidence. EVIN
consists of 4-level hierarchical structure, input encoding layer,
co-interactive shared layer, fine-grained conflict discovery
layer, and evidence-aware coherence layer. As shown in Fig-
ure 2, we describe each level of EVIN in detail.

Input Encoding Layer

The inputs of EVIN include three types of sequences: a
claim sequence, the concatenated sequence of all relevant
articles with quantity R, and the sequence of each relevant
article. For any sequence with k tokens, it can be expressed as
X = {x1, x2, ..., xk}, each xt ∈ Rd is d-dimensional vector
which could be initialized with pre-trained word embeddings
(Devlin et al. 2019). For the encoding of each sequence Xi,
we utilize BiLSTM to learn its sequence features, and adopt
the final step’s hidden vector ei∈Rk×2h to represent it, where
h is the size of hidden units of LSTM. Here, the encodings
of the claim, that of the sequence of all relevant articles, and
that of the j-th relevant article are represented as ec, erall, and
erj (1 ≤ j ≤ R), respectively.

Co-interactive Shared Layer

In order to enable the model to respectively focus on the
core semantic segments of claims that are widely concerned
by users, as well as the users’ holistic opinions discussed
in all relevant articles, we design co-interactive shared layer
composed of a cross-attention module and two gate affine
absorption modules to make claims ec and all relevant arti-
cles erall interact with each other to screen valuable features
adapted to different interacted inputs.

Cross-attention Module. We employ self-attention net-
works as the cross-attention module to explicitly capture
the dependencies between any two words and learn the inner
structure information of sequences to ensure the deep interac-
tion between the two sequences, which could be formalized

as:

H = Attention(Q,K,V) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are query, keys, and value matrices, re-
spectively. In our setting, Q = erall and K=V=ec, dk is the
size of hidden units of BiLSTM, which equals to 2h.

To enhance the parallelism of the networks, multi-head at-
tention linearly projects the queries, keys, and valuesm times
by using different linear projections, and then performs the
scaled dot-product attention in parallel. Finally, the processed
results are concatenated and once again projected to obtain
the new representation. Formally, the multi-head attention
could be expressed as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)

Hs = MultiHead(Q,K,V)

= Concat(head1, head2, ..., headm)Wo (3)

where WQ
i ∈ R2h×d1 , WK

i ∈ R2h×d1 , WV
i ∈ R2h×d1 , and

Wo ∈R2h×2h are all trainable parameters and d1 is 2h/m.
Hs∈Rk×2h is the output vectors of cross-attention module,
i.e., the interactive features between the claim and relevant
articles.

Gate Affine Absorption Module. Considering that the
interactive features belong to the shared features between
claims and relevant articles, which lack the context of their
respective sequences, we develop gate affine absorption mod-
ule to enable the model to capture context-aware interactive
features for both sequences, so as to adaptively focus on the
prominent semantic segments that are widely concerned by
users in claims, and the semantic features that provide users’
holistic opinions in relevant articles, respectively.

Specifically, take the gate G1 (as shown in Figure 2) aiming
at the claim for example, we first employ activation function
to enhance the nonlinear features of the encoding of the
claim ec and the shared interactive features Hs, and then
apply linear transformation to map ec and Hs to obtain the
mapping context-aware claim vector α(ec), scaling vector
β(Hs), and shifting vector γ(Hs), respectively. Next, a gate
mechanism with a sigmoid function σ(·), generates a mask-
vector from the scaling vector with values between 0 and
1 to select the key semantics adapted to the claim. Finally,
the shifting vector adjusts slightly to the shared features to
achieve the appropriate fusion. Formally, the process can be
formalized as follows:

tc = tanh(Wcec + bc)
ts = tanh(WsHs + bs)

α(ec) = Wαtc + bα
β(Hs) = Wβts + bβ
γ(Hs) = Wγts + bγ

Hc
s = f(ec,Hs)=σ(β(Hs))�α(ec)+γ(Hs) (4)

where all W and b are learnable parameters. � denotes
element-wise multiplication. Particularly, the gate G2 aiming
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at all relevant articles is the same as the gate G1, and Hr
s is

the outputs of the gate G2, i.e., the users’ holistic opinions in
all relevant articles.

