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Abstract

Advances in NLP have yielded impressive results for the task
of machine reading comprehension (MRC), with approaches
having been reported to achieve performance comparable to
that of humans. In this paper, we investigate whether state-
of-the-art MRC models are able to correctly process Seman-
tics Altering Modifications (SAM): linguistically-motivated
phenomena that alter the semantics of a sentence while pre-
serving most of its lexical surface form. We present a method
to automatically generate and align challenge sets featuring
original and altered examples. We further propose a novel
evaluation methodology to correctly assess the capability of
MRC systems to process these examples independent of the
data they were optimised on, by discounting for effects intro-
duced by domain shift. In a large-scale empirical study, we
apply the methodology in order to evaluate extractive MRC
models with regard to their capability to correctly process
SAM-enriched data. We comprehensively cover 12 differ-
ent state-of-the-art neural architecture configurations and four
training datasets and find that – despite their well-known re-
markable performance – optimised models consistently strug-
gle to correctly process semantically altered data.

Introduction
Machine Reading Comprehension (MRC), also commonly
referred to as Question Answering, is defined as finding the
answer to a natural language question given an accompany-
ing textual context. State-of-the-art approaches build upon
large transformer-based language models (Vaswani et al.
2017) that are optimised on large corpora in an unsuper-
vised manner (Devlin et al. 2019) and further fine-tuned on
large crowd-sourced task-specific MRC datasets (Rajpurkar
et al. 2016; Yang et al. 2018; Trischler et al. 2017). They
achieve remarkable performance, consistently outperform-
ing human baselines on multiple reading comprehension and
language understanding benchmarks (Lan et al. 2020; Raffel
et al. 2020).

More recently, however, research on “data biases” in NLP
suggests that these task-specific datasets exhibit various cues
and spurious correlations between input and expected out-
put (Gururangan et al. 2018; Poliak et al. 2018; Schlegel,
Nenadic, and Batista-Navarro 2020). Indeed, data-driven
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P: 1 After the kickoff Naomi Daniel...
(B) Original: curled in
(I1) Modal negation: couldn’t curl in
(I2) Adverbial Modification: almost curled in
(I3) Implicit Negation: was prevented from curling in
(I4) Explicit Negation: didn’t succeed in curling in
(I5) Polarity Reversing: lacked the nerve to curl in
(I6) Negated Polarity Preserving: wouldn’t find the
opportunity to curl in

...a goal from 26 metres away following a decisive coun-
ter-attack. 2 Then Amanda Collins added more insult to
the injury when she slotted in from 23 metres after Linda
Burger’s soft clearance. [...]

Q: Who scored the farthest goal?
A: Naomi Daniel A with SAM: Amanda Collins

Figure 1: Categories of SAM used in this paper with
their implications on answering the given question. Mod-
ifying the original “Baseline” passage (B) by selecting
any “Intervention” category (I1)−(I6), or removing the
first sentence (“Control”) changes the correct answer from
“Naomi Daniel” located in sentence 1 to “Amanda Collins”
located in sentence 2 .

approaches such as the state-of-the-art models (described
above) that are optimised on these datasets learn to exploit
these (Jia and Liang 2017; McCoy, Pavlick, and Linzen
2019), thus circumventing the actual requirement to perform
comprehension and understanding.

For a (simplified) example, consider the question “Who
scored the farthest goal?” illustrated in Figure 1. If a model
is only exposed to examples where the accompanying pas-
sage contains sentences similar to “X scored a goal from
Y metres” during training, a valid approximating decision
based on this information could be similar to “select the
name next to the largest number and the word goal” without
actually fully reading the passage.

Alarmingly, conventional evaluation methodology where
the dataset is split randomly into training and test data
would not solve this issue. As both splits still stem from
the same generative process (typically crowd-sourcing), the
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same types of cues are likely to exist in evaluation data, and
a model can achieve high performance by relying on exploit-
ing them. These and other problems suggest that the actual
reading comprehension of state-of-the-art MRC models is
potentially over-estimated.

In an attempt to present a more realistic estimate, we fo-
cus on the capability to correctly process Semantic Alter-
ing Modifications (SAM): minimal modifications to the pas-
sage that change its meaning and therefore the expected an-
swer. On the one hand, it is important to know whether these
modifications are processed correctly by MRC models, as
they drastically change the meaning, for example if “X al-
most scored a goal from Y metres” then the goal effectively
did not happen. On the other hand, distinguishing between
original and modified examples is hard by relying on lexical
cues only, as the modifications keep a similar lexical form.
As a consequence, the simplified decision rule hypothesised
above would not apply anymore.

