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Abstract

Automatic song writing aims to compose a song (lyric and/or
melody) by machine, which is an interesting topic in both
academia and industry. In automatic song writing, lyric-to-
melody generation and melody-to-lyric generation are two
important tasks, both of which usually suffer from the fol-
lowing challenges: 1) the paired lyric and melody data are
limited, which affects the generation quality of the two tasks,
considering a lot of paired training data are needed due to the
weak correlation between lyric and melody; 2) Strict align-
ments are required between lyric and melody, which relies
on specific alignment modeling. In this paper, we propose
SongMASS to address the above challenges, which lever-
ages masked sequence to sequence (MASS) pre-training and
attention based alignment modeling for lyric-to-melody and
melody-to-lyric generation. Specifically, 1) we extend the
original sentence-level MASS pre-training to song level to
better capture long contextual information in music, and use
a separate encoder and decoder for each modality (lyric or
melody); 2) we leverage sentence-level attention mask and
token-level attention constraint during training to enhance the
alignment between lyric and melody. During inference, we
use a dynamic programming strategy to obtain the alignment
between each word/syllable in lyric and note in melody. We
pre-train SongMASS on unpaired lyric and melody datasets,
and both objective and subjective evaluations demonstrate
that SongMASS generates lyric and melody with signifi-
cantly better quality than the baseline method.

Introduction
Automatic song writing is an interesting and challenging
task in both research and industry. Two most important
tasks in automatic song writing are lyric-to-melody gen-
eration (L2M) (Bao et al. 2019; Yu and Canales 2019;
Lee, Fang, and Ma 2019) and melody-to-lyric generation
(M2L) (Watanabe et al. 2018; Lu et al. 2019; Lee, Fang,
and Ma 2019). L2M and M2L can be regarded as sequence
to sequence learning tasks and can be modeled by the tech-
niques in sequence modeling since both melody and lyric
can be represented as discrete token sequence. However,
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Another   day    has gone I’m still all      alone

rest G3 E4    D4 C4 B3 C4 rest E4 D4 C4 B3   C4

Lyric Another day has gone I’m still all alone

Pitch R G3 E4 D4 C4 B3 C4 R E4 D4 C4 B3 C4
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Lyric :

Paired Aligned Data :

Figure 1: A song fragment “Another day has gone, I’m still
all alone” with its melody. The table shows the alignment of
the lyric and melody (pitch and duration).

L2M and M2L have distinctive characteristics that differ
them from other sequence to sequence learning tasks: 1)
lyric and melody are weakly correlated in L2M and M2L
while other tasks (Bahdanau, Cho, and Bengio 2014) have
strongly correlation between source and target sequences; 2)
one word or syllable in lyric always strictly aligns with one
or more notes in melody, while other tasks do not require
strict alignments. An example of aligned lyric and melody
piece is shown in Figure 1.

The above distinctive characteristics throw several chal-
lenges in modeling L2M and M2L: 1) They require large
amount of paired melody and lyric data to learn the mapping
relationship between lyric and melody due to weak correla-
tion. However, it is difficult to collect such large amount of
paired data, and thus both tasks suffer from limited paired
data; 2) They need additionally generate strict alignments
between word/syllable in lyric and note in melody, and thus
how to model the alignments well is critical to ensure the
generation quality of lyric and melody. Previous works (Bao
et al. 2019; Li et al. 2020; Watanabe et al. 2018; Lee, Fang,
and Ma 2019) on L2M and M2L have not considered the
scenario of limited paired data, and only leverage some
greedy decisions for lyric and melody alignment, which can-
not well address these challenges. In this paper, we propose
SongMASS, an automatic song writing system for L2M and
M2L, which addresses the first challenge with masked se-
quence to sequence pre-training and the second challenge
with attention based alignment constraint.

