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Abstract

Multitask learning has shown promising performance in
learning multiple related tasks simultaneously, and variants of
model architectures have been proposed, especially for super-
vised classification problems. One goal of multitask learning
is to extract a good representation that sufficiently captures
the relevant part of the input about the output for each learn-
ing task. To achieve this objective, in this paper we design a
multitask learning architecture based on the observation that
correlations exist between outputs of some related tasks (e.g.
entity recognition and relation extraction tasks), and they re-
flect the relevant features that need to be extracted from the
input. As outputs are unobserved, our proposed model ex-
ploits task predictions in lower layers of the neural model,
also referred to as early predictions in this work. But we con-
trol the injection of early predictions to ensure that we extract
good task-specific representations for classification. We refer
to this model as a Progressive Multitask learning model with
Explicit Interactions (PMEI). Extensive experiments on mul-
tiple benchmark datasets produce state-of-the-art results on
the joint entity and relation extraction task.

Introduction
Multitask learning (MTL) is an important methodology that
simultaneously co-models multiple related tasks in a sin-
gle model. One of the earliest proposed MTL architectures
learns a shared representation for multiple tasks, where this
shared representation is utilized by task-specific structures
independently to learn task-specific representations for su-
pervision (Collobert and Weston 2008). Thus, it induces an
inductive bias that enhances the model’s ability to generalize
well on new inputs. This is a basic MTL structure which has
been used successfully in several natural language process-
ing (NLP) tasks (Liu et al. 2019b; Hu et al. 2019).

Although impressive performance has been achieved by
considering the basic MTL architecture, some models have
considered incorporating early predictions (predictions of
the input in lower layers of the neural network) of the
task-specific structures to improve the task-specific repre-
sentations (He, Lee, and and‘ Daniel Dahlmeier 2019; Zhao
et al. 2019). However, their approach applies a deterministic
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model (e.g. multilayer perceptron) on both the early predic-
tions and shared representations to output the task-specific
representations. Obviously, deterministic models do not take
into account the randomness of the early predictions, as the
quality of these predictions is heavily dependent on the qual-
ity of early classifiers. A more natural approach is to con-
sider a stochastic model that possesses some inherent ran-
domness. Besides, it is important to additionally control the
flow of information from the early predictions since they
are just an approximation to the ground truth, and not the
ground truth itself. That way we are sure to reduce the noise
that comes with early predictions to extract more expressive
task-specific representations.

Moreover, the previous MTL models (Liu et al. 2019b;
Hu et al. 2019) only exploit the implicit interaction that is
captured by the shared representation. Our understanding of
task relatedness informs us that correlations actually exist
between the outputs of some related tasks, e.g. the entity
recognition and relation classification tasks. Since we can
obtain access to early predictions, we can model such corre-
lations explicitly to improve task-specific representations.

Motivated by these findings, the goal of this paper is
to develop a multi-task learning architecture that incorpo-
rates early predictions of task-specific structures to improve
the learning of task-specific representations. Specifically,
we follow an approach used to extract the minimal suffi-
cient statistics of an input about an output using neural net-
works (Alemi et al. 2017), and develop stochastic maps that
consider the shared representations and the interaction of
early predictions of task-specific networks to extract good
task-specific representations for supervision.

To verify our proposed multitask learning approach, we
choose the joint entity and relation extraction as our target
task due to its popularity in NLP. So far, many works (Miwa
and Sasaki 2014; Gupta, Schütze, and Andrassy 2016; Fu,
Li, and Ma 2019) have focused on leveraging multitask
learning to solve this joint task by taking entity recognition
(ER) as one task, and relation classification (RC) as another
task. The ER aims to extract all entities in the sentence, and
the RC aims to classify the relations between all word pairs
in the sentence. However, most of the previous works do not
consider leveraging the early prediction to improve the task-
specific representation nor do they explicitly model the in-
teractions between the two tasks. We show that our proposed
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approach can improve the performance for this task.
Our contribution is summarized as follows:

• We propose a progressive multi-task learning model
(PMEI) which leverages interactions of early predictions
to improve the task-specific representation.

• Our model employs stochastic maps to encode both the
shared representations between tasks and the early pre-
dictions from tasks. In particular, we ensure the informa-
tion flow from early predictions is controlled to reduce the
noise that comes with it.

• We take the joint entity and relation extraction as a con-
crete example and apply our proposed method on this
joint task. Extensive experiments on several benchmark
datasets show the effectiveness of the proposed method.

