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Abstract

Personalized conversation models (PCMs) generate re-
sponses according to speaker preferences. Existing person-
alized conversation tasks typically require models to extract
speaker preferences from user descriptions or their conver-
sation histories, which are scarce for newcomers and inac-
tive users. In this paper, we propose a few-shot personal-
ized conversation task with an auxiliary social network. The
task requires models to generate personalized responses for
a speaker given a few conversations from the speaker and a
social network. Existing methods are mainly designed to in-
corporate descriptions or conversation histories. Those meth-
ods can hardly model speakers with so few conversations or
connections between speakers. To better cater for newcomers
with few resources, we propose a personalized conversation
model (PCM) that learns to adapt to new speakers as well
as enabling new speakers to learn from resource-rich speak-
ers. Particularly, based on a meta-learning based PCM, we
propose a task aggregator (TA) to collect other speakers’ in-
formation from the social network. The TA provides prior
knowledge of the new speaker in its meta-learning. Experi-
mental results show our methods outperform all baselines in
appropriateness, diversity, and consistency with speakers.

Introduction
Recently, there has been a boom in research on neural con-
versation models (Shang, Lu, and Li 2015) due to the ac-
cessibility of vast conversational data on social media (e.g.
Twitter). To generate appropriate and lively responses, re-
searchers have proposed personalized conversation tasks
that require models to customize responses for specific
speakers, since different speakers tend to have different
styles or preferences for their responses. There are two sub-
types of such tasks. Description-conditioned tasks (Yang
et al. 2017; Zhang et al. 2018b) require models to customize
responses according to explicit speaker descriptions. These
descriptions may come from human annotations (Zhang
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et al. 2018b) or user profiles in social media (Mazare et al.
2018). Speaker descriptions are not always available due to
the cost of annotation and privacy concerns in social me-
dia. Conversation-conditioned tasks (Li et al. 2016b; Kot-
tur, Wang, and Carvalho 2017) require models to gener-
ate personalized responses by exploiting speakers’ prefer-
ences from their conversation histories. In reality, conversa-
tion histories may provide very few utterances of a particular
speaker, which makes it hard to capture speaker preferences,
especially for the newcomers or inactive users.

To better cater for newcomers, we propose a few-shot per-
sonalized conversation task with an auxiliary social network.
The task has three characteristics: 1. During training, models
cannot access information about the speakers in the testing
set (i.e. newcomers); 2. During testing, there are only a few
samples available for each speaker, which are collectively
referred to as the support set; 3. There is a social network
among all the speakers. Given the input query, our task re-
quires a conversation model to generate a response for a new
speaker with the help of the social network and a few (i.e.
10) past conversation samples from the speaker.

It is difficult to characterize the preferences of a new
speaker from only a few conversation samples. Social net-
works can help here. In a social network, neighbors are
users who follow each other, and they usually share interests
and have similar chatting preferences. As our observation
on our dataset, on average, the response similarity between
two neighbors (0.47) is higher than that between two random
speakers (0.38). 1 Consequently, we can utilize conversation
histories of neighbors to help to determine preferences of a
newcomer. In this way, we can handle newcomers even when
there are no descriptions or a few conversations available.

Existing conversation-conditioned PCMs can be applied
to our proposed task. Li et al. 2016b employ speaker em-
bedding to capture speaker preferences. Based on this, Bak
and Oh 2019 pre-built a conversation graph to describe
speaker relations and learn node2vec embeddings (Grover
and Leskovec 2016) over the graph. The node2vec embed-

1The gap between 0.47 and 0.38 is quite large in this evaluation
metric, as a contrast, the gap between similarity of two responses
from one speaker (0.50) and 0.47 is only 0.03.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

13907



dings serve as the initial speaker embeddings in conversa-
tion models. To adopt such methods to our setting, we first
train the models on the large scale training set; and then fine-
tune them on a few conversations from the target speaker.
However, training speaker embeddings or building a reliable
conversation graph requires many samples from the target
speaker, which is not always available in our setting. Model-
agnostic meta-learning (MAML) (Finn, Abbeel, and Levine
2017) based PCMs (Madotto et al. 2019) is capable of fast
adapting to new speakers by learning the adaptation ability
across speakers. However, it aims to be a good initial model
that is satisfactory for all speakers’ adaption, instead of car-
ing about the speakers’ characteristics and relations. Due to
the weakness in modeling speaker relations and distinguish-
ing characteristics of speakers, this paradigm is not effective
at making use of other resource-rich speakers.