Specifically, to handle the challenges of limited paired
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data, we leverage self-supervised pre-training on large
amount of unpaired lyric and melody data. Since L2M and
M2L are both sequence to sequence learning tasks, we adopt
masked sequence to sequence pre-training (MASS) (Song
et al. 2019), which is a popular pre-training method by
masking a segment in the input sequence and predicting
this segment in the output using an encoder-decoder frame-
work. However, simply using original MASS in L2M and
M2L cannot well handle the long lyric and melody sequence
in song level and the diversity between lyric and melody
modality. Therefore, we introduce two extensions on MASS:
1) Instead of masking in a single sentence in original MASS,
we design a song-level masked pre-training strategy to cap-
ture longer contextual information, since music usually has
repeat structure and relies on long context. 2) Unlike original
MASS, we use separate encoder-decoder for lyric-to-lyric
and melody-to-melody masked pre-training since they are in
different modalities. However, separate training of lyric-to-
lyric and melody-to-melody cannot ensure to learn a shared
latent space between lyric and melody and thus could harm
the transformation between them. Therefore, we add super-
vised training with paired lyric and melody data to guide the
pre-training towards learning a shared latent representation
between lyric and melody modality.

To address the challenges of lyric-melody alignment, we
propose to align the word/syllable in lyric and note in
melody based on the encoder-decoder attention. Due to long
melody and lyric sequence in a song, we split the alignment
into sentence level and token level. To ensure sentence-level
alignment, we constrain each sentence in target sequence
to only attend to the corresponding sentence in source se-
quence during training and inference. We add an additional
[SEP] token as the sentence boundary in each sequence, and
during inference, once a [SEP] token is predicted in the tar-
get side, we switch the attention to the next source sentence.
For token-level alignment, we add constraints on the atten-
tion matrix using the ground-truth alignment in the paired
training data during training, and use a dynamic program-
ming algorithm on the generated attention matrix during in-
ference to obtain the final alignments. The contributions of
our method are as follows:
• We are the first to leverage pre-training to address the

low-resource challenge on L2M and M2L, by introduc-
ing song-level masked pre-training and supervised pre-
training based on MASS for lyric and melody learning.

• To handle the alignment between word/syllable in lyric
and note in melody, we design the attention-based
sentence-level and token-level alignment constraints and a
dynamic programming algorithm to obtain precise align-
ments.

• Experimental results with objective and subjective evalua-
tions demonstrate that SongMASS significantly improves
the quality of lyric and melody generation with the help
of pre-training and alignment constraint.

Background
Automatic Song Writing Automatic song writing usu-
ally covers several tasks including lyric generation (Malmi

et al. 2015), melody generation (Zhu et al. 2018), lyric-
to-melody generation (L2M) (Choi, Fazekas, and Sandler
2016; Yu and Canales 2019) and melody-to-lyric generation
(M2L) (Bao et al. 2019; Li et al. 2020). In this work, we fo-
cus on L2M and M2L. Choi, Fazekas, and Sandler (2016);
Yu and Canales (2019) generated melody conditioned on the
lyrics with RNN-based language model. Lee, Fang, and Ma
(2019); Bao et al. (2019) used sequence to sequence model
for L2M and M2L. However, these works on L2M and M2L
usually only used limited paired data, without leveraging
large-scale unpaired data. On the other hand, some works
only focused on L2M and M2L on the sentence level, as-
suming there are strict one-to-one mapping in the training
data, which cannot compose a complete song. Some other
works (Bao et al. 2019; Watanabe et al. 2018) explicitly
predicted the alignment flag (e.g., whether switches to next
word/syllable when predicting notes) in the model, with a
greedy decision in the word/syllable or note level, which
is not flexible and fail to capture the global alignment in
the whole sentence. In this paper, we propose SongMASS,
which uses sequence to sequence pre-training to leverage the
unpaired lyric and melody data, and attention-based align-
ment constraints for global and precise lyric-melody align-
ment.

