
Towards Semantics-Enhanced Pre-Training:
Can Lexicon Definitions Help Learning Sentence Meanings?

Xuancheng Ren,1 Xu Sun,1,2∗ Houfeng Wang,1 Qun Liu3

1 MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University
2 Center for Data Science, Peking University

3 Huawei Noah’s Ark Lab
{renxc, xusun, wanghf}@pku.edu.cn, qun.liu@huawei.com

Abstract

Self-supervised pre-training techniques, albeit relying on
large amounts of text, have enabled rapid growth in learning
language representations for natural language understanding.
However, as radically empirical models on sentences, they
are subject to the input data distribution, inevitably incorpo-
rating data bias and reporting bias, which may lead to inac-
curate understanding of sentences. To address this problem,
we propose to adopt a human learner’s approach: when we
cannot make sense of a word in a sentence, we often con-
sult the dictionary for specific meanings; but can the same
work for empirical models? In this work, we try to inform
the pre-trained masked language models of word meanings
for semantics-enhanced pre-training. To achieve a contrastive
and holistic view of word meanings, a definition pair of two
related words is presented to the masked language model such
that the model can better associate a word with its crucial se-
mantic features. Both intrinsic and extrinsic evaluations val-
idate the proposed approach on semantics-orientated tasks,
with an almost negligible increase of training data.

Introduction
Pre-trained language representations have evolved remark-
ably in recent years, from static word representations
(Mikolov et al. 2013; Pennington, Socher, and Manning
2014) to contextual word representations (Peters et al. 2018;
Radford et al. 2018; Howard and Ruder 2018; Devlin et al.
2019; Yang et al. 2019; Brown et al. 2020). Typically, they
are first pre-trained on large-scale unannotated data and then
used in downstream tasks. As computational realization of
distributional semantics, where the meaning of a word can
be decided from its linguistic context, they have proved
highly effective and produced state-of-the-art human-level
performances on several datasets in natural language under-
standing (Wang et al. 2019b).

However, recently studies have suggested that while pre-
trained models are adequate in capturing the syntax of lan-
guage (Hewitt and Manning 2019; Clark et al. 2019), they
often produce inaccurate interpretation of a sentence (Niven
and Kao 2019; McCoy, Pavlick, and Linzen 2019). We col-
lect several representative cases in Table 1. As we can see,
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People usually eat the [M] of the watermelon.
p(seeds) = 0.20 > p(flesh) = 0.06

Drinking too much [M] can make people drunk.
p(water) = 0.24 > p(alcohol) = 0.17

A ratchet is used for moving in [M] direction.
p(any) = 0.36 > p(one) = 0.34

A scapegrace is an [M] rascal.
p(innocent) = 0.11 > p(incompetent) = 0.03

Table 1: Masked words recovered by RoBERTa-large. Be-
tween the two syntactically plausible replacements, the
model prefers the semantically insensible one, which sug-
gests that such models may not really understand the seman-
tics of the sentence but rely more on distributional statistics.

the model seems to prefer the safer choices that are more
frequent in related context, neglecting the semantics of the
sentence or the low frequency words in the sentence.

This phenomenon could root from the entirely empiri-
cal approach adopted by BERT-like models. In theory, the
meaning of a word can be decided from all its use accord-
ing to the hypothesis of distributional semantics (Wittgen-
stein 1953; Harris 1954; Weaver 1955; Firth 1957; Boleda
2020). However, in practice, the problems are three-fold: (a)
word contexts are sampled, since the use of a word is inex-
haustible, which means the learning is inaccurate and arte-
facts in data will be exploited (Gururangan et al. 2018; Niven
and Kao 2019; McCoy, Pavlick, and Linzen 2019), which
can be remedied in part by enlarging the data scale (Liu
et al. 2019; Yang et al. 2019; Raffel et al. 2020); (b) different
word types are not equally represented in data, which means
words of lower frequency are harder to learn in whatever
data scale; and more importantly (c) certain semantics are
not naturally expressed in sentences due to reporting bias,
which is a problem that cannot be addressed by empirical
approaches (Lucy and Gauthier 2017; Da and Kasai 2019;
Forbes, Holtzman, and Choi 2019; Kwon et al. 2019).