In this paper, we propose a PCM that learns to adapt to
new speakers as well as enables new speakers to leverage in-
formation from resource-rich speakers via a social network.
Specifically, we first construct a MAML based PCM, where
each speaker functions as a task. Then, we propose a task
aggregator (TA) to collect resource-rich speakers’ informa-
tion according to speaker relations in the social network. The
task aggregator explicitly represents each task, and the task
representation serves as a task prior for the new speaker in
its meta-learning.

In this way, our model utilizes the information of
resource-rich speakers to augment low-resource speakers,
and hence addresses the data deficiency issue on low-
resource speakers. The experimental results show that our
methods outperforms all alternative methods in terms of ap-
propriateness, informativeness, and consistency.

Our contributions are summarized as follows,

• We propose a few-shot personalized conversation task
with a social network that better caters for new speakers.

• We design some variants of existing PCMs to our pro-
posed task as strong baselines for our task.

• We propose a novel method that learns to learn from
resource-rich speakers to customize responses for new
speakers, and our model surpasses all the baselines.

Related Work
Conversation Models
Large scale conversation corpora from social media lead to
a great success of retrieval-based methods (Yan, Song, and
Wu 2016; Zhou et al. 2016) and generation-based methods
(Sutskever, Vinyals, and Le 2014; Shang, Lu, and Li 2015;
Zhao, Zhao, and Eskenazi 2017). To enhance the conversa-
tion models, Serban et al. 2016; Tian et al. 2017 proposed
context-aware conversations that consider the previous utter-
ances in current dialogue session. To ensure the topic con-
sistency between the input and output, researchers proposed
topic-aware models to capture and emphasize input’s topic
(Xing et al. 2017; Peng et al. 2019). Some papers utilized the
background knowledge (Moghe et al. 2018; Qin et al. 2019;
Ren et al. 2020) and commonsense knowledge (Zhou et al.
2018b; Young et al. 2018; Tian et al. 2019) in conversations.

Researchers proposed to capture speakers’ temporal sta-
tus to generate appropriate responses. Emotion-aware dia-
logue models detect speaker’s feelings and make appropriate
emotional responses (Zhou et al. 2018a; Fung et al. 2018;
Saha et al. 2020). Multi-party dialog (Meng, Mou, and Jin
2018; Zhang et al. 2018a; Hu et al. 2019) distinguished dif-
ferent roles of different speakers within a dialogue session.

Personalized Conversation Models
Personalized conversation models capture speaker’s char-
acteristic, such as language behaviors, styles, and hobbies.
(Li et al. 2016b; Zhang et al. 2018b; Olabiyi, Khazane, and
Mueller 2018; Song et al. 2020; Zheng et al. 2020). Some
researchers focused on the conversational agent being aware
of the human’s personality and adjusting the dialogue ac-
cordingly (Lucas et al. 2009; Joshi, Mi, and Faltings 2017;
Luo et al. 2019). Others assigned the personality to the con-
versational agent and encouraged the agent to generate per-
sonalized responses. Our task falls into the latter category,
which consists of two types: description-conditioned and
conversation-conditioned.

Description-conditioned personalized conversation tasks
capture the speaker preference by explicit speaker descrip-
tion. Zhang et al. 2018b described the speaker with a few
profile sentences and built Persona-Chat dataset by crowd-
sourcing. Mazare et al. 2018 summarized speaker comments
from Reddit into several sentences as speaker descriptions.
Qian et al. 2018; Zheng et al. 2019 defined some profile
key-value pairs, such as gender, age, and location. As for
the methods on the above tasks, Yang et al. 2017 fine-tuned
a speaker-specific model based on a pre-trained speaker-
independent model. Zhang et al. 2018b encoded persona de-
scription into a memory network and employed a seq2seq
model to generate responses with the memory, and Chu,
Vijayaraghavan, and Roy 2018 refined the memory net-
work with attention mechanism (Bahdanau, Cho, and Ben-
gio 2015). Yavuz et al. 2019 explored the use of copy mech-
anism in personalized dialogue models. Zheng et al. 2020
imported a pre-trained GPT to transformer-based personal-
ized dialog models. Different from this type of task, our task
does not require the external description of speakers.