Pre-training Methods Pre-trained language models (e.g.,
BERT (Devlin et al. 2019), GPT (Radford et al. 2018),
XLNet (Yang et al. 2019), MASS (Song et al. 2019) and
etc) have achieved significant progress in natural language
processing. They usually employ specific self-supervised
tasks and pre-train on large-scale unlabeled data corpus
to improve the understanding and generation capability.
MASS (Song et al. 2019) is the first and one of most success-
ful pre-training methods for sequence to sequence learning
tasks, and several pre-training methods (Lewis et al. 2019;
Raffel et al. 2019) are also proposed to handle this kind of
task. In this paper, we build our pre-training method upon
MASS considering its popularity for sequence to sequence
learning tasks and suitability for different modalities. Given
a sequence from the unpaired sentence corpus, MASS ran-
domly replaces a segment of tokens with mask tokens and
takes the masked sequence as the encoder input and predicts
the masked segment in the decoder. We leverage the basic
idea of MASS and extend it with several improvements to
address the challenges in the pre-training of L2M and M2L.

Alignment Modeling Alignment modeling builds the cor-
relation between the tokens in source and target sequences,
which plays an important role in sequence to sequence tasks.
In L2M and M2L tasks, previous works usually used greedy
alignment mechanisms to handle the correlation between
lyric and melody. For example, Watanabe et al. (2018) used
the Needleman-Wunsch algorithm (Needleman and Wunsch
1970) to count the alignment of lyric and melody. Bao et al.
(2019) predicted how many syllables in the predicting word
given current note input. However, these greedy alignment
strategies cannot provide flexible and global alignments in
the sentence level. In other sequence to sequence learning
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tasks like neural machine translation, Bahdanau, Cho, and
Bengio (2014); Luong, Pham, and Manning (2015) intro-
duced attention mechanism to learn the relationship between
source and target languages. In this paper, we leverage the
attention mechanism to build the global and soft alignment
between lyric and melody, and finally design a dynamic pro-
gramming method to obtain the strict alignment between
word/syllable and note.

Method
System Overview
The overall architecture of SongMASS for L2M and M2L is
shown in Figure 2, which adopts the Transformer (Vaswani
et al. 2017) based encoder-decoder framework. We em-
ploy separated encoders and decoders for lyric and melody
respectively due to the large diversity between lyric and
melody. To leverage the knowledge from large-scale unla-
beled lyrics or melodies, we perform MASS pre-training
for lyric-to-lyric and melody-to-melody in our framework.
We pre-train our model in song level to better capture long
contextual information for lyric or melody sequence, and
incorporate supervised learning (L2M and M2L) into our
pre-training to learn a shared latent space between different
modalities. To learn the alignment between word/syllable in
lyric and note in melody, we further leverage sentence-level
constraint and token-level constraint into our model to guide
the alignment between lyric and melody. We use a dynamic
programming strategy to obtain the final strict alignment be-
tween the lyric and melody. In below, we describe the details
of our SongMASS.

Lyric Decoder

Lyric Encoder

Melody Decoder

Melody Encoder

Unsupervised pre-training Supervised pre-training

Lyric Input Melody Input

Lyric Output Melody Output

Figure 2: The overall architecture of our SongMASS frame-
work. The red line means unsupervised pre-training on lyric-
to-lyric or melody-to-melody. The blue dotted line is super-
vised pre-training on lyric-to-melody or melody-to-lyric.

Pre-training Methods
In this subsection, we introduce our pre-training methods,
including song-level MASS pre-training, and supervised
pre-training to learn a shared latent space between lyric and
melody modality.

Song-Level MASS Pre-training As mentioned in Sec-
tion , the original MASS pre-training is designed to help

the model understand and generate sequence in sentence
level. However, instead of using sentence-level information,
we expect model to capture long contextual information in
song level (i.e., the whole song). Therefore, we introduce the
song-level MASS pre-training to address this issue.