Related Work
Multitask Learning
The existing multitask learning architectures proposed so far
can be categorized according to their topological structure.
We have those with a flat structure, a graph structure, and a
hierarchical structure (Sun et al. 2020). A suitable structure
depends on the relatedness of the tasks. The most commonly
used multitask learning architecture is the flat structure. In
this architecture, task-specific networks are fed with a shared
representation, and then each task-specific network learns in
isolation without interaction. This structure has been suc-
cessfully applied in a variety of tasks, including relation ex-
traction (Fu, Li, and Ma 2019) and natural language under-
standing (Liu et al. 2019b). However, as pointed by (Liu,
Qiu, and Huang 2017), the shared representation exploited
by one task may contain noise brought by other tasks, con-
taminating the task-specific representations. To address this
weakness, the hierarchical structure places different tasks at
different layers of the network according to the complexity
of the tasks. The graph structure model interactions dynam-
ically among the tasks to learn task-specific representations.
Our proposed multitask learning architecture can be catego-
rized under the graph structure.

Joint Entity and Relation Extraction
Traditional approaches proposed to solve the entity and
relation extraction task use a two-step pipeline-based ap-
proach (Zelenko, Aone, and Richardella 2003). However,
these approaches are faced with error propagation from the
entity recognition task to the relation classification task, and
cannot leverage the interactions between the two tasks. Re-
cent approaches consider to treat the tasks jointly. Among
these works, we have those that consider a sequence-to-
sequence approach (Zeng et al. 2018, 2019; Zeng, Zhang,
and Liu 2020), but these approaches fail to effectively deal
with the overlapping relation problem (Wei et al. 2020).
Other works have considered a sequence labelling approach
to address the problem (Zheng et al. 2017b; Dai et al. 2019;
Takanobu et al. 2019; Wei et al. 2020).

More recently, multitask learning methods have been pro-
posed to address the joint task due to its ability to exploit
interactions among related tasks to learn good task-specific

X BiLSTM H C Ŷ

(A) Basic Model

X BiLSTM H C ′ Y ′ MLP T ŶC

(B) Progressive Model

X BiLSTM H C ′ Y ′ SM T ŶC

I(H;T |Y ′)

(C) Progressive Model with Information Controlled

Figure 1: Our models for single task learning.

representations (Miwa and Sasaki 2014; Miwa and Bansal
2016; Gupta, Schütze, and Andrassy 2016; Fu, Li, and Ma
2019; Zeng, Zhang, and Liu 2020). Although the aforemen-
tioned MTL methods show satisfactory performance, they
exploit only the implicit interactions that is captured in the
shared representations of the related tasks. Besides, they do
not exploit early predictions of the ER and RC tasks as seen
in other NLP tasks (He, Lee, and and‘ Daniel Dahlmeier
2019; Zhao et al. 2019). Without modeling such informa-
tion, these methods are limited in performance.

Method
In this section, we gradually present our model architec-
ture. We first introduce a progressive classification model
on a single task to show the rationale behind our pro-
posed approach. Then we introduce the progressive classi-
fication model in the context of multitask learning. Finally,
we demonstrate the application of the proposed multitask
learning methods on the joint ER and RC tasks.

Progressive Classification on Single Task Learning
In this section, we describe our models for single-task learn-
ing. The overview of our models are shown in Figure 1.

Consider the basic model in Figure 1(A). Let X ∈ X
be an input random variable (e.g, a sentence), and Y ∈ Y
be an output random variable (e.g. class label). We employ a
bidirectional LSTM (BiLSTM) to extract a contextual repre-
sentation H ∈ H from X . A classification model is defined
as the map C : H → p(Y). The function C takes H as input
and outputs the probability distribution p(Ŷ ) = C(H) over
the output space. This is a basic model and requires that the
Markov relation Y → X → H is satisfied. Thus, for the
joint distribution p(x, y, h) which factors as follows:

p(x, y, h) = p(h|x, y)p(x, y), (1)
it assumes that the conditional distribution p(h|x, y) =
p(h|x) under the Markov constraint. This means that H is
a function of X and it is defined by X exclusively. In other
words, H cannot provide any new information about Y , ex-
cept for what is contained inX . SupposeH has access to Y ,
the classification task becomes easy, but this is impossible
since Y is unobserved. This observation leads us to design a
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model where some knowledge of Y , denoted as Y ′, is used
as additional information to improve the representation of
H .

To this end, we progressively improve the representation
of H as shown in Figure 1(B). Specifically, we employ a
classifier C ′ which takes H as input and produces the pre-
diction Y ′. Here, Y ′ can be interpreted as an early predic-
tion for the task, and it is likely to approximate the output
Y . Thus, these early predictions provide some information
about Y which can be used as additional information toH to
extract a more expressive representation T . In this model ar-
chitecture, a multilayer perceptron (MLP) is applied on both
H and Y ′ to learn the representation T .