Conversation-conditioned personalized conversation
tasks describe speakers with their conversation histories. Li
et al. 2016b, the first to propose neural personalized conver-
sation models, implicitly modeled speakers’ personas using
speaker embeddings. Kottur, Wang, and Carvalho 2017
modeled the speaker personality together with conversa-
tional contexts by a hierarchical recurrent encoder-decoder
model (Serban et al. 2016) with speaker embeddings. Bak
and Oh 2019 learned node2vec (Grover and Leskovec
2016) embeddings from a conversation graph to initiate the
speaker embeddings. The above three papers cannot handle
new speakers, and they require many dialogues for each
speaker. Our task is designed to handle new speakers with
very few resources. Madotto et al. 2019 learned to adapt to
new speakers with few shots, but their framework is not ef-
fective at incorporating and utilizing speaker relations. Our
model caters for new speakers and encourages resource-rich
speakers to help low-resource speakers in a social network.
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Task Definition
Our task aims to enable conversation systems to act as a
given speaker and make personalized responses to the input
query according to the speaker preference. Our task requires
the systems to follow a speaker preference or style, even if
the speaker is a newcomer with little information.

Our setting consists of a training set, a testing set, and
a validation set. Each of those sets consists of speak-
ers S = {s1, s2..., sn}, the conversation samples Ds =
{〈q, rs〉1, 〈q, rs〉2, ..., 〈q, rs〉m} involving speaker s, and a
graph G that represents the social network. The set is de-
noted as {S,

⋃
s∈SDs,G}. A conversation sample 〈q, rs〉 is

a pair of input queries and the corresponding responses made
by speaker s. In the undirected graph G, speakers act as the
nodes, relations between speakers act as the edges, and two
nodes bridge an edge once two speakers follow one another.

The speakers in the testing or validation set are newcom-
ers, and they do not overlap with speakers in the training set.
The graph in the training set is composed of only the training
speakers, and the graph in testing or validation contains all
speakers. For each newcomer s, we can access only K con-
versation samples before inference (prediction), which make
up the support set Dsup

s . We are required to make inference
on other K conversation samples from the speaker, which
make up the query set Dqu

s . K is the shot number for few-
shot learning. In summary, our task is to generate a response
given a query q, a current speaker s, the speaker’s support
set Dsup

s , and a social network G.

Methodology
Architecture
Our model consists of two sub-modules as shown in Fig. 1:

• Personalized Conversation Model (PCM) makes per-
sonalized responses according to speaker preferences.
A transformer-based speaker-independent conversation
model (CM) acts as the base model of PCM, denoted
as fCMφ with its parameters φ. PCM employs MAML to
learn to adapt CM to new tasks (i.e. speakers) with few
examples so as to make personalized responses.

• Task Aggregator (TA) learns to study from related tasks
(i.e. speakers) to assist the target task. Based on PCM, The
TA explicitly represents tasks with embeddings, and then
learns to aggregate embeddings from other tasks to refine
the representation of the target task. The refined repre-
sentation serves as the prior knowledge of the target task
in PCM. We denote the operation of obtaining task em-
beddings as fEmbv with its parameters v, and operation of
aggregating related task embeddings as fAGϕ with param-
eters ϕ.

The TA provides the prior knowledge of the target task
for PCM, while PCM provides the feedback for the TA’s
back-propagation. The TA regards each task as a training
sample, and PCM’s performance on an entire task serves as
the feedback for a TA’s training step. We introduce the two
sub-modules and our training and testing methods in the fol-
lowing subsections.

Social Network Support Set

Support Set Query Set

Conversation 
Model

Conversation 
Model

2-layer GCNs

Personalized
Conversation 
Model (PCM)

Task
Aggregateor

(TA)

Inner-loop Outer-loop

Task 
Embedding Conversation 

Model𝒗𝒔

𝒉𝒔𝒉𝒔

Speaker 𝑠

𝑠

𝒉𝒔

Figure 1: The structure of our model. Solid and dashed red
arrows indicate the backward pass of PCM’s inner-loop and
outer-loop, respectively. Blue, purple, and mazarine blue
blocks represent variables of speaker s, its 1-hop neigh-
bors, and its 2-hop neighbors, respectively. The whole fig-
ure shows the training mode; in the testing mode, opera-
tions shown by dashed red arrows do not work. In our full
model, all components in the figure works; in our variant
of Ours−SelfEmb, the task embedding block does not work.
Eq. 2 to 5 show the optimization of φ, ϕ, and v in the inner-
and outer-loops.