Denote X ′ and Y ′ as the corpus of unpaired lyrics and
melodies in the song level respectively. For any x ∈ X ′
and y ∈ Y ′, we split the song-level sequence into multi-
ple sentences and insert a special token [SEP] in the bound-
ary of adjacent sentences. For every sentence from the song-
level sequence, we perform the same mask strategy as in
the original MASS (as mentioned in Section ). The details
of the masking strategy are shown in Figure 3. The encoder
takes the masked song-level sequence as input and the de-
coder predicts masked fragments corresponding to all the
sentences in this song. The formulation of song-level MASS
is as follows:

L(X ; θenc, θdec) =
∑
x∈X

S∑
i=1

logP (xui:vi |x\{ui:vi}; θenc, θdec)

=
∑
x∈X

S∑
i=1

log

vi∏
t=ui

P (xui:vi
t |xui:vi

<t , x\{ui:vi}; θenc, θdec),

(1)
where S represents the number of sentences in sequence
x, x\{ui:vi} represents the masked song-level sequence,
and xui:vi represents the masked segment in the i-th sen-
tence. We define θencx , θdecx , θency , θdecy as the parame-
ters of lyric encoder, lyric decoder, melody encoder and
melody decoder. The loss for lyric-to-lyric generation is
Lx = L(X ; θencx , θdecx ) and the loss for melody-to-melody
is Ly = L(Y; θency , θdecy ).

Supervised Pre-training Although MASS pre-training
can help the model understand and generate lyric and
melody respectively, the model cannot learn to generate
melody from lyric and lyric from melody. What is worse is
that the encoder-decoder models for lyric and melody can-
not align in the same latent space and may deviate from each
other, which will harm the transformation between lyric
and melody. To prevent them from deviating and help align
them together, we leverage the supervised training on lyric-
melody paired data in the pre-training process. Given paired
corpus (X ,Y), the loss of the supervised pre-training is

L(X ,Y; θenc,θdec) =
∑

(x,y)∈(X ,Y)

logP (y|x; θenc, θdec)

=
∑

(x,y)∈(X ,Y)

log

|y|∏
t=1

P (yt|y<t, x; θ
enc, θdec).

(2)
The supervised pre-training is applied on both lyric-to-
melody and melody-to-lyric generation. The loss for lyric-
to-melody generation is Lxy = L(X ,Y; θencx , θdecy ) and the
loss for melody-to-lyric is Lyx = L(Y,X ; θency , θdecx ).

Finally, the total pre-training loss is

Lpt = Lx + Ly + Lxy + Lyx, (3)
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𝑥4 𝑥7 _ 𝑥10_ _[SEP]_ 𝑥1 𝑥2 _

Lyric Decoder

_ _ _ _𝑥8

𝑥2 𝑥3 𝑥8 𝑥9
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𝑥11[SEP] _ 𝑥13 𝑥15𝑥14
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Figure 3: The song-level MASS pre-training.

where Lx and Ly are the unsupervised MASS pre-training
loss described in Equation 1, and Lxy and Lyx are the super-
vised pre-training loss. During fine-tuning, we only use Lxy

for lyric-to-melody generation and Lyx for melody-to-lyric
generation.

Alignment Strategy
In this subsection, we describe how to learn the alignment
between lyric and melody in SongMASS with alignment
strategy. More specifically, we divide our alignment strategy
into sentence-level constraint and token-level constraint.

Sentence-Level Constraint A song consists of multiple
lyric sentences and melody phrases. In song writing, the
given lyrics and melodies are naturally grouped into sen-
tences. The lyric sentences and the melody phrases are
strictly aligned in the training data. So we constrain that
each sentence (lyric or melody) in the target sequence can
only attend to the corresponding sentence (melody or lyric)
in source sequence. Specifically, we apply a sentence-level
constraint mask on the encoder-decoder attention. We de-
note yi and xj as the i-th token in the target sequence and j-
th token in the source sequence respectively. We assume the
representations of xj and yi from the previous Transformer
layer as hencj and hdeci . So the attention score between yi and
xj is computed as:

f(i, j) =
hdec
i WQ(henc

j WK)T
√
dz

+M(i, j), (4)

A(i, j) =
exp f(i, j)∑
j exp f(i, j)