Fine-grained Conflict Discovery Layer
In order to discover semantic conflicts aiming at each relevant
article, we construct conflict discovery layer consisting of
cross-attention module to achieve full interaction and fusion
between the users’ holistic opinions Hr

s and local single rel-
evant article eri , where the cross-attention module has been
introduced in co-interactive shared layer:

Hclf
i = Attention(Hr

s, e
r
i , e

r
i ) (5)

where Hclf
i refers to the conflict semantics captured from the

i-th relevant article.

Evidence-aware Coherence Layer
To eliminate the noise irrelevant to the claim in the con-
flicts of all relevant articles, and infer which conflicts discuss
the questioned core fragments of claims, we build evidence-
aware coherence layer to measure the coherence between
the core semantic segments of the claim and the potential
conflicts of each article.

Thus, we first employ two BiLSTMs to respectively encode
the core segments Hc

s of the claim and the conflict Hclf
i of

the i-th relevant article, and represent the final hidden states
of both BiLSTMs as mc

s and mclf
i , respectively.

Then, we rely on attention mechanism to match the salient
features between the claim and the i-th relevant article. For
the j-th word in the i-th article, we have:

uccij = Hc
s Hclf

ij (6)

βccij = exp(uccij )/
Li∑
l=1

exp(uccil ) (7)

where Hclf
ij is the j-th word in the conflict Hclf

i of the i-th
article, uccij and βccij could be regarded as the raw and normal-
ized association measure of the j-th word in the conflict of
the i-th article to the whole claim sequence. Therefore, we
obtain a claim-guided conflict representation vclfi as:

vclfi =

Li∑
l=1

βccij Hclf
il (8)

In order to strengthen the conflict semantics closely re-
lated to core semantic fragments of the claim, we conduct
an element-wise summation to combine the claim-guided
conflict vclfi and encoding conflict mclf

i :

nclfi = vclfi ⊕mclf
i (9)

where nclfi is the new composite representation for the con-
flict of the i-th article, ⊕ is the element-wise summation.

Next, we concatenate nclfi and mc
s and pass them into a

fully-connected layer to get a low-dimensional prediction vec-
tor for coherence representation between the core segments
of the claim and conflicts of relevant articles:

scci = MLP([nclfi ;mc
s]) (10)

For all relevant articles, we conduct similar operations intro-
duced above to obtain the coherence prediction vectors, i.e.,
scc1 , scc2 , ..., sccR , respectively.

Finally, we adopt concatenation operation to fuse them and
predict the probability distribution by the following equation:

p = softmax(Wp[s
cc
1 ; scc2 ; ..., sccR ] + bp) (11)

We train the model to minimize cross-entropy error for a
training sample with ground-truth label y:

loss = −
∑

ylogp (12)

Experiments
Datasets and Evaluation Metrics
We adopt two widely-used competitive datasets released by
Popat et al. (2018) for evaluation. Their details are shown as
follows:

Snopes Dataset. Snopes1 possesses 4,341 claims and cor-
responding 29,242 relevant articles that include opinions on
claims retrieved from 3,267 domains by Bing search API.
Each claim in Snopes is labeled as true and false.

PolitiFact Dataset. PolitiFact2 has 3,568 claims and
29,556 relevant articles associated with 3,028 domains. Each
claim belongs to one of six credibility ratings in PolitiFact:
true, mostly-true, half-true, mostly-false, false, and pants-on-
fire. Following Ma et al. (2019), we incorporate mostly true,
half true, and mostly false into mixed, and merge false and
pants on fire as false.

Evaluation Metrics. We utilize micro-/macro-averaged
F1, class-specific precision, recall, and F1-score as evaluation
metrics. We hold out 10% of the claims in the two datasets as
development set for tuning the hyper-parameters, and conduct
5-fold cross-validation on the rest of the claims.