Personalized Conversation Model (PCM)
PCM learns to generate personalized responses for new
speakers via MAML (Finn, Abbeel, and Levine 2017),
where it treats new speakers as new tasks. First, PCM con-
structs a speaker-independent conversation model (CM).
The CM is a conventional transformer model (Vaswani
et al. 2017) with the ability to generate response r to the
input query q. We formulize the CM as r = fCMφ (q).
Then, we apply MAML to the CM to build a personalized
model. MAML can learn good initial parameters for CM that
achieves rapid adaptation to new speakers with a few exam-
ples. For each training step, we sample a batch of speakers
with their samples {S = {s1, ..., sl},

⋃
s∈S Ds}, and then

build a support set Dsup
s and query set Dqu

s with K distinct
examples sampled from Ds, respectively.

The training of MAML consists of an inner-loop phase
and an outer-loop phase. In the inner-loop, MAML trains
the conversation model fCMφ on Dsup

s and adapts fCMφ to
the speaker s by updating its parameters from φ to φs. In
the outer-loop, MAML updates the parameters φ according
to the performance of the model trained by the inner-loop
phase, which is evaluated on the query set. Particularly, in
the inner-loop, the parameters φ is optimized by the gradient
of fCMφs

with respect to φ across tasks in S.

Task Aggregator (TA)
While PCM customizes responses for the given single task,
TA models task representations and relations among tasks
with the purpose of providing the prior knowledge of a task
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for PCM. TA obtains conversation-conditioned task embed-
dings by fEmbv , refines task embeddings with the social net-
work and a task embedding aggregator fAGϕ , and then feeds
the refined task embeddings to PCM. TA is optimized ac-
cording to PCM’s feedback; meanwhile, the task embed-
dings are also constrained by the graph structure of the social
network.

Conversation-conditioned Task Embeddings We em-
ploy a task embedding layer, assign each task with an em-
bedding, and learn the task embedding with conversations
under this task. As traditional embedding layers, task em-
beddings start from randomly initialized parameters. During
training, we fetch the task embedding vs of the current task
s, and combine the embedding with the conversation model
(CM) by appending the embedding in front of the sequence
of CM’s input word embeddings. 2 Afterwards, we train the
combined model on the conversations from the support set
Dsup
s of the current task s. After the training, the task em-

bedding vs serves as the output of this component. We for-
mulize this component as vs = fEmbv (s,Dsup

s ), where the
inputs are current speaker s and its support set, and v de-
notes the task embedding parameters.

Task embedding parameters v and CM’s parameters φ are
optimized iteratively. In the training of this component, we
fix φ and optimize the embedding v; in the training of PCM
and we optimize CM’s parameters φ. (Sec. ).

Task Embedding Aggregator via GCN As the scale of
Dsup
s for new speakers is still too small for the task embed-

ding learning, we enhance the task embedding by related
resource-rich tasks.

Social networks naturally reveal the relationship between
speakers. We construct an undirected graph G, where speak-
ers act as nodes, and two nodes bridge an edge once two
speakers follow one another. Since we observed that neigh-
bors (two speakers follow each other) have similar prefer-
ences in responding, we utilize task embeddings of neigh-
boring speakers seen in the training set.

We employ 2-layer GCNs (Kipf and Welling 2017) to re-
fine task embeddings with neighbors’ embeddings. The orig-
inal GCN (Kipf and Welling 2017) conducts the propagation
on the whole graph. It is time-consuming to re-train with the
whole graph for the newcomers, so we follow the neighbor
aggregation variant of GCN (Hou et al. 2019). We formulize
this aggregator as hs = fAGϕ (vs,G).

We also propose another model variant that does not ac-
quire the conversation-conditioned task embedding vs of the
target task and relies only on the neighbors. That variant gets
the final task representation hs by feeding all the neighbor’s
embedding into the GCN without using vs. We discuss it in
the experiment section with the notation of Ours−SelfEmb.

Graph Structure Constraint via Negative Sampling
fEmbv represents a task according to conversations. We ar-
gue that task representations should also be constrained by
the graph G, which reveals task relations. As neighbors share

2We did try some different combinations of extra embeddings
with the transformer model and picked the best one, and similar
usage can be found in (Keskar et al. 2019).

Algorithm 1: Training Algorithm
Input: {S,

⋃
s∈SDs}: training set

α, β: learning rates
λ: weight for negative sampling loss
G: social network on training speakers

Output: {φ, ϕ,v}: trained model parameters
Randomly initialize φ, ϕ, v.
while not done do

Sample a batch of speakers with their samples
{S,

⋃
s∈S Ds} ∼ {S,

⋃
s∈SDs}

for all s in S do
// Inner-loop (train the base model)
Build Dsup

s and Dqu
s from Ds as Sec.