(5)

where A(i, j) calculates the attention score between the yi
and xj . WQ,WK ∈ Rdz×dz are model parameters, and dz
is the dimension of the hidden representations. M(i, j) rep-
resents the mask element between yi and xj , whose value is
set as follows:

M(i, j) =

{
0 ID(yi) = ID(xj)

−∞ ID(yi) 6= ID(xj)
. (6)

where ID(x) gets the index of the sentence that the token x
belongs to. M is used as our sentence-level alignment con-
straint, as shown in Figure 4. Besides, we insert a special
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[SEP]
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[SEP]
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[SEP]

Figure 4: Sentence-level attention mask.

token [SEP] in the sentence boundary of the input and out-
put sequences as shown in Figure 3, to help the model bet-
ter capture the sentence boundary information and identify
which sentence of the input sequence should to be attended
to. Benefiting from such design, we guarantee the number of
sentences in the generated sequences is consistent with the
input sequence.

Token-Level Constraint Unlike sentence-level align-
ment, the alignment choices between each word/syllable and
note are more flexible. Therefore, we propose a regulariza-
tion term on the encoder-decoder attention during the train-
ing on paired data, and apply a dynamic programming algo-
rithm on the attention matrix to obtain the final strict align-
ment during inference. We expect the attention weight be-
tween yi and xj to follow:

u(i, j) =

{
1
T

if yi is aligned to xj ,
0 Otherwise,

(7)

where T is the number of tokens in the source sentence that
yi is aligned to. As shown in Figure 5, we add a regulariza-
tion term to constrain the attention weights:

Latt =
1

N ∗M

M∑
i=1

N∑
j=1

‖A(i, j)− u(i, j)‖2, (8)

where ‖·‖ represents L2-Norm.N andM are the number of
tokens in the source and target sentence respectively. Finally,
the loss function is:

L = Lpt + α · Latt, (9)

where α is the hyper-parameter of Latt, and Lpt is the pre-
training loss defined in Equation 3.
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Figure 5: Token-level guided attention mask.

When all tokens in a sentence are generated and the at-
tention matrix A is obtained, we infer the global alignment
by applying a dynamic programming algorithm as shown in
Algorithm 1. We consider the following cases: a target token
is aligned to one or many source tokens, and a source token
is aligned to one or many target tokens. For the first case,
as shown in Line 7 - 12 in Algorithm 1, we search a k that
the alignment between yi and x[K+1:j] reaches the highest
score, which is calculated by summing all the corresponding
attention weights. Similarly for the second case, as shown in
Line 13 - 18 in Algorithm 1, we search a k that the align-
ment between y[k+1:i] and x[j] reaches the highest score. We
take the average weights as score in the second case, since
the weights of the target dimension are not normalized like
that of the source sequence. We choose the higher score of
the two cases and save the aligned pair.

Experiments and Results
Experimental Setup
Dataset Unpaired Lyric and Melody. We use “380,000+
lyrics from MetroLyrics”1 as our unpaired lyrics for pre-
training, which contains 362,237 songs. The lyrics in each
song are split into sentences by the line break. For unpaired
melodies, we choose “The Lakh MIDI Dataset” (Raffel
2016)2. We extract the melody tracks by Midi-miner3, and
get 65,954 melodies as our unpaired data for pre-training fi-
nally. According to the characteristics of vocal melody, we
consider the pitch and duration tokens of each note as the
melody sequence. Each melody is transposed to the scale of
C major or A minor. All the notes are shifted by octave so
that the most pitches of the song fall into one-lined octave
(MIDI pitch from 60 to 71). For unpaired melody MIDI file,
we calculate the starting beat and duration of the note based
on the absolute time and the BPM (Beats Per Minute), all
the notes are aligned to 1/16 notes as paired data. We spread
the melodies into sequences of pitch-duration patterns, as
melody sequences for our model. For example, the melody
in Figure 1 will be represented as “R, 7/16, G3, 1/16, E4,
1/8 ...”. During pre-training, we simply split the unpaired
melodies into phrases according to the average phrase length
in paired data, since there is no natural phrase segmenta-
tion symbol in the MIDI files. Paired Lyric and Melody.
We use the LMD dataset (Yu and Canales 2019)4 which

