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Abstract

Recently, a zero-shot entity linking task is introduced to chal-
lenge the generalization ability of entity linking models. In
this task, mentions must be linked to unseen entities and only
the textual information is available. In order to make full use
of the documents, previous work has proposed a BERT-based
model which can only take fixed length of text as input. How-
ever, the key information for entity linking may exist in nearly
everywhere of the documents thus the proposed model can-
not capture them all. To leverage more textual information
and enhance text understanding capability, we propose a bidi-
rectional multi-paragraph reading model for the zero-shot en-
tity linking task. Firstly, the model treats the mention context
as a query and matches it with multiple paragraphs of the
entity description documents. Then, the mention-aware en-
tity representation obtained from the first step is used as a
query to match multiple paragraphs in the document contain-
ing the mention through an entity-mention attention mecha-
nism. In particular, a new pre-training strategy is employed
to strengthen the representative ability. Experimental results
show that our bidirectional model can capture long-range
context dependencies and outperform the baseline model by
3-4% in terms of accuracy.

Introduction
Entity Linking (EL) is a task of resolving ambiguous men-
tions to their referent entities in a knowledge base (KB).
EL is a fundamental task in the area of information extrac-
tion (IE) and can benefit other NLP applications such as
question answering (Chang 2016), text summarization (Am-
playo, Lim, and Hwang 2018), etc.

Most previous work focuses on linking mentions to gen-
eral KBs (e.g. Wikipedia). They usually train models un-
der a setting where the entities occurring in the test set are
partially or fully available for training. Moreover, they typ-
ically utilize not only textual information but also power-
ful resources like frequency statistics and meta-data (Ganea
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Figure 1: Left: (a) Evidence exists in other paragraphs of en-
tity document. Right: (b) Evidence exists in other paragraphs
of mention document. Underlined texts are mentions. Green
italic texts are the evidences for linking.

and Hofmann 2017; Roth et al. 2014) existing in the KBs.
Compared to general domains, entity linking in specialized
domains such as movies or fictions, needs to be addressed
with a strong demand. However, this type of linking can be
much more challenging in such domains since labeled data
are not easily obtained and the resources in such KBs are not
as abundant as the general ones. Therefore, models with the
capability of generalizing to new domains need to be devel-
oped.

To evaluate the domain generalization of entity linking
systems, Lajanugen et al.(Logeswaran et al. 2019) presented
a zero-shot entity linking task which has two key properties:
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(1) no mentions or entities in the testing have been observed
during training, (2) no other information is available other
than texts. In this task, each mention is extracted from a
document and each entity corresponds to a document that
describes the details of it. Meanwhile, they proposed a base-
line model based on BERT (Devlin et al. 2019) which links
the mention with its referent entity by reading two pieces
of text, i.e., the mention context and the entity description.
Specifically, the baseline model truncates a fixed length of
text around the mention as the mention context and the be-
ginning of entity document as the entity description. Then, it
concatenates the two pieces of texts and feeds it into BERT
which is able to perform deep cross-attention between their
tokens, producing a matching score indicating how much
the candidate entity is related to the mention. However, this
model cannot fully capture the coherence evidence between
a mention and its golden entity due to the limitation of its
input length.

To illustrate why it is insufficient, we give two examples
in Figure 1. The mention contexts and entity descriptions
are extracted as the baseline model does. Then, we split the
rest texts of the documents into paragraphs whose lengths
are same as them. In the left example, the mention is “dad”
whose daughter “Caitlin apologies for standing Craig up”.
The golden entity of the mention is “Doubie Ryan” since
the paragraph 3 of the entity document shows “Caitlin” is
“Doubie Ryan”’s daughter who met “Craig”. Obviously, the
BERT-based baseline model may not link the entity correctly
since the paragraph 3 is not fed in. In the right example,
the golden entity of the mention “Mummy” is “in the Mon-
ster Fighters theme”. However, the evidence exists in para-
graph 1 of the mention document which is not presented in
the mention context, thus the baseline model would confuse
which theme the “Mummy” belongs to.

Such two examples show that in the entity linking task,
the evidence may scatter in different paragraphs. Expand-
ing the length of the mention context and entity description
with more paragraphs may benefit the model’s performance.
However, since BERT is a deep cross-attention encoder, di-
rectly expanding the input length in the BERT-based base-
line model is infeasible since both the time and space com-
plexity grows with the square of tokens.