Although employing early predictions have proved to be
useful in several tasks, previous works (He, Lee, and and‘
Daniel Dahlmeier 2019; Zhao et al. 2019) merely pass Y ′
and H into an MLP to extract T . A key observation from
these works show that Y ′ can indeed improve the represen-
tation of H . However, these approaches ignore the fact that
Y ′ may not necessarily be the ground truth, so not all the in-
formation contained in Y ′ may be beneficial to the model
performance. Thus, we argue that it is necessary to con-
trol the information flow of Y ′. Specifically, we construct
a stochastic map (SM) to model the mutual information be-
tween H and T conditioned on Y ′, denoted as I(H;T |Y ′).
In this way, we can control the information flow of Y ′ by
controlling I(H;T |Y ′) during optimization. A small value
of I(H;T |Y ′) means T is largely determined by Y ′, while a
large value means T is largely determined byH . The mutual
information (MI) I(H;T |Y ′) is given by

I(H;T |Y ′) =

∫
dh dt dy′ p(h, t, y′) log

p(t|h, y′)
p(t|y′)

≤
∫
dh dt dy′ p(h, t, y′) log

p(t|h, y′)
r(t|y′)

,

(2)

where r(t|y′) is a variational approximation to p(t|y′), in-
ducing an upper bound on I(H;T |Y ′). Minimizing the up-
per bound of I(H;T |Y ′) is the same as minimizing the KL-
divergence between p(t|h, y′) and r(t|y′).

I(H;T |Y ′) ≤ KL(p(t|h, y′)||r(t|y′)) (3)
As the KL-divergence approaches zero, p(t|h, y′) approx-

imates r(t|y′). And in this case, t is determined by y′ to
a great extent. Thus, by controlling the KL-divergence be-
tween p(t|h, y′) and r(t|y′), we can control the injection of
y′ into t.

Progressive Classification on Multitask Learning
We design a multitask learning architecture based on our
proposed single-task learning method which considers the
control of information flow. Figure 2 shows the architecture
of our models.

Suppose YA and YB are the output spaces of two different
but related tasks A and B. The two tasks have different out-
puts, but share the same input in our setting. Let H be the
shared representation of both tasks modeled by BiLSTM.
We employ classifiers C ′A and C ′B corresponding to tasks

X BiLSTM H

C ′A Y ′A SMA TA ŶACA

I(H;TA|Y ′A)

C ′B Y ′B SMB TB ŶBCB
I(H;TB |Y ′B)

(A) PMEI w/o interaction

X BiLSTM H

C ′A Y ′A SMA TA ŶACA

I(H;TA|Y ′A, Y ′B)

C ′B Y ′B SMB TB ŶBCB
I(H;TB |Y ′A, Y ′B)

(B) PMEI

Figure 2: Our models on the multi-task learning

A and B to make early predictions Y ′A and Y ′B . Following
the approach proposed in the single-task learning method in
Figure 1(C), we can control the injection of Y ′A (or Y ′B) in
H to extract task-specific representations TA (or TB).

It is possible that correlations exist between the learning
tasks in the multitask learning architecture. But the model
depicted in Figure 2(A) does not model interactions explic-
itly, but exploit only the implicit interactions in H . With-
out modeling such explicit interactions, as shown in these
works (Lan et al. 2017; He, Lee, and and‘ Daniel Dahlmeier
2019; Zhao et al. 2019; Dankers et al. 2019; Liu et al.
2019a), the multitask learning model cannot properly dis-
tinguish the relevant features for the individual tasks.

As a solution, we consider one observation: correla-
tions exist between outputs of several tasks (He, Lee, and
and‘ Daniel Dahlmeier 2019; Zhao et al. 2019). Assum-
ing we have early predictions for multiple tasks, we can
exploit these interactions to improve task-specific repre-
sentations. Thus, a natural idea should be that the condi-
tional MI term should be under the condition of both Y ′A
and Y ′B , i.e. I(H;TA|Y ′A, Y ′B) and I(H;TB |Y ′A, Y ′B), so
that the model effectively exploits the interactions between
the two tasks. We therefore construct an upper bound over
I(H;TA|Y ′A, Y ′B) as

I(H;TA|Y ′A, Y ′B) ≤ KL(p(tA|h, y′A, y′B)||r(tA|y′A, y′B))
(4)

An upper bound over I(H;TB |Y ′A, Y ′B) will follow the
same formulation as I(H;TA|Y ′A, Y ′B).