1https://www.kaggle.com/gyani95/380000-lyrics-from-
metrolyrics

2https://colinraffel.com/projects/lmd
3https://github.com/ruiguo-bio/midi-miner
4https://github.com/yy1lab/Lyrics-Conditioned-Neural-

Melody-Generation

Algorithm 1 DP for Melody-Lyric Alignment

1: Input: Attention matrix A ∈ RN×M , score matrix F ∈
R(N+1)×(M+1), path matrix Path, source sequence x and tar-
get sequence y. N and M are the length of x and y.

2: Output: The aligned pairs list D.
3: Initialize: F is initialized as −∞. Path is initialized as an

empty matrix with a shape of (N + 1)× (M + 1).
4: F [0][0] = 0
5: for i = 1 to T do
6: for j = 1 to S do
7: for k = 0 to j − 1 do
8: score = F [i− 1][k] +

∑j
h=k+1A[i][h]

9: if score ≥ F [i][j] then
10: F [i][j] = score, Path[i][j] = (i− 1, k)
11: end if
12: end for
13: for k = 0 to i− 1 do
14: score = F [k][j − 1] +

∑i
h=k+1

A[h][j]
i−k

15: if score ≥ F [i][j] then
16: F [i][j] = score, Path[i][j] = (k, j − 1).
17: end if
18: end for
19: end for
20: end for
21: m,n =M,N
22: while m 6= 0 and n 6= 0 do
23: i, j = Path[m][n]
24: add the aligned pair (x[j+1:n],y[i+1:m]) to D
25: m,n = i, j
26: end while
27: return D

contains aligned melodies and lyrics from 7,998 songs. We
apply the same operation, as aforementioned, to process
melody and lyric data. The lyrics/melodies are split into sen-
tences/phrases based on the annotations.

Model Configuration and Training We choose Trans-
former (Vaswani et al. 2017) as our basic model structure,
which consists of 6 encoder/decoder layers. The hidden size
and filter size of each layer are set as 512 and 2048. The
number of attention heads is 8. We use the same mask-
ing strategy as in Song et al. (2019). We use Adam opti-
mizer (Kingma and Ba 2015) with a learning rate of 5e-4.
The model is trained on a NVIDIA Tesla T4 GPU card, and
each mini-batch contains 4096 tokens. The hyper-parameter
α is set as 0.5. The dataset is split as training/valid/test set
with a ratio of 8:1:1. Our baseline is a standard Transformer
model, using the same model configuration with SongMASS
but without any pre-training or alignment constraints.

Evaluation Metrics
In this subsection, we introduce the objective and subjective
metrics used in this paper to evaluate the quality of lyric-to-
melody and melody-to-lyric generation.

Objective Evaluation We mainly measure the similarity
between the generated melody and ground-truth melody in
lyric-to-melody generation, in terms of pitch and duration
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Lyric-to-Melody Melody-to-Lyric
PD (%) ↑ DD (%) ↑ MD ↓ PPL ↓ PPL ↓

Baseline 38.20 52.00 2.92 3.27 37.50

SongMASS 57.00 65.90 2.28 2.41 14.66
− pre-training 43.50 57.00 2.79 3.72 45.10
− separate encoder-decoder 55.00 64.80 2.32 2.53 15.57
− supervised loss 47.20 53.60 3.29 2.92 27.50
− alignment 56.10 65.20 2.36 2.07 8.54

Table 1: Results of lyric-to-melody and melody-to-lyric generation in objective evaluation.

distribution and melody sequence, which are described be-
low. We use perplexity (PPL) to measure the model fitness
for both lyric-to-melody and melody-to-lyric generations.
Besides, we also use alignment accuracy to measure align-
ment quality in two generation tasks, which is also described
below.
• PD and DD (Pitch and Duration Distribution Similarity):

We calculate the distribution (frequency histogram) of
pitches and durations in melodies, and measure the sim-
ilarity (average overlapped area (Ren et al. 2020)) of the
distribution between generated melodies and ground-truth
melodies: 1

Ns

∑Ns
i=1OA(Disi, D̂isi), where Disi and D̂isi

represent the pitch or duration distribution of the i-th gen-
erated and ground-truth song, Ns is the number of songs
in the testset, OA is the average overlapped area.