Manually curating evaluation data to incorporate SAM is
expensive and requires expert knowledge; also, the process
must be repeated for each dataset resource (Gardner et al.
2020). Automatically changing existing MRC data is not
a feasible strategy either, as the effects of a change on the
meaning of the passage cannot be traced through the process
and will still need to be verified manually. Instead, in this pa-
per we propose a novel methodology to generate SAM MRC
challenge sets. We employ template-based natural language
generation to maintain control over the presence of SAM
and their effect onto the expected answer to a given ques-
tion.

A problem that arises when evaluating models on chal-
lenge sets that were optimised on different training data, as
it is the case in this paper, is the domain shift between train-
ing and evaluation data. For example, a model trained to re-
trieve answers from Wikipedia paragraphs might have never
encountered a question involving comparing distances. In
this case, wrong predictions on SAM examples cannot be
attributed to the presence of SAM alone. To disentangle the
effects introduced by the domain shift from the actual ca-
pability of correctly processing examples featuring SAM,
we introduce a novel evaluation methodology with a cor-
responding metric, which we refer to as Domain Indepen-
dent Consistency Evaluation or DICE. This allows us to
precisely measure the capability of MRC models to pro-
cess SAM of interest, and therefore, evaluate comprehen-
sion and language understanding that cannot be easily cir-
cumvented by relying on superficial cues. In a large-scale
empirical study1, we evaluate the performance of state-of-
the-art transformer-based architectures optimised on multi-
ple extractive MRC datasets. We find that while approaches
based on larger language models tend to perform better, all
investigated models struggle on the proposed challenge set,
even after discounting for domain shift effects.

1Code and Supplementary Materials SM1, SM2 and SM3 can
be retrieved from https://github.com/schlevik/sam

Semantics Altering Modifications
The task of (extractive) Machine Reading Comprehension
is formalised as follows: given a question Q and a con-
text P consisting of words p0 . . . pn, predict the start and
end indices s, e (where s < e) that constitute the answer
span A = ps . . . pe in P . A Semantics Altering Modifica-
tion (SAM) refers to the process of changing answer A to
A′ 6= A by applying a modification to the accompanying
context P . The rationale is to create a new intervention in-
stance (Q,P ′, A′) that is lexically similar to the original but
has a different meaning and therefore a different expected
answer for the same question. Predicting both A and A′

given the question and the respective passages becomes a
more challenging task than predicting A alone, since it re-
quires correctly processing and distinguishing both exam-
ples. Due to their similarity, any simplifying heuristics in-
ferred from training data are more likely to fail.

Furthermore, this intuitive description aligns with one of
the prevalent linguistic definitions of modifiers as “an ex-
pression that combines with an unsaturated expression to
form another unsaturated expression of the same [semantic]
type” (McNally 2016). Particularly applicable to our sce-
nario is the pragmatic or discourse-related view, specifically
the distinction between modifiers that contribute to the con-
tent of a sentence with regard to a specific issue, and those
that do not. In the context of MRC, the issue is whether the
modification is relevant to finding the answer A to the ques-
tion Q.

The linguistics literature is rich in reporting phenomena
conforming with this definition. In this paper we explore
negation (Morante and Daelemans 2012), (adverbial) re-
strictivity modification (Tenny 2000, Sec. 6), polarity re-
versing verbs and expressions (Karttunen 1971, 2012) and
expressions of implicit negation (Iyeiri 2010). The cate-
gories with representative examples are shown in Figure 1
and labelled I1-I6. They reflect our intuitive definition as
they involve relatively small edits to the original context,
by inserting between one and four words that belong to
the most frequent parts of speech classes of the English
language, i.e. adverbials, modals, verbs and nouns. Note,
however, that this selection is non-exhaustive. Other lin-
guistic phenomena such as privative adjectives (Pavlick and
Callison-Burch 2016), noun phrase modification (Stanovsky
and Dagan 2016) or—if one were to expand the seman-
tic types-based definition introduced above—corresponding
discourse relations, such as Contrast or Negative Condition
(Prasad et al. 2008), or morphological negation constitute
further conceivable candidates. We leave it for future work
to evaluate MRC on other types of SAM.

Domain Independent Consistency Evaluation
Consistency on “contrastive sets” (Gardner et al. 2020) was
recently proposed as a metric to evaluate the comprehen-
sion of NLP models beyond simplifying decision rules. A
contrastive set is—similar to SAM—a collection of simi-
lar data points that exhibit minimal differences such that the
expected prediction (e.g. answer for MRC) differs for each
member. Consistency is then defined as the ratio of con-
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trastive sets where the model yielded a correct prediction
for all its members to the total number of contrastive sets.