This problem is rarely discussed in the entity linking liter-
ature. In contrast, some existing work in the machine read-
ing comprehension area has already studied on finding an-
swers from multiple paragraphs of documents. For example,
(Clark and Gardner 2018) proposes a typical model which
feeds the query and each paragraph into a reading compre-
hension module and then select a final answer from the ex-
tracted candidate answers of each paragraph. This paradigm
is sufficient in reading comprehension task since there is an
explicit query. However, in the entity linking task, both the
mention context and entity description are en-wrapped with
several different paragraphs in corresponding documents re-
spectively. No explicit queries and answers are available.
Therefore, a new multi-paragraph reading model should be
built to adapt for the zero-shot entity linking task.

In this paper, we propose a multi-paragraph reading
model for zero-shot entity linking which can make use of

more textual information. The key idea of our model is to
take more paragraphs into consideration. In particular, dur-
ing the encoding of each entity paragraph, we send both
the mention context and one entity document paragraph into
a BERT encoder to perform deep cross-attention between
each other. Then, the obtained encodings are aggregated by
an inter-paragraph attention mechanism. To deal with the
problem that information about mention context is insuffi-
cient, we add an additional backward multi-paragraph read-
ing step. Specifically, the paragraphs of the mention docu-
ment are encoded separately. Then, the encoding obtained
in the first step and the encoded mention paragraphs are
matched by another attention module. Such a model can
be summarized as a Bidirectional Multi-Paragraph Reading
(Bi-MPR) model for entity linking which exploits more tex-
tual information in both mention and entity documents. The
main contributions of our work are summarized as follows.
• We propose a two-step forward-backward matching pro-

cess to deal with the zero-shot entity linking.
• We present an inter-paragraph attention mechanism to

capture rich semantics in the forward matching step and
an entity-mention attention mechanism to fully compre-
hend the mention context and entity description in the
backward matching step.

• We evaluate the performance of Bi-MPR model on the
zero-shot entity linking dataset. The experimental results
show that our model achieves significant improvements
over the BERT-based baseline. An extensive analysis of
the length parameters shows our model achieves good ac-
curacy using a relatively short inference time.

Models
In this section, we firstly introduce the BERT-based baseline
proposed in (Logeswaran et al. 2019). Then, we describe a
Uni-MPR model which leverages more textual information
in the entity document and adopts Whole Entity Masking
pre-training strategy. Finally, we extend the former model to
a bidirectional model (Bi-MPR model) which incorporates
more textual information in the mention documents. Figure
2 shows the architectures of the baseline, Uni-MPR model,
and Bi-MPR model, respectively.

BERT-based Baseline
Due to the constraints of zero-shot entity linking, the only
information we can obtain is the texts of the document con-
taining the mention and the texts of the candidate entities
documents. Therefore, the key of the zero-shot entity link-
ing task is to select the target entity through a reading com-
prehension like process between the two kinds of texts. (Lo-
geswaran et al. 2019) proposed a baseline model based on
BERT which achieves the state-of-the-art performance on
such tasks. Since the entities in the test domain cannot be
seen during training, the model adopts domain-adaptive pre-
training (DAP) before fine-tuning. Specifically, the model
employs a BERT model which has been pre-trained on open
corpora (i.e., Wikipedia and BookCorpus). Then, it keeps on
pre-training using the texts in all domains that require link-
ing, through the MLM (Masked Language Model) task. For
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Figure 2: Architecture of the baseline model, the Uni-MPR model and the Bi-MPR model.

each target domain that the model is going to be applied on,
an extra pre-training stage is added before fine-tuning only
using the data in the target domain. After that, the model is
fine-tuned by labeled data.

Taking the t-th candidate entity as an example, the base-
line model concatenates n tokens C = {Ci}ni=1 surround-
ing the mention (i.e., mention context), first m tokens Dt =
{Dt

i}mi=1 from the entity document (i.e., entity description)
and some delimiters as input in the form of

[CLS]C[SEP]Dt[SEP] (1)

where [CLS] and [SEP] are special placeholders from the
vocabulary of BERT. At last, a coherence score s is cal-
culated by sending the output of the last hidden layer cor-
responding to the position of the [CLS] token to a feed-
forward neural network (FFNN). Figure 2(a) shows the over-
all structure of the baseline model.