Settings
We tune all hyper-parameters via a small grid search for
the best performance. For preprocessing, we tokenize the
sequences and lowercase the tokens. For parameter configu-
rations, the pre-trained BERT-base model is used to initialize
word embeddings. The size of embeddings is set as 768. The
number R of relevant articles varies with different claims.
The length k of claim sequence and that of each relevant
article are set to 30, and 120, respectively, while the length
of the integrated sequence of all relevant articles varies with
the number of relevant articles. In self-attention networks,
attention heads and blocks are set to 6 and 4, respectively, and
the dropout of multi-head attention is set to 0.5. Additionally,
the initial learning rate is set to 0.001. We use L2-regularizers
with the fully connected layers as well as dropout and set it
to 0.6, and the mini-batch size is 64.

Performance Evaluation
Comparative baselines We compare the proposed method
with some state-of-the-art baselines, including:

1collected from http://www.snopes.com
2collected from https://www.politifact.com
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Methods

Snopes PolitiFact

True False True False Mixed

micF1 macF1 P R F1 P R F1 micF1 macF1 F1 F1 F1

SVM 0.704 0.649 0.459 0.584 0.511 0.832 0.747 0.786 0.450 0.421 0.440 0.547 0.277
CNN 0.721 0.636 0.477 0.440 0.460 0.802 0.822 0.812 0.453 0.402 0.368 0.566 0.270
LSTM 0.689 0.642 0.441 0.512 0.517 0.834 0.716 0.771 0.463 0.413 0.452 0.561 0.228
DeClarE 0.762 0.695 0.559 0.556 0.553 0.839 0.837 0.837 0.475 0.443 0.447 0.576 0.307
HAN 0.807 0.759 0.637 0.665 0.651 0.874 0.860 0.867 0.523 0.487 0.495 0.627 0.340
AIFN 0.812 0.767 0.614 0.673 0.642 0.877 0.863 0.870 0.527 0.493 0.499 0.631 0.347

Ours 0.842 0.791 0.620 0.795 0.697 0.897 0.898 0.897 0.561 0.515 0.520 0.656 0.365

Table 1: Performance comparison of EVIN against the baselines on Snopes and PolitiFact datasets.

Methods

Snopes PolitiFact

True False True False Mixed

micF1 macF1 P R F1 P R F1 micF1 macF1 F1 F1 F1

-shared 0.813 0.765 0.587 0.758 0.662 0.855 0.858 0.856 0.534 0.490 0.493 0.630 0.334
-gate 0.825 0.783 0.608 0.782 0.684 0.879 0.883 0.881 0.550 0.505 0.510 0.649 0.352
-G1 0.837 0.787 0.616 0.789 0.692 0.892 0.893 0.892 0.554 0.511 0.515 0.652 0.359
-G2 0.839 0.788 0.617 0.792 0.694 0.894 0.895 0.894 0.557 0.513 0.517 0.653 0.363
-conflict 0.821 0.778 0.597 0.776 0.675 0.868 0.872 0.870 0.546 0.502 0.502 0.641 0.347
-coherence 0.801 0.755 0.574 0.749 0.650 0.847 0.846 0.846 0.527 0.483 0.481 0.621 0.326
EVIN 0.842 0.791 0.620 0.795 0.697 0.897 0.898 0.897 0.561 0.515 0.520 0.656 0.365

Table 2: Results of ablation test of our EVIN on Snopes and PolitiFact datasets.

• SVM (Ma et al. 2019): A linear SVM based on various
handcrafted features for credibility evaluation.

• CNN (Wang 2017): A CNN-based model learning n-grams
features from word sequences relying on different window
sizes for fake news detection.

• LSTM (Rashkin et al. 2017): The LSTM model capturing
hidden representation from word sequences for detection.

• DeClarE (Popat et al. 2018): The interactive model for
debunking claims capturing word-level semantic conflicts
as interpretable evidence.

• HAN (Ma et al. 2019): Hierarchical attention networks
relying on coherence learning to obtain sentence-level se-
mantic conflicts for interpretable claim verification.

• AIFN (Wu and Rao 2020): Adaptive interaction fusion net-
works discovering multi-feature conflicts from the perspec-
tive of semantics and emotions between news and comments.