This notion requires that evaluation examples stem from
the same generative process as the training data, making the
process of finding contrastive sets dataset-dependent. If the
processes are different however, as it is the case with training
set-independent challenge sets, this difference can be a con-
founding factor for wrong predictions, i.e. a model might
produce a wrong prediction because the input differs too
much from its training data and not solely because it was
not capable of solving the investigated phenomenon. As we
aim to establish an evaluation methodology independent of
training data, we propose the following approach in order to
rightfully attribute the capability to correctly process SAM
even under domain shift.

We align each baseline MRC instance consisting of ques-
tion, expected answer and context triple Bi = (Qi, Ai, Pi)
with an intervention instance Ii = (Qi, A

′
i, P

′
i ) s.t.A′

i 6= Ai.
In practice, we achieve this by inserting a SAM in the sen-
tence of Pi that containsAi in order to obtain P ′

i . We further
align a control instance where we completely remove the
sentence that was modified in P ′

i , i.e. Ci = (Qi, A
′
i, P

′′
i ).

Thus, an aligned instance consists of the triple (Bi, Ii, Ci)
sharing the questionQ. The answerA′ is equivalent for both
Ii and Ci. P, P ′ and P ′′ are shown in Figure 1 by selecting
original (B) for P , any of the alternatives (I1) through (I6)
for P ′ and completely removing the first sentence for P ′′.
Formulating the problem in this way is similar to the Wino-
grad Schema Challenge (Levesque, Davis, and Morgenstern
2012).

The goal is to establish first, whether the model under
evaluation “understood” the question and the accompanying
context. Namely, if the model predicted Ai and A′

i correctly
given Qi, Pi and Qi, P ′′

i , respectively, we conclude that the
domain shift is not pivotal for the prediction performance of
this particular instance, thus predicting the correct answer
A′
i for Ii can be attributed to the model’s capability to cor-

rectly process the SAM in P ′
i . Conversely, if the model fails

to predict A′ we assume that the reason for this is is its in-
capability to process SAM (for this instance), regardless of
the domain shift.

Initial experiments showed that models sometimes strug-
gle to predict the exact span boundaries of the expected an-
swer while retrieving the correct information in principle
(e.g. predicting “from 26 metres” vs. the expected answer
“26 metres”). Therefore we relax the usual Exact Match
measure EM to establish the correctness of a prediction in
the following way: rEMk(Â, A) = 1 if a Â has at most
k words and A is a substring of Â and 0 otherwise, where
Â = fθ(Q,P ) is the answer prediction of an optimised
MRC model fθ given question Q and context P .

The metric DICE is the number of examples the model
predicted correctly in their baseline, intervention and con-
trol version divided by the number of those the model pre-
dicted correctly for the baseline and control version. This
notion reflects the ratio of those modified instances that the
model processed correctly regardless of the domain shift
thus further evaluating the model’s reading comprehension.

Formally, for a challenge set N = {B, I, C} consisting of
N baseline, intervention and control examples, let

B+ = {i | rEMk(fθ(Qi, Pi), Ai) = 1}i∈{1...N}

I+ = {i | rEMk(fθ(Qi, P
′
i ), A

′
i) = 1}i∈{1...N}

C+ = {i | rEMk(fθ(Qi, P
′′
i ), A

′
i) = 1}i∈{1...N}

(1)

denote the set of indices where an optimised model fθ pre-
dicted a correct answer for baseline, intervention and control
instances, respectively. Then

DICE(fθ) =
|B+ ∩ I+ ∩ C+|
|B+ ∩ C+|

∈ [0, 1]. (2)

An inherent limitation of challenge sets is that they bear
negative predictive power only (Feng, Wallace, and Boyd-
Graber 2019). Translated to our methodology, this means
that while low DICE scores hint at the fact that models
circumvent comprehension, high scores do not warrant the
opposite, as a model still might learn to exploit some simple
decision rules in cases not covered by the challenge set. In
other words, while necessary, the capability of distinguish-
ing and correctly processing SAM examples is not sufficient
to evaluate reading comprehension.

A limitation specific to our approach is that it depends on
a model’s capability to perform under domain shift, at least
to some extent. If a model performs poorly because of insuf-
ficient generalisation beyond training data or if the training
data are too different from that of the challenge set, the sizes
of B+, I+ and C+ decrease and therefore variations due to
chance have a larger contribution to the final result. Con-
cretely, we found that if the question is not formulated in
natural language, as is the case for WIKIHOP (Welbl, Stene-
torp, and Riedel 2018), or the context does not consist of
coherent sentences (with SEARCHQA (Dunn et al. 2017) as
an example) optimised models transfer poorly. Having a for-
malised notion of dataset similarity with respect to domain
transfer for the task of MRC would help articulate the lim-
itations and application scenarios of the proposed approach
beyond pure empirical evidence.