Leveraging the attention mechanism proposed in the deep
transformer (Vaswani et al. 2017), the baseline model per-
forms a precise matching between the mention context and
entity description. However, by referring to the examples
shown in Figure 1, the limited input length of baseline def-
initely affects its performance directly. In order to read and
detect the evidence in different paragraphs, we propose our
models as follows.

Unidirectional Multi-Paragraph Reading
We note that in the baseline, a vanilla MLM task (i.e., replac-
ing some tokens randomly with “[MASK]” and then pre-
dicting them by context tokens) is adopted in pre-training.

However, masking all of the tokens randomly causes insuffi-
cient training. For example, as shown in Figure 3, the vanilla
random masking strategy masks “heroes” in “super heroes
minifigure”. It is easy for the model to predict “heroes” in
this case since “super heroes minifigure” is a named entity
so that the three words always occur together. Therefore, in-
spired by (Zhang et al. 2019) and (Cui et al. 2019), we ran-
domly select some entity names in the entity collection and
mask all the words within them. In this way, the model is
forced to predict the entities by understanding their contexts
thus learn better entity-sensitive representations. We name
this strategy “Whole Entity Masking”(WEM). In practice,
we both randomly select some entity names and other ordi-
nary words. Such method enhances the entity-sensitive rep-
resentation ability in comparison to the vanilla MLM strat-
egy. In the Experiments, we will show the proposed pre-
training method is more effective.

As we have mentioned above, the problem of the base-
line model partially comes from the limited length of en-
tity description. To tackle this problem, we propose a Uni-
MPR model which leverages more entity description by
matching multiple paragraphs in the candidate entity doc-
ument with the mention context. Specifically, same as the
baseline model, the mention context consists of n tokens
around the mention. For t-th entity, we extend the entity
description by collecting lp paragraphs in the entity docu-
ment, each of which has m tokens, that is, Dt = {Dt

i}
lp
i=1,

Dt
i = {Dt

ij}mj=1. The input is in a form of

[CLS]C[SEP]Dt
i[SEP] (2)

, where [SEP] is the separator and [CLS] indicates the po-
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Figure 3: Vanilla Random Masking vs. Whole Entity Mask-
ing

sition of mention-entity representation. By BERT, we obtain
a representation of each paragraph

P t
i = BERT

(
C,Dt

i

)
(3)

where P t
i ∈ Rdmd is the mention-entity representation and

dmd is the size of hidden states of BERT.
Next, we build an inter-paragraph attention module to

gather the semantic dependence information among the
paragraphs. We implement it by the multi-head attention
proposed in the transformer(Vaswani et al. 2017) which en-
ables the model to attend in different sub-spaces. Let P t =

{P t
i }

lp
i=1, we have the following steps to get the vector rep-

resentation of the entity document V t.

Ht
h = Attention(P tW 1

Qh, P
tW 1

Kh, P
tW 1

V h) (4)

Attention(Q̂, K̂, V̂ ) = Softmax

(
Q̂K̂T

√
dk

)
V̂ (5)

V t = Concat(Ht
1, ...,H

t
dhead

)WO (6)

In Equations 4-6, W 1
Qh,W

1
Kh,W

1
V h ∈ Rdmd×dk , WO ∈

Rdmd×dmd are parameters of the model, dk = dmd/dhead
where dhead denotes the number of heads in the attention.
As a result, we get V t = {V t

i }
lp
i=1 where V t

i denotes the
vector of i-th paragraph in the t-th entity document. After
that, we obtain a fixed-length representation vector U t by
a weighted-pooling layer. Formally, the weighted-pooling
layer is shown as follows.

eti = tanh(W1V
t
i + b1) (7)

ati =
exp (eti)∑
j exp e

t
j

(8)

U t =
∑
i

ati · V t
i (9)

where W1,b1 are trainable parameters. Since this representa-
tion is generated by combining the information of the men-
tion context and entity description, we call it the mention-
aware entity representation. Meanwhile, the weights can in-
dicate the importance of the entity paragraphs given the
mention context. Finally, we put the encoding U t to a feed-
forward neural network FFNN1 and get the score of t-th can-

didate entity using a softmax function.