Get task embeddings vs by fEmbv
Get aggregated task embeddings hs via GCN
Evaluate∇φLDsup

s
(fCMφ (hs, q)) with

respect to K examples.
Compute adapted parameters φs with
gradient descent as Eq. 2

// Outer-loop (meta-optimization across tasks)
Evaluate
∇{φ,ϕ,v}

∑
s∼S LDqu

s
(fCMφs

(fAGϕ (fEmbv (·)))
with respect to K examples.

Evaluate∇{ϕ,v}λ
∑
s∼S Lnss (fAGϕ (fEmbv (·))

with respect to G.
Update {φ, ϕ,v} using Eq. 3, 4, and 5.

similar preferences, they ought to have similar task embed-
dings. Inspired by node2vec (Grover and Leskovec 2016),
we employ a negative sampling loss (Mikolov et al. 2013)
that forces task embeddings from two neighbors to be more
similar than those from two randomly selected speakers as,

Lnss = −(
∑
i∈Ns

log σ(vTi hs) +

Kns∑
j∼S
k=1

log σ(−vTj hs)) (1)

where hs comes from the aggregator, Kns denotes the num-
ber of negative samples, σ denotes the sigmoid function, and
S denotes the set of all speakers. Notice that the above two
algorithms involving the graph are friendly to newcomers
since their training only operates on the newcomers and their
neighbors instead of conducting the propagation over the en-
tire graph.

Training and Testing
Model Training. Our whole model is the combination of
the PCM and TA. We extend the PCM’s training paradigm
mentioned in Sec. to the whole model. We train the PCM via
MAML as in Sec. , and train the TA in MAML’s outer-loop.
Algorithm 1 and Fig. 1 show the training procedure.

During the training, the TA first obtains the task embed-
ding hs, and then feeds it to the PCM. The PCM training
consists of inner-loop and outer-loop training. In the inner-
loop, the PCM uses hs in its feedforward but does not up-
date the TA’s parameters. In the outer-loop, the PCM uses
hs again and updates the parameters of both the PCM and
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TA according to the performance of the whole model on the
query set. The optimization of the inner-loop and outer-loop
is shown in Eq. 2 to 5. In both inner- and outer-loop train-
ing, PCM uses hs by appending it in front of the sequence
of CM’s input word embeddings, where the formula of CM
defined in Sec. turns to r = fCMφ (hs, q).

TA is to model task priors and relations among tasks, so
we feed each task as a training sample to the TA. Then, we
train and optimize the TA on a set of tasks. Since inner-loop
trains samples within a task and outer-loop optimizes across
tasks, we fix the TA’s parameters in the inner-loop and op-
timize them in the outer-loop. In the outer-loop, the TA re-
ceives feedback about whether the current TA with the PCM
performs well on each task and is optimized accordingly.

φs = φ− α∇φL(q,r)∼Dsup
s

(fCMφ (hs, q)). (2)

φ ← φ− β∇φ
∑
s∼S
LDqu

s
(fCMφs

(hs, q)), (3)

ϕ ← ϕ− β∇ϕ
∑
s∼S

(λLnss (4)

+LDqu
s
(fCMφs

(fAGϕ (vs,G), q))),

v ← v − β∇v

∑
s∼S

(λLnss (5)

+LDqu
s
(fCMφs

(fAGϕ (fEmbv (s,Dsup
s ),G), q))).

Model Testing. Model testing adopts the training proce-
dure except for the back-propagation in the outer-loop. The
TA obtains the task representation hs for the PCM. The
PCM incorporates hs, updates its φ to φs in the inner-loop,
and generates the final responses with the feedforward of the
outer-loop. The only difference between training and testing
is that testing does not need not to optimize parameters in
the outer-loop (No dashed red arrows in Fig 1 for testing).

Experimental Setting
Dataset
We collect the dataset from Weibo, an online chatting forum
with social networks. We use 28.9K speakers with 2.02M
samples for training, 1K speakers with 20K samples for test-
ing, and 0.5K speakers with 10K samples for validation. We
release the code of dataset construction 3.

Comparing Methods
• Base Models. We use two conventional conversation

models, Seq2Seq and Transformer. We use the trans-
former as our base conversation model for all the follow-
ing methods as it performs better than the seq2seq.

• Fine-tune. We fine-tune the transformer on the support
set of the target speaker to obtain personalized mod-
els, noted as Transformer+F. We increase the hidden
dimension of the transformer to keep the same param-
eter scale with the following comparing models, noted

3github.com/tianzhiliang/FewShotPersonaConvData

as Transformer++F. We employ MAML (Finn, Abbeel,
and Levine 2017) to train the transformer and note it as
PAML (Madotto et al. 2019).