We implement our models with Pytorch3, HAN and De-
ClarE with Theano4. We use the original codes of the other
baselines. And in CNN-based and LSTM-based models, we
only adopt claim content without considering external re-
sources.

Overall Performance The results when performing cred-
ibility classification on the two datasets are shown in Table
1.

3https://pytorch.org
4http://deeplearning.net/software/theano

First, among the baseline algorithms, we observe that the
deep learning methods (i.e., CNN and LSTM) perform supe-
rior than these using hand-crafted features (i.e., SVM). It is
not surprising, since the deep learning models can learn high-
level hidden representations of claim content. This demon-
strates the importance and necessity of relying on neural
networks to learn claim content for verification.

Second, EVIN outperforms the traditional neural networks
(like CNN and LSTM) in terms of all measures. The reason is
that traditional neural networks only focus on claim content
to improve performance, but lack exploring the semantic con-
flicts between claims and relevant articles. This confirms the
effectiveness of capturing semantic conflicts for credibility
evaluation.

Finally, EVIN achieves more remarkable performance than
DeClarE, HAN, and AIFN, showing at least 8.6%, 3.8%, and
3.4% boost in micF1 on the two datasets, respectively. Since
the latter three baselines concentrate on securing semantic
conflicts with different granularity, such as word level, sen-
tence level, and multi-feature level, as explanations of claim
verification, our EVIN puts emphasis on purifying and infer-
ring valid and available evidence from semantic conflicts to
interpret verification results. This proves the effectiveness of
our model in capturing the conflicts that question the core
semantics of claims as evidence.

Discussion
Ablation Study To investigate the effect of each compo-
nent in EVIN, we conduct ablation analysis by removing
different modules of our model. We employ -shared, -gate,
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Figure 3: Comparison of the adaptive ability of our gate affine
transformation with several existing adaptive strategies.

-G1, G2, -conflict, and -coherence to respectively denote the
removal of the following components: co-interactive layer,
gate affine absorption, the gate G1, the gate G2, fine-grained
conflict discovery layer, and evidence-aware coherence layer.
Table 2 summarizes the empirical results on Snopes and Poli-
tiFact. The results show that: first, the removal of different
components suffers different degrees of such performance
degradation, which reflects the effectiveness of each compo-
nent. Second, the performance of the model without evidence-
aware coherence layer is subjected to a large reduction, indi-
cating that considering the coherence between core semantic
segments of claims and semantic conflicts of relevant articles
to infer available evidence contributes to boosting the final
performance. Finally, as a part of co-interactive shared layer,
gate affine absorption module shows at most 1.7% perfor-
mance degradation in micF1 on the two datasets, which fully
embodies the key role of gate affine absorption.

Evaluation of Gate Affine Absorption We know that co-
interactive shared layer can adaptively focus on the crucial
semantics of claims and relevant articles respectively with
the help of gate affine absorption (a.k.a. gaffine.). In order
to further evaluate the adaptive advantages of gaffine., we
compare it with the following adaptive strategies: add. means
additions. heuristics is matching heuristics (Mou et al. 2016).
gate. is attentional feature-based gate (Margatina, Baziotis, and
Potamianos 2019). affine. denotes attentional affine transfor-
mation (Margatina, Baziotis, and Potamianos 2019). biaffine.
is biaffine attention (Ma et al. 2019). These baselines replace
our gate affine absorption to combine the shared interactive
features with the encoding of claims or that of relevant articles,
respectively. The experimental results are presented in Figure
3. We can find that: first, gate. relying on filtering irrelevant
features gains better performance than add. and heuristics. And
biaffine. capturing valid invariance-based features by aid of
two affine transformations shows the best performance in all
baselines. Second, our model with gate affine absorption per-
forms more excellent performance than other adaptive models
and the improvements are between 0.8% and 3.8% in micF1
on the two datasets. These results demonstrate the ability of
our gate affine absorption to capture core semantics adaptively.