ŝt = FFNN1(U
t) (10)

st =
exp (ŝt)∑T
j exp (ŝj)

(11)

We employ cross-entropy as our loss function. The loss is
calculated as follows.

Lu = −
(
yt log st + (1− yt) log(1− st)

)
(12)

In Equation 12, yt ∈ {0, 1} and yt equaling to 1 means
that t-th entity is the gold entity otherwise it equals to 0.

Bidirectional Multi-paragraph Reading
Although the Uni-MPR model can promote performance by
reading more paragraphs in the entity documents, its per-
formance is still constrained. For the case in Figure 1(b),
Uni-MPR model still cannot get a correct result because
the key information exists in other paragraphs in the men-
tion document other than the mention context that the model
can read. Therefore, a desirable model should read across
multiple paragraphs in both mention and entity documents.
We need to leverage more textual information in the men-
tion documents besides the mention context defined pre-
viously. A naı̈ve method is to take multiple paragraphs in
the mention document as input directly and apply the Uni-
MPR model once per paragraph. However, directly apply-
ing the Uni-MPR model on multiple paragraphs in the men-
tion document needs to read each mention-entity paragraph
pair which brings high time complexity. Besides, not all the
paragraphs of the mention document are related to the given
mention. Treating them equally may incur noises.

To solve the above issues, we introduce a bidirectional
multi-paragraph reading model, i.e., Bi-MPR model. Specif-
ically, we firstly obtain the mention-aware entity representa-
tion in the same way as the Uni-MPR model and then use it
as a “query vector” to backward match multiple paragraphs
in the mention document. In this way, our proposed model
obviate the need of matching each mention-entity paragraph
pair. In addition, it emphasizes the importance of the men-
tion context which is encoded in the mention-aware entity
representation. Thus, it only needs to perform the match-
ing between the fixed entity representation U t and multiple
mention document paragraphs.

In detail, after removing the previously defined mention
context from the mention document, we truncate lq para-
graphs in the rest of the mention document and collect
them as input, each of which has n tokens, that is, C ′ =
{C ′i}

lq
i=1, C

′
i = {C ′ij}nj=1, and encode them using BERT.

We can obtain
Qi = BERT(C ′i) (13)

where Qi ∈ Rlq×dmd is the output at the position of [CLS].
Then, an inter-paragraph attention is performed to model
paragraph-wise dependence and the updated representation
of each paragraph Ṽ t

i is obtained. Formally,

H̃i = Attention(QiW
2
Qh, QiW

2
Kh, QiW

2
V h) (14)

Ṽi = Concat
(
H̃i1, ..., H̃ih

)
W ′O (15)
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Then, U t is regarded as the query and Ṽi is regarded as the
representation of each paragraph of the mention document,
and the backward matching is implemented by an entity-
mention attention. This attention is in essence a multi-head
attention using U t and Ṽi as input. Formally,

Gt
i = Attention(U tW 3

Qh, ṼiW
3
Kh, ṼiW

3
V h) (16)

Ũ t = Concat
(
Gt

1, ..., G
t
dhead

)
W ′O (17)

The resulting Ũ t
i contains the matching information in-

corporating multiple paragraphs in the mention document.
In the end, we calculate the entity compatibility score by a
feed-forward neural network using the concatenation of U t

and Ũ t as input. Formally, the score is calculated as follows.

ŝt = FFNN2

(
Concat(U t, Ũ t)

)
(18)

st =
exp (ŝt)∑T
j exp (ŝj)

(19)

Same as Uni-MPR, we adopt cross-entropy as the loss
function.

Experiments
Experimental Setup
Dataset We conduct our experiments on the dataset which
is proposed in (Logeswaran et al. 2019) and built using doc-
uments on Wikia*. Wikia communities consist of online en-
cyclopedias, each one specializing in a particular subject
such as a fictional universe. In this dataset, 8 domains are
used for training, 4 for validation and 4 for testing. The train-
ing set has 49,275 labeled mentions while the validation and
test sets both have 10,000 mentions.

Model Settings For a fair comparison, we initialize our
model using a publicly available uncased base version of
BERT and readers can refer to (Devlin et al. 2019) for de-
tails.