Our Model for the Joint ER and RC Tasks
In this section, we demonstrate the application of the pro-
posed multitask learning method in Figure 2(B) for the joint
extraction of entities and relations.

Given a sentence s = {w1, w2, · · · , wn} consisting of
n words, and a set of l pre-defined relation types R =
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{ρ1, · · · , ρl}, the joint task aims to extract all relational facts
in sentence s. In this paper, a relational triple is represented
in the form

〈
ei, ρ, ej

〉
, where ei, ej are entity words (i.e, en-

tities written as a single word) or heads of multi-token en-
tities corresponding to wi, wj ∈ s, and the relation ρ ∈ R.
Given a word pair (wi, wj), the goal is to predict the prob-
ability ŷ(i,j) that the relational triple

〈
wi, ρ, wj

〉
is factual.

Besides, the entity recognition task which takes each word
wi ∈ s and predicts a probability ŷi over BIOES labels (Fu,
Li, and Ma 2019) can be used to identify the head and
tail words of multi-token entities for the extracted relational
triple.

Learning a shared representation When addressing this
problem, we first map the word sequence s to a set of vec-
tors x = {x1, x2, . . . , xn}, where xi ∈ Rd is a word embed-
ding (Pennington, Socher, and Manning 2014) with a dimen-
sion size of d. Denote X , a random variable corresponding
to the initial vectors of sentence s. We construct a shared
representation H for the ER and RC tasks by means of a
BiLSTM.

Learning task-specific representations In our model for
the joint task, the tasks A and B correspond to the ER and
RC tasks. Let C ′e and C ′r be classification models for the
ER and RC tasks which takes H as input and produce early
predictions Y ′e and Y ′r . In fact, there are correlations between
the outputs of the ER and RC tasks. For example, the output
of the ER task can provide information on whether the words
wi, wj in a relational triple

〈
wi, ρ, wj

〉
are entity words or

multi-tokens. Moreover, it provides information on which
pairs of words to focus on in the RC task, since not all words
in the sentence are entity words or involved in multi-token
entities. Meanwhile, the relation r of the extracted relational
triple in the RC task provides information on the entity type
for wi, wj (typically when wi, wj are entity words).

As already mentioned, the correlations between the out-
puts of the ER and RC tasks, as well as its ability to in-
creasingly improve predictions makes it necessary to exploit
H , Y ′e and Y ′r for the extraction of task-specific represen-
tations Te and Tr. Employing stochastic maps for the re-
spective tasks, we control the information flow to Te and Tr
by minimizing the mutual information I(H;Te|Y ′e , Y ′r ) and
I(H;Tr|Y ′e , Y ′r ),

I(H;Te|Y ′e , Y ′r ) ≤ KL(p(te|h, y′e, y′r)||r(te|y′e, y′r)) (5)

I(H;Tr|Y ′e , Y ′r ) ≤ KL(p(tr|h, y′e, y′r)||r(tr|y′e, y′r)) (6)

Both (5) and (6) are solved similarly. We therefore focus
on how we solve (5). To find solutions to the distributions
p(te|h, y′e, y′r) and r(te|y′e, y′r), we follow an approach pro-
posed in (Alemi et al. 2017). Specifically, each of the distri-
bution is modeled by two neural networks fµ(·) and fσ(·),
which are respectively used to compute the mean µ and stan-
dard deviation σ of te. The representation te is then sampled
from a Gaussian distribution N (µ, σ2). At this point, it is
important to note that y′e ∈ Rn×5 is a probability distribution
over BIEOS labels (Fu, Li, and Ma 2019), and y′r ∈ Rn×n×l
is a probability distribution over the distinct relations. As a

consequence, the dimension of y′e and y′r are unequal, and
this must be considered when integrating both information
in a neural network.

Now for r(te|y′e, y′r), we employ two multilayer percep-
trons (MLPs) fµ and fσ . Both take in as input a concate-
nation y′ = [y′e; f

t(y′r)] to compute a mean and a standard
deviation for te. In this case, the function f t is a max pool
function to transform y′r to the dimension space Rn×l to ease
the concatenation.

We now discuss how we model p(te|h, y′e, y′r). Here, in-
stead of employing simple MLPs, we consider gated recur-
rent unit cells (GRUCells) to fully model the interactions be-
tween the two tasks. GRUCellµ is to model the mean of te,
and GRUCellσ is to model the standard deviation of te. Both
GRUCells have similar network structures. The operation of
a GRUCellµ is as follows:

z = σ (Wz(h ⊕ y′))

u = σ (Wu(h ⊕ y′))

ȟ = tanh (Wo((u ∗ h) ⊕ y′))

µ = (1− z) ∗ h+ z ∗ ȟ

(7)

where y′ is the concatenation of f t(y′r) and y′e, ⊕ is a
concatenation operator, and Wz,Wu,Wo are learnable pa-
rameters.