Effect of the Number of Relevant Articles Figure 4 pro-
vides the performance of EVIN under different claims with
different number of relevant articles. We learn that as the num-
ber of relevant articles increases, the performance of EVIN
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Figure 4: Comparison of EVIN under different claims with
different number of relevant articles.
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Figure 5: The most frequent words based on the captured
evidence and the original data on Snopes. (a) The evidence
against false claims, (b) The evidence for true claims, (c) The
original false claims, and (d) The original true claims.

improves, and when the claims with less than three relevant
articles, the model achieves the most unsatisfactory perfor-
mance, only showing 75.1% and 46.5% performance in micF1
(at least 9.1% degradation than the model on all articles) on
the two datasets, respectively. The reason might be that the
fewer relevant articles are, i.e., the fewer users participate in
the discussion of the claims, which is easier to weaken the
exposure of the false parts of claims, making it difficult for rel-
evant articles to detect these false parts, which correspondingly
leads to fewer semantic conflicts in the relevant articles. To
some extent, this shows that our model does not perform well
in the relevant articles with less conflicts. This also implies
that our model is not suitable for early claim verification.

Interpretability Analysis
In order to evaluate the quality of evidence captured by EVIN and
make the verification results easy-to-interpret by this evidence,
we illustrate intuitively from the following three perspectives.

Interpretability on Word-level Distribution of Evidence
We first visualize the most frequent words of evidence captured
by EVIN with word cloud to compare the word distribution be-
tween the false claims and true claims on Snopes, as exhibited
in Figure 5. We observe that captured evidence against false
claims strengthens more skeptical or refuting words, such as
‘rumor’, ‘suspected’, and ‘uncovered’ (Figure 5 (a)), and the
evidence for true claims contains more supportive and objec-
tive words, like ‘confirmed’, ‘true’, and ‘reason’ (Figure 5 (b)).
Nevertheless, there are no similar patterns between the word
distributions of true claims and that of false claims aiming
at all relevant articles (Figure 5 (c) and (d)). On the whole,
the captured evidence learns a wealth of credibility-indicative
features, which reveals its superior quality.
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Claim 1 [False]: gang initiates must assault kill woman
small child elderly person walmart

R1 R2 R3 R4 R5 R6

CDL:

ECL:

R1 R2 R3 R4 R5 R6

CDL:

ECL:

Claim 2 [False]: comedian bill murray running president

R1 R2 R3 R4 R5 R6

CDL:

ECL:

Claim 3 [True]: president bush referred reporter
major league asshole

Evidence:

Semantic
Conflicts:

R1: the rumor first began in the memphis ten,
no murders were reported

R2: im not sure this is supposed to be
happening in the desoto and memphis areas

R3: determines if something
is a hoax or real areas

R2: a complete hoax is not
running for president

R5: an elaborate internet hoax
fooled peopleEvidence:

Semantic
Conflicts:

R1: I dont think anything else
needs to be said i can vote for bill

R4: writer bill murray shocked the
country by running for president

Evidence:

Semantic
Conflicts:

R1: Snopes confirmed bushs
remarks claim

R4: posted the usual signs are there
in their coverage

R6:he had previously published
editorial comment

R1:asshole status true origins akin
to senator john kerrys march 2004

(a) A case of one claim with its relevant articles. Red means the
captured evidence and blue is captured semantic conflicts

(b) Visualized weights of relevant articles captured from CDL (Conflict
Discovery Layer) and ECL (Evidence-aware Coherence Layer)

(c) Semantic conflicts captured by CDL vs.
evidence fragments obtained by ECL

Claim [False]: gang initiates must assault kill woman small child elderly
person walmart
R1: snopes said the rumor first began in the memphis tenn area in july
2005 no murders or attempted murders were reported no gang members
arrested and no one spoke about the supposed plan the rumor seems to
have…
R2: im not sure how far the initiation reaches but this is supposed to be
happening in the desoto and memphis areas for sure please tell everyone
you know not to go shopping in walmart alone…
R3: other locations may have also received these messages but have not
been confirmed according to these text messages are false various reports
on the website which determines if something is a hoax or real…
R4: from time to time known as the hoaxit usually includes a text message
being sent claiming a woman child or elderly person will be killed by gang
wannabes the latest incarnation of this urban legend…
R5: those places on weekends so do be careful all you sisters and
especially those of you who have young sons with you peace and love
spiral may god continue to watch and protect us all from the evil ones…
R6: similar rumors surfaced in 2009 claiming that a gang initiation
involving the killing of a white woman or white women and men and
children or three men and three women would be taking…

R4: the latest incarnation
of this urban legend

Figure 6: Visualized results of captured evidence (by evidence-aware coherence layer) and semantic conflicts (by conflict
discovery layer) based on three cases of claims with their relevant articles.