In the pre-training stage, in addition to randomly masking
all of the tokens, we adopt the WEM strategy which masks
randomly selected entities occurring in the text. We firstly
tokenize the documents using the WordPiece tokenizer and
then split the documents to 256-token paragraphs.

For tokenized paragraphs, we randomly replace 15% of
the tokens and 50% of the entities with [MASK] for pre-
diction. Specifically, we extract the entity spans using the
longest prefix matching with the given domain-specific en-
tity dictionary. To deal with multi-word entities spanning the
boundary of two adjacent paragraphs, we slightly modify the
boundaries of such paragraphs to include the whole entity
while keeping the length of each paragraph not exceeding
256. For some entities with disambiguation titles (e.g., “Bre-
ton (Online)” and “Breton (Skyrim)” in the “Elder Scrolls”
domain), we only match the words outside the brackets. Ta-
ble 1 shows the average length, numbers of entity spans and
numbers of the entity tokens of the domain-specific docu-
ments. We use Adam optimizer(Kingma and Ba 2015) with

*https://www.wikia.com

Domain Length Ent. Spans Ent. Tokens

Training

American Football 665.06 47.83 85.86
Doctor Who 264.14 33.54 49.30
Fallout 229.68 20.28 35.03
Final Fantasy 497.35 35.77 59.70
Military 870.55 32.93 59.67
Pro Wrestling 639.53 50.11 88.71
Star Wars 379.76 53.60 79.43
World of Warcraft 242.16 28.23 40.69

Validation

Coronation Street 264.55 6.15 14.51
Muppets 161.50 18.71 32.98
Ice Hockey 282.62 23.48 45.05
Elder Scrolls 269.03 18.40 30.18

Forgotten Realms 257.29 20.97 30.81
Lego 223.86 17.47 24.87
Star Trek 393.21 47.82 69.86
YuGiOh 643.68 62.15 96.42

Table 1: Average length, entity spans, entity tokens of the
documents in each domain.

a learning rate of 2e-5 and warmup over the first 10% of total
10000 steps. The batch size is 16.

During the fine-tuning stage, the length of paragraph m,n
and the number of paragraphs lp,lq influence the perfor-
mance significantly in terms of accuracy and inference time.
We experiment several parameter settings of these param-
eters. Since the BERT-based baseline is under a setting of
m = n = 128, for the sake of fairness, we set m = n = 128,
lp = lq = 2 when comparing with the existing BERT-based
baseline.

Performance Comparison
We choose six models, i.e., the baseline, baseline+WEM,
Uni-MPR(w/o WEM), Uni-MPR, Bi-MPR(w/o WEM) and
Bi-MPR, and conduct experiments to observe their accuracy
in the zero-shot entity linking task. The accuracy of earlier
existing work leveraging Bi-LSTMs or CNNs like deep-ed
(Ganea and Hofmann 2017) and CDTE(Gupta, Singh, and
Roth 2017), is excerpted from (Logeswaran et al. 2019).
Readers can refer (Logeswaran et al. 2019) for more de-
tails. Here, baseline+WEM refers to the same model as the
baseline but pre-trained by the WEM strategy. Default Uni-
MPR model and Bi-MPR model are pre-trained by WEM.
To show the gain of the mutli-paragraph reading mecha-
nism individually, we also list the performance of the models
without WEM pre-training (i.e., Uni-MPR(w/o WEM) and
Bi-MPR(w/o WEM)).

Since our work focuses on ranking the candidate entities
rather than generating the candidates, we conduct experi-
ments on the normalized collections of the dataset where
top-64 candidates of each mention are retrieved by BM25
algorithm. Table 2 shows the accuracy of different models
on each domain of validation and test sets.

As shown in Table 2, our proposed models outperform the
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Model Coronation Street Muppets Ice Hockey Elder Scrolls Macro Acc. Micro Acc.

deep-ed - - - - - 26.96
CDTE - - - - - 27.03
Baseline 82.82 81.59 75.34 72.52 78.07 76.5
Baseline+WEM 84.21 81.55 74.29 72.66 78.18 76.52
Uni-MPR(w/o WEM) 85.31 80.78 78.07 73.74 79.48 77.83
Uni-MPR 88.27 82.83 78.12 74.00 80.81 78.8
Bi-MPR(w/o WEM) 86.47 82.47 78.07 74.87 80.41 78.78
Bi-MPR 90.12 82.50 79.37 75.92 81.98 80.1

Model Forgotten Realms Lego Star Trek YuGiOh Macro Acc. Micro Acc.