Task-specific classification Let Ce and Cr be classifica-
tion models that take the respective inputs Te ∈ Te and Tr ∈
Tr, modeled by the mutual information I(H;Te|Y ′e , Y ′r ) and
I(H;Tr|Y ′e , Y ′r ), and outputs the corresponding probabil-
ity distributions Ce(Te) = p(Ŷe) ∈ p(Ye) and Cr(Tr) =

p(Ŷr) ∈ p(Yr). We can define the classification model for
the ER task as the map

Ce : Te → p(Ye), (8)

and the classification model for the RC task as the map

Cr : Tr → p(Yr), (9)

We take Ce and Cr as neural networks with its own set
of parameters. Now let te = {t1e, t2e, ..., tne } be an instance
of the random variable Te, and tr = {t1r, t2r, ..., tnr } be an
insstance of the random variable Tr. Ce takes as input the
features te and makes a prediction Ce(te) over BIEOS la-
bels for each tie ∈ te. Specifically, for the feature vector tie
corresponding to the i-th word in the sentence, the probabil-
ity distribution ŷi ∈ Ce(te) is computed as follows:

ŷi = softmax(Wet
i
e + be), (10)

where θE = {We, be} are trainable model parameters.
Hence the set of predictions Ce(te) = {ŷi|tie ∈ te}. Also,
the classification model Cr takes as input the features tr and
makes a prediction Cr(tr) for each pair of feature vectors in
tr. More specifically, given tir, t

j
r ∈ tr, where tir 6= tjr, the

prediction ŷ(i,j) ∈ Cr(tr) is defined as follows:

m = φ
(
Wm(tir ⊕ tjr)

)
ŷ(i,j) = σ (Wrm+ br)

(11)
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where ⊕ is a concatenation operator, φ(·) is the ReLU
activation function, σ(·) is the sigmoid activation function.
θR = {Wm,Wr, br} are learnable model parameters. Hence
the set of predictions Cr(tr) =: {ŷ(i,j)|tir, tjr ∈ tr, tir 6= tjr}.

Training Objective
The final training objective of our model is in three parts:
(1) the supervision loss of Ce and Cr. (2) the supervision
loss of C ′e and C ′r. (3) the loss produced by the MI terms
I(H;Te|Y ′e , Y ′r ) and I(H;Tr|Y ′e , Y ′r ).

The supervision loss ofCe andCr is computed as follows:

Le(w
i) = CrossEntropy (yi, ŷi)

Lr(
〈
wi, ρ, wj

〉
) = CrossEntropy

(
y(i,j), ŷ(i,j)

) (12)

where yi and y(i,j) are the respective ground truth values of
word w and relational triple

〈
wi, ρ, wj

〉
, and ŷi and ŷ(i,j)

are the predictions from the Ce and Cr.
The supervision loss L of Ce and Cr over all words and

relational triples for all sentences is then calculated as fol-
lows.

L=
∑
s

∑
wi∈s

Le(w
i) +

∑
wi,wj∈s,ρ∈R

Lr(
〈
wi, ρ, wj

〉
)

 (13)

The supervision loss L′ of C ′e and C ′r has a similar com-
putation as L. The loss LICe

of I(H;Te|Y ′e , Y ′r ) is com-
puted as

LICe
=
∑
s

KL[p(te|hs, y′e, y′r), r(te|y′e, y′r)] (14)

The loss of I(H;Tr|Y ′e , Y ′r ) denoted asLICr has a similar
computation as LICe . Hence the total loss is given by

Ltotal = βe LICe
+ βr LICr

+ αL′ + L (15)

where βe, βr and α are positive parameters to control the
weight of loss.

Experiment
Datasets
Recent works (Zeng, Zhang, and Liu 2020; Wei et al.
2020) on the joint entity and relation extraction task
mainly evaluate on NYT (Riedel, Yao, and McCallum
2010), WebNLG (Gardent et al. 2017), NYT10 (Riedel,
Yao, and McCallum 2010) and NYT11 (Hoffmann et al.
2011) datasets. We directly use the preprocessed NYT
and WebNLG datasets released by (Zeng et al. 2018),
and the preprocessed NYT10 and NYT11 datasets released
by (Takanobu et al. 2019). Note that NYT and WebNLG
datasets mark only the tail word of an entity. We take a fur-
ther step to tag entities with the conventional BIOES tagging
scheme. Table 1 and 2 show the statistics of the datasets.