• Fine-tune+Social Network. Li et al. 2016b encode
speaker preferences with speaker embeddings. Bak and
Oh 2019 pre-train node2vec embeddings over a speaker
graph as the initial speaker embeddings. Since new speak-
ers are unseen during training, their methods cannot ob-
tain new speakers’ embeddings. We adapt their origi-
nal methods to our task by aggregating its neighbors’
embeddings and then fine-tune the embeddings on the
support set. We denote them as Speaker+F+SN and
VHUCM+F+SN, respectively.

• Ours. Ours denotes our full model, and Ours−SelfEmb
is our model without using the conversation-conditioned
embedding of the target speaker.

Implementation Details
Seq2Seq follows Song et al. 2018 where the embedding and
hidden dimensions are 620 and 1000. For the transformer-
based model, we implement it as the original one (Vaswani
et al. 2017), where the model dimension is 512, the stacked
layer number is 6, and the head number is 8. We increase the
model dimension to 640 on Transformer++F for fair com-
parison on the parameter scale. Following (Madotto et al.
2019), in PAML and ours, we used SGD for the inner-loop
and Adam for the outer-loop with learning rate α = 0.01
and β = 0.0003, respectively. For all methods, the batch
size in training is 128. The vocabulary contains top 50k fre-
quent tokens, and the maximum length of input queries and
responses is 80. For training, we set λ as 1 for the negative
sampling. For inference, we apply a top-k sampling decod-
ing (Edunov et al. 2018) with k=5. The sizes of the support
set and query set for testing users are 10 (10-shot).

Evaluation Metrics
We evaluate all methods with both automatic and human
evaluations. For automatic evaluations, we evaluate the re-
sponses in three aspects:

1. Appropriateness. We evaluate the overall quality by
measuring the matching between the ground-truth and
generated responses on three metrics: BLEU (Papineni
et al. 2002), NIST (Doddington 2002), and CIDEr
(Vedantam, Lawrence Zitnick, and Parikh 2015).

2. Diversity. Dist-n evaluates the proportion of n-grams of
the generated responses (Li et al. 2016a; Song et al. 2017).

3. Consistency. We measure the consistency between the
generated responses and the speakers’ conversation histo-
ries. TokSim measures the consistency by token-level sim-
ilarity with TF-IDF (Joachims 1996) weight and a stop-
word filter. F1 grounding score Grd-F1 (Qin et al. 2019;
Tian et al. 2020) is the harmonic mean of precision and
recall, where precision and recall measures the ratio of re-
trieving a token from conversation histories as responses.
For human evaluations, we hire five annotators from a

commercial company to evaluate 300 samples randomly se-
lected from 60 speakers. The annotators evaluate a 5-point
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Appropriateness Diversity Consistency |Param|Bleu1 Bleu2 Bleu3 Bleu4 NIST CIDEr Dist1 Dist2 Grd-F1 TokSim
Seq2Seq 7.325 3.912 3.129 2.736 0.329 0.149 0.133 0.370 0.012 0.041 62M

Transformer 10.951 5.852 4.407 3.803 0.803 0.205 0.155 0.454 0.016 0.032 65M
Transformer+F 11.109 5.902 4.466 3.459 0.790 0.182 0.157 0.485 0.020 0.052 65M

Transformer++F 12.219 5.992 4.486 3.643 0.880 0.189 0.160 0.488 0.020 0.048 80M
PAML 11.200 6.192 4.691 4.012 0.884 0.201 0.174 0.495 0.021 0.054 80M

Speaker+F+SN 11.670 6.182 4.615 3.922 0.927 0.176 0.133 0.427 0.018 0.035 80M
VHUCM+F+SN 10.981 5.461 3.976 3.357 0.892 0.141 0.142 0.460 0.018 0.043 80M
Ours−SelfEmb 11.815 6.277 4.676 4.010 0.971 0.196 0.183 0.586 0.023 0.061 80M

Ours 11.638 6.315 4.803 4.145 0.940 0.238 0.169 0.530 0.024 0.062 80M

Table 1: The overall performance on automatic evaluations.