Baseline 85.60 76.90 75.80 67.22 76.38 74.21
Baseline(WEM) 86.21 78.23 77.66 66.47 77.14 74.98
Uni-MPR(w/o WEM) 85.55 77.42 78.23 68.29 77.62 75.78
Uni-MPR 87.25 78.57 80.56 67.31 78.42 76.65
Bi-MPR(w/o WEM) 89.09 77.18 79.20 69.98 78.61 76.70
Bi-MPR 89.60 80.50 81.04 68.74 79.97 77.85

Table 2: Accuracy on the validation set and test set

Model HO MC AS LO

Baseline 87.64 77.27 75.89 71.46
Baseline+WEM 89.90 78.82 76.02 71.03
Uni-MPR 91.43 79.07 75.60 73.53
Bi-MPR 92.84 81.93 77.37 73.88

Table 3: Accuracy on the category-specific test subsets in-
cluding High Overlap(HO), Multiple Categories(MC), Am-
biguous Substring(AS), Low Overlap(LO).

baseline model on average. In particular, adding WEM while
remaining the model structure same as the baseline model
can improve the performance, which shows that the WEM
strategy can learn better representations than the vanilla
random masking. Furthermore, we note that the Uni-MPR
and Bi-MPR models make substantial improvements on the
domains whose documents are relatively long (e.g., Elder
Scrolls) and behave not so salient in domains with relatively
short documents (e.g., Muppets). This phenomenon occurs
because the entity description length of Baseline(WEM) is
128 which is nearly equal to the average length of short doc-
uments (e.g., Muppets documents have an average length of
161.5).

Further, we analyze the linking accuracy on different cat-
egories. There are four categories including “High Overlap”
in which the mention text is identical to the entity name,
“Multiple Categories” in which the entity name contains a
disambiguation phrase (e.g., “Breton (Online)”), “Ambigu-
ous substring” in which the mention is a substring of the
entity name, and “Low Overlap” that all other mentions are
subordinate to. Correspondingly, the test set can be divided
into four subsets. Table 3 shows the accuracy of the men-
tions in test subsets. We find that, our models improve more
in “High Overlap” and “Multiple Categories” than other two
categories. We conjecture that the latter two categories re-
quire more complex reasoning which needs to be addressed
in the future. It is somewhat surprising that in “Low Over-

lap”, the performance of baseline+WEM is a bit worse than
the baseline. We suppose that the mentions in “Low Over-
lap” are not obviously related to the entity names. As a re-
sult, the model cannot benefit from the WEM pre-training
strategy.

Impact of Input Length
In our proposed models, there are two kinds of parameters
controlling the input length. One is entity related parame-
ters including the paragraph number lp and the length of
paragraph m. The other is mention related parameters in-
cluding the paragraph number lq and the length of para-
graph n. In Bi-MPR model, we treat the mention document
and the entity document with the same importance, that is,
m = n, lp = lq . Therefore, the total input length of tokens
is (m+n)× lp. In Uni-MPR model, lq = 1 since we do not
add any extra paragraphs from mention document.

In the view of total input text length, same input text
length can be composed by different settings. For exam-
ple, a Bi-MPR model whose m = n = 64, lp = lq = 4
takes 256 tokens from the mention document and the en-
tity document as input. While another Bi-MPR model whose
m = n = 128, lp = lq = 2 accepts 256 tokens, too. From
this perspective of view, the BERT-based baseline model is
a special case of our proposed Bi-MPR model which has
m = n = 128, lp = lq = 1.