Dataset Train Dev Test
NYT 56195 5000 5000

WebNLG 5019 500 703
NYT10 70339 - 4006
NYT11 62648 - 369

Table 1: Statistics of the datasets.

NYT WebNLG
Dataset Train Test Train Test

Multi-token entities 39.1% 38.9% 64.2% 63.8%
Single-token entities 60.9% 61.1% 35.9% 36.2%

Relations 24 24 170 170

Table 2: Percentages of multi-token entities and single-token
entities, and the number of relations on NYT and WebNLG.

Evaluation Protocols
We follow the evaluation protocols of previous works (Zeng,
Zhang, and Liu 2020; Wei et al. 2020) and report the Pre-
cision, Recall and micro-F1 performance of our models on
the datasets. Each reported result is the average performance
over three runs using different random seeds. Best perfor-
mance in boldfaced. Evaluation is performed on the partial
match task and the exact match task. The partial match task
requires the relation, and the heads of both the entities in the
extracted relational triple to be correct. The exact match task
strictly requires the relation, the head and tail of both entities
in the extracted relational triple to be correct.

Implementation Details
We initialize word embeddings with either Glove (Penning-
ton, Socher, and Manning 2014) or BERT (Devlin et al.
2019). BERT-based models directly use BERT embeddings
as H . We use a batch size of 50 for Glove models, and a
mini-batch of 6 for BERT models. We use Adam optimizer
with an initial learning rate 1e−3 for Glove models, and
1e−5 for BERT models. We empirically fine-tune the hy-
perparameters of the model on the development set. Since
NYT10 and NYT11 have no development set, we randomly
select 10% of samples from the training set as the develop-
ment set. Due to the space limit, we list the hyperparameter
values used for all models on the datasets. We search the
word embedding size in [100, 300], BiLSTM embeddings
in [100, 200], dropout for word embeddings in [0.1, 0.2,
... , 0.8], βe and βr in [e−3, e−4, ... , e−9], and α in [1.0,
e−1, ... , e−6]. We implement our model using PyTorch on a
Linux machine with a GPU device NVIDIA V100 NVLINK
32GB. The code is available in our Github repository.1

Performance Comparison
We compare our models with recent works including the
sequence-to-sequence (seq2seq) models such as OneDe-
coder (Zeng et al. 2018), MultiDecoder (Zeng et al. 2018),
OrderRL (Zeng et al. 2019), and the sequence labeling mod-
els such as NovelTagging (Zheng et al. 2017b), ReHes-
sion (Liu et al. 2017), LSTM-CRF (Zheng et al. 2017a),

1https://github.com/BDBC-KG-NLP/Progressive AAAI2021
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NYT WebNLG
Model P R F1 P R F1
OneDecoder 59.4 53.1 56.0 32.2 28.9 30.5
MultiDecoder 61.0 56.6 58.7 37.7 36.4 37.1
OrderRL 77.9 67.2 72.1 63.3 59.9 61.6
CASREL 84.2 83.0 83.6 86.9 80.6 83.7
CASRELBERT 89.7 89.5 89.6 93.4 90.1 91.8
MTL 83.9 83.1 83.5 84.9 86.3 85.6
PMEI 88.7 86.8 87.8 88.7 87.6 88.1
MTLBERT 89.4 89.9 89.7 89.4 92.0 90.7
PMEIBERT 90.5 89.8 90.1 91.0 92.9 92.0
NovelTagging 62.4 31.7 42.0 52.5 19.3 28.3
GraphRel1p 62.9 57.3 60.0 42.3 39.2 40.7
GraphRel2p 63.9 60.0 61.9 44.7 41.1 42.9
CopyMTL-
One

72.7 69.2 70.9 57.8 60.1 58.9

CopyMTL-
Mul

75.7 68.7 72.0 58.0 54.9 56.4

MTL 77.4 76.4 76.9 76.7 74.8 75.7
PMEI 84.5 84.0 84.2 78.8 77.7 78.2
MTLBERT 87.0 88.7 87.8 80.9 82.0 81.4
PMEIBERT 88.4 88.9 88.7 80.8 82.8 81.8

Table 3: Results on NYT and WebNLG with partial match
(top) and exact match (bottom).

PA-LSTM-CRF (Dai et al. 2019), HRL (Takanobu et al.
2019), CASREL (Wei et al. 2020), as well as the multitask
learning models such as SPTree (Miwa and Bansal 2016),
GraphRel (Fu, Li, and Ma 2019), CopyMTL (Zeng, Zhang,
and Liu 2020). As a baseline, we include a basic MTL model
(MTL) which directly pass H into the classifiers Ce and
Cr for classification. Table 3 shows the results on NYT and
WebNLG datasets. Table 4 shows the results on NYT10 and
NYT11.