SAM Challenge Set Generation
We now present the methodology for generating and mod-
ifying passages at scale. We aim to generate examples that
require “reasoning skills” typically found in state-of-the-art
MRC benchmarks (Sugawara et al. 2017; Schlegel et al.
2020). Specifically, we choose to generate football match
reports as it intuitively allows us to formulate questions that
involve simple (e.g. “Who scored the first/last goal?”) and
more complex (e.g. “When was the second/second to last
goal scored?”) linear retrieval capabilities, bridging and un-
derstanding the temporality of events (e.g. “Who scored be-
fore/after X was fouled?”) as well as ordering (e.g. “What
was the farthest/closest goal?”) and comparing numbers
and common properties (e.g. “Who assisted the earlier goal,
X or Y?”). Answer types for these questions are named en-
tities (e.g. players) or numeric event attributes (e.g. time or
distance).

To generate passages and questions, we pursue a staged
approach, common in Natural Language Generation (Gatt
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Selected Content Plan
1 (Order (Distance (Modified Goal) 0)
2 (Order (Distance (Just Goal) 1)
Q (Argselect Max Goal Distance Actor)
Generated Events
1 {actor: p4, distance: 26, mod: I2 ...}
2 {actor: p2, distance: 23 ...}
A: p4 A’: p2
Chosen Templates (Simplified)
1 %Con #Actor @SAM $V.Goal $PP.Distance...
2 #Actor %Con she $V.Score $PP.Distance...
Q Who scored the farthest goal ?
Generated Text
P : After the kickoff Naomi Daniel curled in a goal . . .
P ′: After the kickoff Naomi Daniel almost curled in . . .
P ′′: Then Amanda Collins added more insult to the . . .

Figure 2: Stages of the generative process that lead to the
question answer and context in Figure 1. The Content Plan
describes the general constraints that the question type im-
poses on the Events (both sentences must describe goal
events, first sentence must contain SAM, distance attribute
must be larger in the modified sentence). Appropriate Tem-
plates are chosen randomly to realise the final Baseline P ,
Intervention P ′ and Control P ′′ version of the passage.

and Krahmer 2018). Note that we choose a purely symbolic
approach over statistical approaches in order to maintain full
control over the resulting questions and passages as well as
the implications of their modification for the task of retriev-
ing the expected answer. Our pipeline is exemplified in Fig-
ure 2 and consists of (1) content determination and struc-
turing, followed by (2) content generation (as we generate
the content from scratch) and finally (3) lexicalisation and
linguistic realisation combining templates and a generative
grammar.

Content planning and generation: The output of this
stage is a structured report of events that occurred during
a fictitious match, describing event properties such as ac-
tions, actors and time stamps. Furthermore each report is
paired with a corresponding question, an indication of which
event is to be modified, and the corresponding answers. The
report is generated semi-randomly, as the requirement to
generate instances with a meaningful modification–i.e. actu-
ally changing the valid answer to the question–imposes con-
straints that depend on the type of the question. For exam-
ple, for the retrieval type question ”Who scored the farthest
goal?” the report must contain at least two events of the type
“goal” and the distance attribute associated with the event to
be modified must be larger. We generate events of the type
“goal”, which are the target of the generated questions and
modifications, and “other” that diverify the passages. Fur-
thermore, to prevent repetition, we ensure that the order of
the types of events is unique for each report-question com-
bination in the final set of generated reports.

Realisation: For the sake of simplicity, we choose to
represent each event with a single sentence, although it is
possible to omit this constraint by using sentence aggrega-

tion techniques and multi-sentence templates. Given a struc-
tured event description, we randomly select a “seed” tem-
plate suitable for the event type. Seed templates consist of
variables that are further substituted by event properties and
expressions generated by the grammar. Thereby, we distin-
guish between context-free and context-sensitive substitu-
tions. For example $PP.Distance in Figure 2 is substi-
tuted by a randomly generated prepositional phrase describ-
ing the distance (e.g. “from 26 metes away”) regardless of
its position in the final passage. %Con in the same figure is
substituted by an expression that connects to the previous
sentence and depends on its content (e.g. “After the kick-
off” can only appear in the first sentence of the paragraph).
We collect the templates and construct the grammar by com-
bining various manual and automated measures described in
SM: A in more detail. Similarly to the content generation,
we ensure that the same template is not used more than once
per report and the permutation of templates used to realise a
report is unique in the final set of realised reports.