However, the performance of above models differs largely
in terms of accuracy and inference time. To investigate the
influence of the parameters, we conduct experiments using
models under different parameter settings which are shown
in Table 4. The accuracy and inference time of the models
under different settings are shown in Figure 4 and Figure 5.
We list the inference time of each mention-entity pair run-
ning on CPU and GPU, respectively. The CPU computations
were run on a Intel Xeon Processor 5118 CPU. The GPU
computations were run on a single Nvidia Tesla V100 GPU.
Notice that all the above models are pre-trained by WEM. In
this section, we experiment the models with input length up
to 256.
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No. Model Length Setting

1 Uni-MPR m = n = 64, lp = 2, lq = 1
2 Uni-MPR m = n = 64, lp = 4, lq = 1
3 Uni-MPR m = n = 128, lp = 2, lq = 1
4 Bi-MPR m = n = 64, lp = lq = 2
5 Bi-MPR m = n = 64, lp = lq = 4
6 Bi-MPR m = n = 128, lp = lq = 2

Table 4: Different length settings.

From Figure 4, we can find that, under the fixed setting of
paragraph lengths(m and n), models leveraging more para-
graphs (more lp or lq) achieve higher accuracy, which indi-
cates that extending the input length and adopting the multi-
paragraph reading mechanism are feasible and effective.

However, the accuracy of model No. 5(Bi-MPR, m =
n = 64, lp = lq = 4) cannot reach the one of model
No. 6(Bi-MPR, m = n = 128, lp = lq = 2) and model
No. 3(Uni-MPR, m = n = 128, lp = 2, lq = 1), al-
though they have same input length of the entity document.
The major difference between them is that the later models
send more tokens to the initial matching step in BERT (i.e.,
m = n = 128 vs m = n = 64). As a result, the cross-
attention between tokens in mention and entity documents
is performed more effectively than the former models.

Although the models sending more text to the cross-
attention module can achieve higher accuracy, their infer-
ence time increases far more than the models with more
paragraphs. In other words, here is a trade-off between the
accuracy and the efficiency. Notice that the increased ac-
curacy is not salient in comparison to the increased time
consumption, the models with larger lp, lq and smaller m,n
could be more preferable in practice.

Figure 4: Accuracy on the validation set under different
length parameters settings.

Related Work
Given a mention, the goal of an entity linking model is to
find the corresponding entity from a collection of entities.
In a classical entity linking task, the mentions are required
to be linked to entities in a general knowledge base which
provides various kind of information (Cucerzan 2007; Hof-
fart et al. 2011; Ratinov et al. 2011; Guo and Barbosa 2014).

Figure 5: Inference time on the validation set under different
length parameters settings.

With the help of the comprehensive knowledge base, most of
the state-of-the-art models targeting on such task make use
of information other than texts (Kundu et al. 2018; Raiman
and Raiman 2018; Ganea and Hofmann 2017). Although
these models have promising performance on this task, it is
hard to adapt these models to specialized domains where no
comprehensive knowledge base is provided.

Early studies employ handcrafted features to model the
textual coherence between mention and entity (Ji and Gr-
ishman 2011; Shen, Wang, and Han 2015; Milne and Wit-
ten 2008; Chen and Ji 2011; Dredze et al. 2010). Recently,
many studies resort to the methods based on neural net-
works which need no manual efforts. Usually, entity linking
models based on deep learning usually encode two parts of
text individually. For example, (Ganea and Hofmann 2017;
Kolitsas, Ganea, and Hofmann 2018) use pre-trained entity
embeddings by modeling the co-occurrences of the words
and the entities. (Yamada et al. 2016) learns the embed-
ding of words and named entities together. Moreover, neural
networks (Fang et al. 2019; Gupta, Singh, and Roth 2017;
Xue et al. 2019) are adopted to encode mention contexts
and entity descriptions. However, the semantic relationships
are not fully exploited due to the absence of cross-attention
mechanism and the limited representation ability of the en-
coders. Even if models like (Logeswaran et al. 2019; Fang
et al. 2020) employ pre-trained BERT model which per-
forms cross-attention, it does not fully capture the semantics
which spread around multiple paragraphs.

Conclusion
Zero-shot entity linking task forces the models to link men-
tions to unseen entities and leverage only textual informa-
tion which challenges the generalization and text compre-
hension ability of entity linking models. Usually, the evi-
dence for linking the golden entity could scatter in different
paragraphs of a document which is hard to collect and com-
prehend. Focusing on this phenomena, we present a new bi-
directional multi-paragraph reading model which can cap-
ture long-range text dependence between mention and entity
documents but restrict the increasing amount of inference
time in an acceptable range. The experimental results on the
challenging zero-shot entity linking dataset show our model
achieves state-of-the-art performance in different domains.
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