Glove embedding results We compare our Glove mod-
els (MTL, PMEI) with recent works. Although MTL has
a simple architecture, it significantly outperforms some re-
cent seq2seq models including OrderRL, CopyMTL-one
and CopyMTL-Mul. As noted in (Wei et al. 2020), seq2seq
architectures may not be ideal to address the joint task, es-
pecially for the overlapping relation problem. The low per-
formance of the seq2seq models when compared to our
MTL is consistent with the findings by (Wei et al. 2020).
We also find that PMEI significantly outperforms CASREL
on NYT, WebNLG, and even outperforms CASRELBERT
on NYT11, while showing competitive performance with
CASRELBERT on NYT10. Additionally, we realize that the
F1 performance of PMEI significantly drops on the exact
match task on WebNLG as compared to the partial match
task. Note that 60% of entities in WebNLG are multi-token
entities, therefore the exact match task is particularly diffi-
cult on this dataset.

BERT embedding results We see an improvement when
using BERT embeddings on the exact and partial match
tasks, suggesting that incorporating prior knowledge in-
duced by BERT in the joint ER and RC tasks is an effective
approach. Comparing our BERT models with other recent
BERT models, we find that our model PMEIBERT outper-

NYT10 NYT11
Model P R F1 P R F1
MultiDecoder 56.9 45.2 50.4 34.7 53.4 42.1
CASRELBERT 77.7 68.8 73.0 50.1 58.4 53.9
MTL 75.0 65.9 70.2 51.9 57.0 54.3
PMEI 79.1 67.2 72.6 56.0 58.6 57.2
MTLBERT 77.9 69.9 73.7 54.3 59.7 56.9
PMEIBERT 79.1 70.4 74.5 55.8 59.7 57.7
NovelTagging 59.3 38.1 46.4 46.9 48.9 47.9
MultiDecoder 56.9 45.2 50.4 34.7 53.4 42.1
ReHession - - - 41.2 57.3 48.0
LSTM-CRF - - - 69.3 31.0 42.8
SPTree 49.2 55.7 52.2 52.2 54.1 53.1
PA-LSTM-
CRF

- - - 49.4 59.1 53.8

HRL 71.4 58.6 64.4 53.8 53.8 53.8
MTL 72.0 59.0 64.8 50.7 55.4 53.0
PMEI 75.4 65.8 70.2 55.3 57.8 56.5
MTLBERT 77.9 67.8 72.5 55.1 57.3 56.2
PMEIBERT 77.3 69.7 73.3 54.9 58.9 56.8

Table 4: Results on NYT10 and NYT11 with partial match
(top) and exact match (bottom).

NYT NYT10
Model P R F1 P R F1
MTLBERT 89.4 89.9 89.7 77.9 69.9 73.7
PMEIBERT 90.5 89.8 90.1 79.1 70.4 74.5
MTLBERT∗ 73.6 67.6 70.4 60.1 46.2 52.3
PMEIBERT∗ 80.3 68.8 74.1 67.2 48.4 56.2

Table 5: Results on NYT and NYT10 with partial match.
Models with fixed BERT parameters are marked “∗”.

forms the CASRELBERT on NYT10 and NYT11, and show
competitive performance with CASRELBERT on NYT and
WebNLG.

Bias of BERT We notice that the PMEI significantly
outperforms the MTL model, while the improvement of
PMEIBERT over MTLBERT seems to be marginal espe-
cially on the NYT and NYT10 datasets. We believe that
the inductive bias brought by the pre-trained BERT ex-
plains these results. To verify this assumption, we conduct
an experiment on MTLBERT and PMEIBERT on NYT and
NYT10 datasets where we freeze the parameters of BERT
during training. Table 5 shows the results. We mark models
with frozen BERT parameters with the symbol “∗”.

Considering the F1 performance in Table 5, we find that
PMEIBERT surpasses MTLBERT only by 0.4% on NYT
and 0.8% on NYT10. Meanwhile, PMEIBERT∗ surpasses
MTLBERT∗ by a great margin, 3.7% on NYT and 3.9% on
NYT10. The results suggest that when the pre-trained BERT
is frozen, PMEIBERT∗ has a better inductive bias relative to
MTLBERT∗ for the learning task. However, when further
tuning is allowed in the pre-trained BERT, MTLBERT also
has an inductive bias appropriate for the task, thus the ad-
vantage of PMEIBERT over MTLBERT becomes less sig-
nificant.
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NYT WebNLG
Model P R F1 P R F1
PMEI 84.5 84.0 84.2 78.8 77.7 78.2
MTL 77.4 76.4 76.9 76.7 74.8 75.7
MTLSM 79.6 76.0 77.8 77.5 76.0 76.7
PMEI w/o SM 83.5 81.9 82.7 78.4 75.4 76.9
PMEI w/o inter-
action

79.7 77.8 78.7 78.0 77.5 77.7

PMEI w/o GRU 83.2 83.6 83.4 78.5 76.7 77.5

Table 6: Performance of ablated model architectures on the
exact match task.