Data description: The challenge set used in the experi-
ments to evaluate MRC models trained on existing datasets
consists of 4200 aligned baseline, intervention and control
examples generated using the above process. The modified
intervention examples contain between one and three SAM
from the six categories described earlier. Using 25 “seed”
templates and a generative grammar with 230 production
rules, we can realise an arbitrary event in 4.8 × 106 lexi-
cally different ways; for a specific event the number is ap-
prox. 7.8× 105 on average (the difference is due to context-
sensitive parts of the grammar). When fine-tuning MRC
models on our generated data, we separate the seed tem-
plates in two distinct sets, in order to ensure that the models
do not perform well by just memorising the templates. These
template sets are used to generate a training (12000 in-
stances) and an evaluation (2400 instances) set with aligned
baseline, intervention and control instances. All reports con-
sist of six events and sentences, the average length of a re-
alised passage is 174 words, averaging 10.8 distinct named
entities and 6.9 numbers as answer candidates.

To estimate how realistic the generated MRC data is, we
compare the paragraphs to the topically most similar MRC
data: the NFL subset of the DROP dataset (Dua et al. 2019).
We measure the following two metrics. Lexical Similarity
is the estimated Jaccard similarity between two paragraphs,
i.e. the ratio of overlapping words, with lower scores in-
dicating higher (lexical) diversity. As a rough estimate of
Naturality, we calculate the average of those sentence-level
cohesion indices that are reported to correlate with human
judgements of writing quality (Crossley, Kyle, and McNa-
mara 2016; Crossley, Kyle, and Dascalu 2019). For exact
definitions and further results please consult SM1. The re-
sults are shown below:

Data/Metric Lex. Similarity ↓ Naturality ↑
SAM (n = 200) 0.22 0.65
NFL (n = 188) 0.16 0.68

While not quite reaching the reference data due to its
template-based nature we conclude that the generated data
is of sufficient quality for our purposes.
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Experiments Setup
Broadly, we address the following question: How well does
MRC perform on Semantic Altering Modifications?

In this study we focus our investigations on extractive
MRC where the question is in natural language, the context
is one or more coherent paragraphs and the answer is a sin-
gle continuous span to be found within the context. To that
end we sample state-of-the-art (neural) MRC architectures
and datasets and perform a comparative evaluation. Scores
of models with the same architecture optimised on different
data allow to compare how much these data enable mod-
els to learn to process SAM, while comparing models with
different architectures optimised on the same data hints to
which extent these architectures are able to obtain this capa-
bility from data. Below we outline and motivate the choices
of datasets and models used in the study. For further details
on data preparation, model training and how we obtain pre-
dictions for evaluation, please consult SM2.

Datasets: We select the following datasets in an attempt
to comprehensively cover various flavours of state-of-the-art
MRC consistent with our definition above.

• SQUAD (Rajpurkar et al. 2016) is a widely studied
dataset where the human baseline is surpassed by the state
of the art.

• HOTPOTQA (Yang et al. 2018) in the “distractor” setting
requires information synthesis from multiple passages in
the context connected by a common entity or its property.

• DROP (Dua et al. 2019) requires performing simple arith-
metical tasks in order to predict the correct answer.

• NEWSQA (Trischler et al. 2017) contains questions that
were created without having access to the provided con-
text. The context is a news article, different from the other
datasets where contexts are Wikipedia excerpts.

Similar to Talmor and Berant (2019), we convert the
datasets into the same format for comparability and to suit
the task definition of extractive MRC. For HOTPOTQA we
concatenate multiple passages into a single context and for
DROP and NEWSQA we only include examples where
the question is answerable and the answer is a continuous
span in the paragraph and refer to them as DROP’ and
NEWSQA’, respectively.

Models: The respective best-performing models on these
datasets are employing a large transformer-based language
model with a task-specific network on top. Note that we
do not use architectures that make dataset-specific assump-
tions (e.g. “Multi-hop” for HOTPOTQA) in order to main-
tain comparability of the architectures across datasets. In-
stead, we employ a linear layer as the most generic form
of the task-specific network (Devlin et al. 2019). Following
common practice, we concatenate the question and context,
and optimise the parameters of the linear layer together with
those of the language model to minimise the cross-entropy
loss between the predicted and expected start and end in-
dices of the answer span (and the answer sequence for the
generative model).