Appropriateness Diversity Consistency
Bleu1 Bleu2 Bleu3 Bleu4 NIST CIDEr Dist1 Dist2 Grd-F1 TokSim

Ours 11.638 6.315 4.803 4.145 0.940 0.238 0.169 0.530 0.024 0.062
−NS Loss 11.002 5.784 4.343 3.730 0.954 0.188 0.167 0.550 0.022 0.053
−GCN 11.176 6.959 4.425 3.782 0.870 0.194 0.158 0.526 0.022 0.053

−NS Loss −GCN 10.877 5.338 4.002 3.439 0.615 0.194 0.167 0.510 0.020 0.052
−NS Loss −GCN + RAG 10.989 5.771 4.202 3.552 0.779 0.192 0.175 0.491 0.020 0.048

TA as MAML’s base 10.642 5.359 2.926 3.342 0.790 0.169 0.165 0.548 0.021 0.055

Table 2: The performance of the ablation study. Row 2 to row 4 indicates the full model without the negative sampling, without
the GCN layer, or without both of them. + RAG indicates applying retrieval-augmented generation methods. TA as MAML’s
base optimizes TA by treating it as a part of MAML’s base model.

scale on quality (H-Appr), diversity (H-Div), and consis-
tency with speakers’ previous conversations (H-Cons).

Experimental Results and Analysis
Overall Performance
The results of all competing methods on automatic met-
rics are shown in Table 1. Since Transformer outperforms
Seq2Seq, we use Transformer as the base generation model
for all baselines. Fine-tune methods achieve the better per-
formance than Base models methods, indicating that build-
ing personalized conversation models for each speaker helps
to improve the overall performance. PAML gets higher per-
formance than other baselines, which demonstrates that
meta-learning is more suitable to handle new speakers in our
scenarios. In rows 4 to 9 of Table 1, we compare all methods
in the same scale of parameters (80M). Social network de-
scribes the relations among speakers, so the baseline meth-
ods of Fine-tune+Social Network are supposed to be better
than Fine-tune. However, it is not the case in our experi-
ments, which demonstrates that few conversations are inap-
plicable for training a speaker embedding, so the neighbors’
information cannot contribute to the target speaker with the
usages in Fine-tune+Social Network.

Ours methods outperform all baselines on most metrics,
especially on the consistency. We conclude that resource-
rich neighbors are qualified to provide task priors for low-
resource speakers. For our two variants, our full model ob-
tains higher scores on the overall quality and the consis-
tency to the speakers. Ours−SelfEmb, which skips the train-
ing for the target speaker’s embeddings, generates more di-
verse results. This is because absorbing the information from
neighbors promotes diversity, and utilizing the embeddings

H-Appr H-Div H-Cons
Seq2Seq 2.77 1.84 2.27

Transformer 2.98 2.87 2.67
Transformer+F 3.09 2.78 2.45

Transformer++F 3.15 2.72 2.88
PAML 3.05 2.68 3.02

Speaker+F+SN 2.91 2.66 3.02
VHUCM+F+SN 2.99 2.56 2.84
Ours−SelfEmb 3.09 2.84 2.97

Ours 3.17 2.79 3.09

Table 3: The overall performance on human evaluations.

trained on its conversations helps the model to concentrate
more on the target speaker’s unique characteristics.

The human evaluation results in Table 3 are almost con-
sistent with the automatic metrics. The only exception is that
Transformer has the highest diversity score, but our methods
obtain the second highest score in diversity.

Ablation Study
We demonstrate the performance of the proposed compo-
nents with an ablation study shown in Table 2. −NS Loss
shows that removing negative sampling loss from our model
causes a performance drop, especially on the appropriate-
ness and consistency. Hence, it is necessary to restrict the
task embeddings with the graph structure. −GCN aggre-
gates the neighbor embeddings by simply averaging it in-
stead of the GCN operation. The performance of replacing
the GCN layer also decreases, which verifies the GCN’s ef-
fect. The model lacking both negative sampling and GCN
(−NS Loss−GCN) becomes much worse.−NS Loss−GCN
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+ RAG means the variant that lacks negative sampling and
GCN and follows the retrieval-augmented generation idea
(Song et al. 2018) to retrieve similar samples from neigh-
bors’ conversation samples. TA as MAML’s base treats TA
as a part of MAML’s base model and optimizes TA to-
gether with CM instead of optimizing TA across tasks in the
outer-loop. Its bad performance suggests that as a cross-task
component to capture task embedding and task relation, TA
should be optimized across tasks.

Quality of New Speakers’ Task Embeddings
In this section, we examine the quality of new speakers’ re-
fined task embedding hs by verifying their ability to distin-
guish similar speakers from dissimilar ones. As social net-
work neighbors tend to share similar preferences, we regard
neighbors to be similar than randomly paired speakers. For
each new speaker s, we calculate two task embedding simi-
larity scores: the similarity of s and one of its neighbor sn,
denoted as sim(s, sn); the similarity of s and a randomly
picked speaker sr, denoted as sim(s, sr). We measure a ra-
tio of sim(s, sn) being higher than sim(s, sr) plus a margin
c, which is defined as γ-c= #(sim(s,sn)>sim(s,sr)+c)

|s| .