Ablation Study
We perform ablation studies to note the importance of sev-
eral model components. Ablated models include MTL: di-
rectly passes H into the classifiers Ce and Cr for classifi-
cation. MTLSM: directly passesH through two independent
stochastic maps to extract task-specific representations Te
and Tr. PMEI w/o SM: uses a deterministic map (i.e., GRU-
Cell) instead of a stochastic map to extract Te and Tr. PMEI
w/o interaction: disregards explicit interactions between the
tasks. PMEI w/o GRU: in this model GRUCell is replaced
by an MLP to model µ and σ of the encoder p(te|h, y′e, y′r).

We observe that PMEI w/o SM significantly surpasses
PMEI w/o interaction on NYT, suggesting that the interac-
tion between tasks on the NYT plays a more important role
than the information control. On the other hand, PMEI w/o
interaction outperforms PMEI w/o SM on WebNLG. Given
the statistics shown in Table 2, it is easy to tell that the exact
match task is indeed difficult on WebNLG as compared to
NYT. This implies that the quality of Y ′e and Y ′r in WebNLG
is significantly lower than NYT. Modeling explicit interac-
tions with low quality predictions Y ′e and Y ′r will hurt perfor-
mance, especially if we do not control the information flow
from Y ′e and Y ′r to the task-specific representations Te and
Tr. We can also see that PMEI w/o interaction outperforms
MTLSM, suggesting the importance of leveraging early pre-
dictions to extract a better task-specific representation for
classification. Lastly, we observe that PMEI w/o GRU un-
derperforms PMEI, which suggests that employing the GRU
can bring about performance improvement.

Impact of α, βe, and βr
To recall, α is a weight that controls the supervision loss
of C ′e and C ′r, while βe and βr are weights to control the
information flow of Y ′e and Y ′r . A high value for α means
C ′e and C ′r are likely to overfit during training. A high value
for βe (or βr) means we increase the flow of Y ′e (or Y ′r )
to update the task-specific representation Te (or Tr). In this
experiment, β = βe = βr.

We investigate the impact of α and β on the performance
of PMEI. Note that Y ′e and Y ′r are predictions of the clas-
sifiers C ′e and C ′r. Hence the quality of these predictions
is subject to the classifiers’ fitness, and may influence our
model’s performance. By controlling the supervision on C ′e
andC ′r, we can control the fitness. In Figure 3, the sub-figure
to the left (Figure 3(A)) shows the performance of our model

Figure 3: F1 performance curves of our model with different
α (left) and β (right) values on the NYT dataset. β = βe =
βr

on varying values of α, where βe and βr are fixed. The sub-
figure to the right (Figure 3(B)) shows the performance of
our model on varying values of β, where the value of α is
fixed.

We find that as we decrease the value of α or β, the perfor-
mance of PMEI improves to a point, afterwards the perfor-
mance deteriorates in a general sense. Specifically, in Fig-
ure 3(A), we find that PMEI achieves the best performance
at α = e−2 on partial match and α = e−3 on exact match
task for a fixed β = e−7. Meanwhile, in Figure 3(B) PMEI
achieves the best performance at β = e−7 on partial match
and β = e−6 on exact match task for a fixed α = e−2. In
particular, the results with varying values for β shows that it
is important to control the flow of early predictions.

Conclusion
We build a multitask learning model for the joint entity and
relation extraction task. The core of our model is the way
we learn representations for the data to be classified, which
is typically a core task in every supervised learning frame-
work. In this paper, we acknowledge the correlations that ex-
ist between the outputs of the related tasks, and exploit these
correlations through the interaction of early predictions in
the individual tasks. Previous works have considered this ap-
proach to improve representation learning, but they do so by
passing these early predictions, as well as the input repre-
sentation through a deterministic map. In our approach, we
consider a stochastic map as a natural way to capture the
task-specific representations. Meanwhile, we control the in-
formation flow of early predictions to ensure that good task-
specific representations can be extracted for supervision. In
this way, we progressively make predictions on the indi-
vidual tasks. Extensive experiments on several benchmark
datasets show the effectiveness of our approach.
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