We are interested in the effects of various improvements
that were proposed for the original BERT transformer-based

language model (Devlin et al. 2019). Concretely, we com-
pare the effects of more training data and longer training
for the language model (e.g. XLNet (Yang et al. 2019),
RoBERTa (Liu et al. 2019)), parameter sharing between
layers of the transformer (e.g. ALBERT (Lan et al. 2020))
and utilising a unifying sequence-to-sequence interface (e.g.
BART (Lewis et al. 2020), T5 (Raffel et al. 2020)) and refor-
mulating extractive MRC as text generation conditioned on
the question and passage. We evaluate models of different
sizes, ranging from base (small for T5) to large (and
xl and xxl for ALBERT). They describe specific configu-
rations of the transformer architecture, such as the number
of the self-attention layers and attention heads and the di-
mensionality of hidden vectors. For an in-depth discussion
please refer to Devlin et al. (2019) and the corresponding pa-
pers introducing the architectures. For comparison, we also
include the non-transformer based BiDAF model (Seo et al.
2017). Finally, we train a model of the best performing ar-
chitecture on a combination of all four datasets (*-comb)
to investigate the effects of increasing training data diver-
sity. For this, we sample and combine 22500 instances from
all four datasets to obtain a training set that is similar in size
to the others. The final selection consists of the models re-
ported in Table 1.

Baselines: We implement a random baseline that
chooses an answer candidate from the pool of all named en-
tities and numbers and an informed baseline that chooses
randomly between all entities matching the expected answer
type (e.g. person for “Who” questions). Finally, in order to
investigate whether the proposed challenge can be solved in
general, we train a bert-base model on 12000 aligned
baseline and intervention instances, each. We refer to this
baseline as learned. We train two more bert-base par-
tial baselines, masked-q and masked-p on the same data
where, respectively, the question and passage tokens (except
for answer candidates) are replaced by out-of-vocabulary to-
kens. Our motivation for doing this is to estimate the propor-
tion of the challenge set that can be solved due to regularities
in the data generation method, regardless of the realised lex-
ical form to provide more context to the performance of the
learned baseline. Finally, we estimate the human SAM per-
formance by crowd-sourcing the manual annotation of 100
intervention examples.

Results and Discussion
We present the main findings of our study here. For the ob-
tained DICE scores we report the error margin as a confi-
dence interval at α = 0.05 using asymptotic normal approx-
imation. Any comparisons between two DICE scores re-
ported in this section are statistically significant (p < 0.05)
as determined by performing the Fisher’s exact test.

SAM is learnable. As expected, the learned baseline
achieves high accuracy on our challenge set, with 81% and
79% correctly predicted instances for baseline and interven-
tion examples, respectively, as seen in Table 2. The results
are in line with similar experiments on Recognising Tex-
tual Entailment (RTE) and sentiment analysis tasks which
involved aligned counterfactual training examples (Kaushik,
Hovy, and Lipton 2020). They suggest that neural networks
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Average SQUAD HOTPOTQA NEWSQA’ DROP’
Architecture DICE EM/F1 DICE EM/F1 DICE EM/F1 DICE EM/F1 DICE

bidaf 11± 3 67.2/76.9 12± 4 44.6/57.9 4± 3 40.0/54.3 13± 5 50.8/56.8 18± 12
bert-base 13± 2 76.3/84.9 13± 3 50.7/64.9 17± 4 46.6/62.5 13± 3 50.5/58.2 10± 3
bert-large 15± 2 81.9/89.4 15± 3 54.4/68.7 14± 3 49.1/65.7 14± 4 62.2/68.7 16± 3
roberta-base 15± 2 82.4/89.9 8± 3 51.9/66.4 17± 4 50.8/66.9 14± 3 63.5/69.3 20± 3
roberta-large 18± 1 86.4/93.3 16± 3 58.6/72.9 21± 3 54.4/71.1 15± 3 77.3/82.8 20± 2
albert-base 14± 2 82.8/90.3 10± 3 55.4/69.7 17± 3 49.7/65.7 11± 3 60.7/67.0 18± 4
albert-large 16± 1 85.4/92.1 18± 3 59.4/73.7 12± 2 52.5/68.9 17± 3 69.3/75.1 18± 3
albert-xl 27± 2 87.1/93.5 19± 2 62.4/76.2 21± 3 54.2/70.4 29± 3 76.4/81.8 40± 3
albert-xxl 27± 1 88.2/94.4 29± 2 65.9/79.5 29± 3 54.3/71.0 25± 3 78.4/84.5 23± 2
t5-small 10± 1 76.8/85.8 13± 3 51.8/65.6 10± 3 47.3/63.3 8± 2 60.4/66.1 10± 3
t5-base 16± 1 82.4/90.6 16± 3 61.0/74.4 20± 3 52.4/68.8 14± 3 69.0/74.9 15± 2
t5-large 20± 1 86.3/93.1 21± 2 65.0/78.5 29± 3 53.4/70.0 16± 3 70.1/75.3 8± 2
average 19± 0 76.4/83.2 18± 1 53.1/65.9 20± 1 47.1/62.1 17± 1 61.5/67.0 20± 1
albert-xl-comb 20± 2 85.3/92.2 60.6/74.3 53.6/70.4 76.9/82.4