γ-0 γ-0.1 γ-0.2
Ours (TrainSpeakers) 0.99 0.99 0.89

Ours (RichTestSpeakers) 0.99 0.96 0.83
Ours 0.99 0.95 0.82

VHUCM+F+SN 0.96 0.83 0.51
Speaker+F+SN 0.91 0.20 0.03

Table 4: The quality of new speakers’ task embeddings. γ-c
is the ratio of new speakers’ embeddings achieving higher
similarity to neighbors rather than random speaker pairs
with a margin c.

In Table 4, Ours (TrainSpeakers) measures γ-c on a set
of training speakers. Ours (RichTestSpeakers) measures γ-c
on new speakers never seen in training, but each speaker can
access 60 samples in its support set. Ours, VHUCM+F+SN,
and Speaker+F+SN follow the same setting as Sec. , where
models measure γ-c on new speakers never seen in training
and access K (i.e. 10) samples in their support sets. We re-
construct the training and testing set and re-train the models,
so that we can measure the above five methods on the same
set of speakers, which consists of 1,000 speakers.

The results in Table 4 show that the quality of new speak-
ers’ task embeddings from our model are much higher than
that from the baselines. Ours (TrainSpeakers) provides the
upper-bound of the task embedding quality since those em-
beddings are trained by the model, and each speaker has
many samples in training. The gap between Ours (RichT-
estSpeakers) and Ours is quite small, which reveals that our
methods help low-resource speakers to achieve a very close
performance to the resource-rich speakers.

Case Study
Table 2 shows a case from the test set. In this sample,
Seq2Seq and Transformer+F give general responses. Trans-
former and Transformer++F capture a part of the informa-

Historical
responses
of speaker s

1.Your words can always heal my broken heart!
2.Thanks! Collect the pictures!
3.Found a nice fashion blogger, come on ladies!

Historical
responses
of a s’s neighbor

1.Let’s download the pictures.
2.The pictures are really funny. Download them.
3.Dare we cosplay the personages in Naruto?

Query
My ex-boy friend used to tell me his mom
he likes me, after breaking up,
I know the meaning of that sentence.

Seq2Seq I do think so, I do think so.
Transformer I also want to break up.
Transformer+F What did you say, who are you, who are you.
Transformer++F You’re no longer alone

PAML
I know that, and so as my boy friend!
I am also an excellent and nice man.

Speaker+F+SN
Finally I break up, after breaking up,
I know what the meaning of that sentence.

VHUCM+F+SN First of all, you should have a girl friend.

Ours-
SelfEmb

We love him no matter breaking up or not, right?
This is the world for girls.
All the girls like cartoon are here.

Ours Your heart is broken. See some funny pictures!

Figure 2: A case with generated responses of all models. We
highlight semantic overlaps between generated responses
and the query in red color, the responses and speaker’s con-
versation histories in blue, and the responses and neighbors’
conversation histories in cyan.

tion in query and make related responses. Speaker+F+SN
almost repeats the query. VHUCM+F+SN outputs a humor-
ous, relevant, and informative response, but it misunder-
stands the gender of the speaker s (s is probably a girl ac-
cording to her third historical conversation). PAML acts as
a girl at the beginning of its responses. As for our methods,
Ours−SelfEmb makes appropriate responses in the view of
a girl. Moreover, its response borrows information from the
neighbor, where that information (“Naruto” is a “cartoon”)
does not appear in the query or the speaker s’s conversa-
tions. Ours can even study some relevant phases from other
conversations of the speaker.

Conclusion
We propose a few-shot personalized conversation task with
a social network, catering for low-resource speakers. In such
a scenario, we propose a novel method which enables low-
resource speakers to leverage information from the resource-
rich speakers with the social network. Our method consists
of a PCM and a TA. PCM equips conversational agents with
personality via MAML; TA obtains the speaker representa-
tion from its few conversations and its resource-rich neigh-
bors in the social network. The representation assists the
training of the PCMs. In this way, we remedy the data de-
ficiency issue on low-resource speakers so that our systems
are friendly to newcomers or inactive users on social me-
dia. The experimental results show our model outperforms
all baselines on the overall query, diversity, and consistency.
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