 

R1 
0 

Th
e r

el
ev

an
t a

rti
cl

es
 

5 10 15 20 

R2 
R3 
R4 
R5 
R6 

The number of claims 
(a) Weight visualization of relevant 
articles of 20 claims labeled as True 

R1 
0 

Th
e r

el
ev

an
t a

rti
cl

es
 

 

5 10 15 20 

R2 
R3 
R4 
R5 
R6 

The number of claims 
(b) Weight visualization of relevant 
articles of 20 claims labeled as False 

Figure 7: The weight visualization of relevant articles of 20
claims respectively labeled True or False.

Interpretability on Fragment-level Semantics of Evidence
To intuitively compare which of the two, i.e., the conflicts that
question the core semantics of claims (the captured evidence)
and general semantic conflicts, is more effective in explaining
the verification results, we visualize the outputs of both conflict
discovery layer and evidence-aware coherence layer at frag-
ment level. Specifically, we first look up these elements with
the largest values from the entire outputs of the two layers, and
then these elements are mapped into the corresponding values
in input embeddings so that we could find the specific tokens.
The visualization results are depicted in Figure 6. From Figure
6(a) and (c), we learn that the obtained semantic conflicts con-
tain broader semantics, including ambiguous argument, such
as ‘I’m not sure’ and ‘if something is a hoax or real’, while the
captured evidence not only focuses on the core semantics of
the claim, like ‘no murders’ in claim 1 (red), but also provides
useful explanations precisely, such as ‘the latest incidence of
this urban legend’. From Figure 6(b) and (c), we grasp that
the captured evidence fragments are capable of supporting the
credibility of claims. For instance, in claim 2, the evidence
fragment ‘an elaborate internet hoax fooled people’ refutes the
claim ‘comedian bill murray running president’ as false. These
prove that the captured evidence effectively reveals the false
parts of the claim, which is superior to the semantic conflicts
in interpreting the credibility results.

Interpretability on Sentence-level Articles of Evidence
We map the attention weights of EVIN to different relevant
articles (i.e., sentence-level articles) for false and true claims,
as shown in Figure 7, which specifically visualizes the atten-
tion maps for 20 sampled claims with their relevant articles on
Snopes. We can find that the distribution of attention weights
for the relevant articles of true claims is more uniform, whereas
that of false claims is sparser, in which certain sentences are
highly focused. These sentences contain rich questioning voices
(according to the last subsection), which conveys that the rel-
evant articles rich in controversial features can be effectively
concerned by EVIN. Interestingly enough several articles of
false claims receive little attention, showing weak correlation
between these articles and their claims, which indicates that
the relevant articles of false claims involve more noise features
(like, commercial ad., spams, etc.) than these of true claims.
This may well provide salient credibility-indicative features for
understanding the differences between true and false claims.

Conclusion
In this paper, we proposed to investigate the important prob-
lem of interpretable claim verification. We endeavored to infer
and distill the conflicts that questioned the core semantics of
claims and served as the available evidence to explain the
verification results. Our model first focused on the core se-
mantic fragments of claims and the users’ opinions on claims
in the relevant articles, then finely-grained captured semantic
conflicts in the opinions for each relevant article, and finally
inferred the consistency between these conflicts and core se-
mantics of claims to grasp available evidence. By the evidence,
our model thus showed significantly improved performance
in claim verification on two competitive datasets and made
the verification results easy-to-interpret. In the future, we plan
to explore the changes of semantic conflicts under dynamic
features by taking into temporal attributes of relevant articles
or comments consideration to boost the interpretability of
verification. Besides, we try to introduce few-shot learning to
address the problem of early claim verification.
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