• MD (Melody Distance): To evaluate the pitch trend of the
melody, we spread out the notes into a time series of pitch
according to the duration, with a granularity of 1/16 note.
We subtract each pitch with the average pitch of the en-
tire sequence for normalization. To measure the similarity
between the generated and ground-truth time series with
different lengths, we use dynamic time warping (Berndt
and Clifford 1994) to measure their distance.

• Alignment Accuracy: To evaluate the alignment between
melodies and lyrics, for each token in the source se-
quence, we calculate how many tokens in the target se-
quence (generated or ground-truth) are aligned to it, and
check if the number of the tokens in the generated se-
quence equals to that in the ground-truth sequence. We
calculate the ratio of equals among all source tokens and
all songs in the test set to obtain the alignment accuracy.

Subjective Evaluation For subjective evaluation, we in-
vite 5 participants with professional knowledge in music and
singing as human annotators to evaluate 10 songs (338 pairs
of generated lyric sentences and melody phrases) randomly
selected from our test set. We require each annotator to an-
swer some questions using a five-point scale, from 1 (Poor)
to 5 (Perfect). The whole evaluation is conducted in a blind-
review mode. Inspired by Watanabe et al. (2018), the metrics
to evaluate the generated lyrics are as follows: 1) Listenabil-
ity: Is the lyric sound natural with the melody? 2) Grammati-
cality: Is the lyric grammatically correct? 3) Meaning: Is the
lyric meaningful? 4) Quality: What is the overall quality of

the lyric? The metrics to evaluate the melody are as follows:
1) Emotion (Bao et al. 2019): Does the melody represent the
emotion of the lyrics? 2) Rhythm (Zhu et al. 2018): Are the
note durations and pauses of the melody sound natural? 3)
Quality (Watanabe et al. 2018): What is the overall quality
of the melody?

Metric Baseline SongMASS
Lyric
Listenability 1.67 ± 0.62 2.00 ± 0.65
Grammaticality 3.00 ± 0.76 3.27 ± 0.59
Meaning 2.20 ± 0.68 3.20 ± 0.68
Quality 2.27 ± 0.46 3.00 ± 0.38
Melody
Emotion 2.40 ± 1.06 3.53 ± 0.64
Rhythm 2.33 ± 1.18 2.87 ± 0.74
Quality 2.33 ± 1.05 2.93 ± 0.70

Table 2: Subjective evaluation results. Average scores and
standard deviations are shown for each measure.

Results
The main results of the objective evaluation of lyric-to-
melody and melody-to-lyric generations are shown in Ta-
ble 1. The baseline model uses the same model struc-
ture with SongMASS, but does not leverage unsupervised
melody and lyric data for pre-training and does not lever-
age attention-based alignment constraints. It can be seen that
SongMASS greatly outperforms the baseline model in all
objective metrics. The subjective evaluations are shown in
Table 2, from which we can see that the lyrics and melodies
generated by SongMASS obtain better average scores in
all subjective metrics. These results demonstrate the effec-
tiveness of SongMASS in generating high-quality lyric and
melody5. We further conduct ablation study to verify the ef-
fectiveness of pre-training and alignment constraint in Song-
MASS. As shown in Table 1, removing each component re-
sults in worse performance than SongMASS6, demonstrat-
ing the contribution of pre-training and alignment constraint.