random 5± 0
learned 98± 0

Table 1: DICE and EM/F1 score on the corresponding development sets of the evaluated models. Average DICE scores are
micro-averaged as it better shows the average performance on processing SAM examples while EM/F1 are macro-averaged as it
reflects the average performance on the datasets (although the difference between both averaging methods is small in practice).

are in fact capable of learning to recognise and correctly pro-
cess examples with minimal yet meaningful differences such
as SAM when explicitly optimised to do so. Some part of
this performance is to be attributed to exploiting the regu-
larity of the generation method rather than processing the
realised text only, however, as the partial baselines perform
better than the random baselines. This is further indicated
by the slightly lower performance on the control set, where
due to deletion the number of context sentences is different
compared to the baseline and intervention sets.

We note that the learned model does not reach 100%
EM score on this comparatively simple task, possibly due to
the limited data diversity imposed by the templates. Using
more templates and production rules and a bigger vocabu-
lary will further enhance the diversity of the data.

Pre-trained models struggle. Table 1 reports the results
of evaluating state-of-the-art MRC. Trained models strug-
gle to succeed on our challenge set, with the best DICE
score of 40 achieved by albert-xlarge when trained
on DROP’. There is a log-linear correlation between the ef-
fective size of the language model (established by count-
ing the shared parameters separately for each update per
optimisation step) and the SAM performance with Spear-
man’s r = 0.93. Besides the model size, we do not find
any contribution that leads to a considerable improvement
in performance of practical significance. We note that sim-
ply increasing the data diversity appears not beneficial, as
the score of albert-xl-comb that was optimised on the
combination of all four datasets is lower than the average
score of the corresponding albert-xl model. Humans
appear to have little issues to find the correct answer, with
87% ± 7% of the intervention examples solved correctly.
This provides the worst-case estimate for the human DICE
score, assuming all corresponding baseline and control ex-

amples would have been solved correctly (more details on
how we establish the human baseline in SM3).

The easiest SAM category to process is I6: Explicit nega-
tion with all optimised models scoring 26± 1.4 on average.
Models struggle most with I2: Adverbial Modification, with
an average DICE score of 14± 1 (see SM3 for breakdown
by SAM category). A possible reason is that this category
contains degree modifiers, such as “almost”. While they al-
ter the semantics in the same way as other categories for
our purposes, generally they act as a more nuanced modi-
fication (compare e.g. “almost” with “didn’t”). Finally, we
note that the performance scales negatively with the number
of SAM present in an example. The average DICE score
on instances with a single SAM is 23 ± 0.9, while on in-
stances with the maximum of three SAM it is 16± 0.8 (and
19±1.0 for two SAM). This is reasonable, as more SAM re-
quires to process (and discard) more sentences, giving more
opportunities to err.

We highlight that models optimised on HOTPOTQA and
DROP’ perform slightly better than models optimised on
SQUAD and NEWSQA’ (on average 20% vs 18% and 17%,
respectively). This suggests that exposing models to training
data that require more complex (e.g. “multihop” and arith-
metic) reasoning to deduce the answer, as opposed to sim-
ple answer retrieval based on predicate-argument structure
(Schlegel et al. 2020), has a positive effect on distinguishing
and correctly processing lexically similar yet semantically
different instances.

Small improvements can be important. Our results in-
dicate that small differences at the higher end of the per-
formance spectrum can be of practical significance for the
comprehension of challenging examples, such as SAM. Tak-
ing albert as an example, the relative performance im-
provements between the base and xxlarge model when
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(macro) averaged over the EM and F1 scores on the corre-
sponding development sets are 15% and 13%, respectively,
while the relative difference in averageDICE score is 93%.
This is likely due to a share of “easy” examples in MRC
evaluation data (Sugawara et al. 2018) that artificially bloat
the (lower-end) performance scores to an extent.