5Melody and lyric samples are available at: https:
//musicgeneration.github.io/SongMASS/

6Removing alignment constraint causes slightly better perfor-
mance in PPL, which indicates that attention constraint may harm
the fitting capability of the model, but still result in better genera-
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Figure 6: Attention visualization. All of the results are displayed on the average attention score of all heads in the last layer
of the encoder-decoder attention in Transformer. In Figure 6(b), the red blocks are the alignments searched by our dynamic
programming algorithm while the yellow blocks are by the greedy algorithm described in the second paragraph in Section .

Method Analysis
Pre-training Method We further investigate the effective-
ness of each design in pre-training method, including us-
ing separate encoder-decoder for lyric-to-lyric and melody-
to-melody pre-training and using supervised pre-training
to learn a shared latent space between lyric and melody.
From Table 1, removing separate encoder-decoder (i.e., us-
ing shared encoder-decoder) and removing supervised loss
both result in worse performance than SongMASS, which
demonstrates the effectiveness of the two designs.

L2M Acc ↑ M2L Acc ↑
SongMASS 62.6 45.4
- TC 62.1 44.8
- SC 56.2 44.0
- TC - SC 55.3 43.8
- TC - SC - PT 48.3 37.1
- DP 15.7 11.3

Table 3: Analyses of the designs in alignment constraints.

Alignment Strategy We study the effectiveness of the
sentence-level and token-level alignment constraints (de-
noted as SC and TC respectively) on the alignment accu-
racy (denoted in Section ) between melodies and lyrics.
The results are shown in Table 3. It can be seen that both
token-level and sentence-level (especially sentence-level)
constraints can improve alignment accuracy. It is interest-
ing that pre-training (PT) also benefits alignment, which is
probably because the patterns of lyrics and melodies are bet-
ter captured with pre-training. Finally, we investigate the
alignment accuracy without dynamic programming (DP) al-
gorithm. In this case, we implement a naive alignment al-
gorithm on attention weight matrix, which greedily decides
to add another token to the current one-to-many or many-to-
one alignment or to start a new alignment pair at each time
step. When the sequence reaches the last token, we align all
the remaining tokens of the other sequence to that token to
ensure all tokens are aligned. We find that the alignment ac-
curacy is drastically decreased without DP in Table 3, show-
ing the importance of DP for accurate alignments.

tion accuracy in terms of PD, DD and MD. We also demonstrate
in Table 3 that alignment constraint indeed improves the alignment
accuracy of the generated results.

Alignment Visualization To better highlight the advan-
tages of our alignment strategy, we further visualize some
cases from the lyric-to-melody tasks, as shown in Figure 6.
Figure 6(a) shows the attention weights of the whole song
with and without sentence-level alignment constraints. We
find that the attention weights without sentence-level con-
strains are dispersed in all positions of the whole long se-
quence, and the target token cannot attend to the correct
source sentences. When using sentence-level constraints,
there are monotonous alignments between source and target
sequence, which demonstrates the effectiveness of sentence-
level alignments. Figure 6(b) shows the differences of
whether using token-level constraints or not. We find that
the attention distributions without the token-level constraints
are chaotic. When applying token-level attention constraints,
there are obvious diagonal trend in the attention weights,
which further enable the dynamic programming algorithm
to find a better alignment path as marked in red rectangles.
These results demonstrate the effectiveness of token-level
alignment constraints.

Conclusion
In this paper, we have proposed SongMASS, an automatic
song writing system for both lyric-to-melody and melody-
to-lyric generation, which leverages masked sequence to
sequence pre-training and attention-based alignment con-
straint. We introduce some specific designs based on MASS
for lyric-to-lyric and melody-to-melody pre-training, includ-
ing song-level unsupervised pre-training and supervised pre-
training loss to learn a shared latent space between lyric
and melody. Furthermore, we introduce the sentence-level
and token-level alignment constraints, and a dynamic pro-
gramming algorithm to obtain accurate alignments between
lyric and melody. Experimental results show that our pro-
posed SongMASS greatly improves the quality of lyric-to-
melody and melody-to-lyric generation compared with the
baseline. In future, we will investigate other pre-training
methods and more advanced alignment algorithms for lyric-
to-melody and melody-to-lyric generation.
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