Meaningful training examples are missing. One possible
explanation for low scores could be that the models simply
never encountered the expressions we use to modify the pas-
sages and thus fail to correctly process them. To investigate
this claim we count the occurrences of the expressions of the
worst performing category overall, I2: Adverbial Modifica-
tion. The expressions appear in 5%, 14%, 5% and 22% of
the training passages of SQUAD, HOTPOTQA, DROP’ and
NEWSQA’ respectively, showing that models do encounter
them during task-specific fine-tuning (not to mention dur-
ing the language-model pre-training). It is more likely that
the datasets lack examples where these expressions affect
the search for the expected answer in a meaningful way
(Schlegel et al. 2020). In fact, after sampling 400 passages
and 647 corresponding questions (100 passages from each
dataset) where the expression occurs within 100 characters
of the expected answer, and manually annotating whether
the modification would yield a different answer, we find only
one such case which we can thus consider as a naturally oc-
curring SAM. Worse yet, in 4% of the cases the expected
answer ignores the presence of the SAM. This lends fur-
ther credibility to the hypothesis that current MRC strug-
gles at distinguishing examples with minimal yet meaning-
ful changes such as SAM, if not explicitly incentivised dur-
ing training. For more details on this annotation task, see
SM3.

An analysis of models’ errors suggests a similar conclu-
sion: examining wrong intervention predictions for those
cases where the answers for baseline and control were pre-
dicted correctly, we find that in 82% ± 1% of those cases
the models predict the baseline answer. Models thus tend to
ignore SAM, rather than being “confused” by their presence
(as if never encountered during training) and predicting a
different incorrect answer.

Related Work
Systematically modified MRC data can be obtained by
rewriting questions using rule-based approaches (Ribeiro,
Singh, and Guestrin 2018; Ribeiro, Guestrin, and Singh

Baseline B I C
learned 81± 2 79± 2 76± 2
masked-q 20± 2 28± 2 26± 1
masked-p 29± 1 5± 1 1± 1
random 6± 1 5± 1 8± 1
informed 14± 1 14± 1 26± 2
human – 87± 7 –

Table 2: Percentage of correct predictions of the introduced
baselines under the rEM5 metric on aligned baseline B, in-
tervention I and control C sets.

2019) or appending distracting sentences, e.g. by paraphras-
ing the question (Jia and Liang 2017; Wang and Bansal
2018), or whole documents (Jiang and Bansal 2019) to the
context. Adversarial approaches with the aim to “fool” the
evaluated model, e.g. by applying context perturbations (Si
et al. 2020) fall into this category as well. These approaches
differ from ours, however, in that they aim to preserve the
semantics of the modified example, therefore the expected
answer is unchanged. But the findings are similar: mod-
els struggle to capture the semantic equivalence of exam-
ples after modification, and rely on lexical overlap between
question and passage (Jia and Liang 2017). Our approach
explores a complementary direction by generating semanti-
cally altered passages.

Using rule-based NLG techniques for controlled gener-
ation of MRC data was employed to obtain stories (We-
ston et al. 2015) that aim to evaluate the learnability of spe-
cific reasoning types, such as inductive reasoning or entity
tracking. Further examples are TextWorld (Côté et al.
2018), an environment for text-based role playing games
with a dataset where the task is to answer a question by in-
teractively exploring the world (Yuan et al. 2019) and ex-
tending datasets with unanswerable questions (Nakanishi,
Kobayashi, and Hayashi 2018). Similar to our approach,
these generation methods rely on symbolic approaches to
maintain control over the semantics of the data.

Beyond MRC, artificially constructed challenge sets were
established with the aim to evaluate specific phenomena of
interest, particularly for the RTE task. Challenge sets were
proposed to investigate neural RTE models for their capa-
bilities to perform logic reasoning (Richardson and Sab-
harwal 2019) and lexical inference (Glockner, Shwartz, and
Goldberg 2018), or understanding language compositional-
ity (Nie, Wang, and Bansal 2019; Geiger et al. 2019).

Conclusion

We introduce a novel methodology for evaluating the read-
ing comprehension of MRC models by observing their ca-
pability to distinguish and correctly process lexically sim-
ilar yet semantically different input. We discuss lingustic
phenomena that act as Semantic Altering Modifications and
present a methodology to automatically generate and mean-
ingfully modify MRC evaluation data. In an empirical study,
we show that while the capability to process SAM correctly
is learnable in principle, state-of-the-art MRC architectures
optimised on various MRC training data struggle to do so.
We conclude that one of the key reasons for this is the lack
of challenging SAM examples in the corresponding datasets.

Future work will include the search for and evaluation
on further linguistic phenomena suitable for the purpose of
SAM, expanding the study from strictly extractive MRC
to other formulations such as generative or multiple-choice
MRC, and collecting a large-scale natural language MRC
dataset featuring aligned SAM examples (e.g. via crowd-
sourcing) in order to investigate the impact on the robustness
of neural models when exposed to those examples during
training.
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