In contrast, words, which are basic semantic units of sen-
tences, are countable and are equally represented in lexi-
cons. Now that the pre-trained models can encode the sen-
tence structure well, is it possible to improve the word cover-
age and correct the misconceptions of the model by directly
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elastic device
any flexible device that will re

turn to its original shape when 

stretched

spring
a metal elastic device that retu

rns to its shape or position wh

en pushed or pulled or pressed

geyser
a spring that discharges hot 

water and steam

spring, fountain, …
a natural flow of ground water

steam
water at boiling temperature di

ffused in the atmosphere

vapor, vapour
a visible suspension in 

the air of particles of  

some substance

spring, springtime
the season of growth

season, time of year
one of the natural periods into 

which the year is divided by th

e equinoxes and solstices or …
hypernym

(is a kind of)

winter, wintertime
the coldest season of the year; 

in the northern hemisphere it 

extends from the winter …

spring flexible, flexile
able to flex; able to bend easily

inflexible
resistant to being benthypernym

(is a kind of)

hypernym

(is a kind of)

hypernym

(is a kind of)

hypernym

(is a kind of)

antonym

(is opposite to)

Figure 1: Examples for the word spring from WordNet organized in synsets with definitions. The synsets are linked by semantic
relations. As spring is a polysemous word, it corresponds to multiple synsets. As we can see, the definitions contain rich
semantic features (colored) for a word and relations can further broaden the depth of the semantic features.

injecting word meanings? Just as when we read a sentence
containing an unfamiliar word, as long as we know the word
itself better, we can understand the sentence without reading
hundreds or thousands of sentences with the new word.

In this paper, we explore directly injecting word mean-
ings into pre-trained models based on definitional lexical se-
mantic knowledge in external linguistic knowledge bases,
as shown in Figure 1. We devise two complementary tasks
to absorb such knowledge, which are predicting the word
given its definition and recovering certain parts of the def-
inition with the word. The two tasks are united as the task
of masked word-definition prediction. Considering the rela-
tional knowledge between words, we strengthen the depth of
word meaning by pairing related word-definition sequences.
The injection of explicit lexical semantics broadens the lex-
icon coverage and semantic features encoded in the pre-
trained models with almost negligible new training data, i.e.,
1000x times fewer than the data used by the baseline, and
both intrinsic and extrinsic evaluations show promising re-
sults on semantics-oriented tasks.

In all, our contributions are summarized as follows:

• We explore enhancing the semantic capabilities of pre-
trained masked language models with lexical semantics in
terms of word definitions to remedy the limited coverage
and possible misconceptions of the model.

• The objective is cast as a masked word-definition task that
injects explicit definitional knowledge containing rich se-
mantic features. Such knowledge is propagated on the se-
mantic network to provide a contrastive and comprehen-
sive view of word meanings.

• The proposed approach is simple yet effective and can
help the model to learn better semantic representations,
which is verified by intrinsic and extrinsic evaluations.

Injecting Word Meanings
The masked language model objective is the key to self-
supervised pre-training but requires large quantities of data
to learn reasonable representations. However, they still face
challenges in comprehensive understanding of words and
the related semantics. Drawing inspirations from human’s

General-purpose 
Pre-training

Semantics-focused 
Pre-training

Downstream 
Fine-tuning

Unannotated Text:
the emerging buds were a sure 
sign of spring
the spring was broken
…

Word Knowledge:
spring: the season of growth
spring: a metal elastic device…
season: one of the natural …
…

Annotated Data:
Which is a season of  the year?
A: spring B: midnight
…

Figure 2: Illustration of the training process. The general-
purpose pre-training builds the model’s ability to understand
sentences on unannotated text; the semantics-focused pre-
training injects word knowledge to the model to increase
its coverage and rectify misreadings with external linguis-
tic knowledge bases; then the pre-trained model is applied
to downstream tasks for task-specific fine-tuning.

learning practice, we explore dealing with the challenges
by directly incorporating knowledge of words. If the pre-
trained models have a strong sense of how the sentences are
constructed, as suggested by many previous studies (Clark
et al. 2019; Tenney et al. 2019; Goldberg 2019; Niven and
Kao 2019; Reif et al. 2019; Warstadt et al. 2019; Lin, Tan,
and Frank 2019; Hewitt and Manning 2019), it should be
possible to inform the models with the meaning of words,
which in turn streamlines the deduction of the meaning of
sentences. It is also desirable that the introduction of word
meanings remains supplementary to the empirical data and
compatible with the original approaches so that we can com-
bine the best of both worlds.

The proposed approach consists of three consecutive
training stages, as illustrated in Figure 2: (1) general-purpose
pre-training, where the model is shown large-scale unan-
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??? : the season of growth

spring

spring : a natural flow of ground ??? 

water

(a) Predicting Definitional Knowledge

spring : a natural … ???  |  geyser : a ??? that discharges hot ??? and steam 

water spring water

??? : the season of growth  |  season : one of the natural ??? into which … 

spring periods

hyponym

hypernym

(b) Propagating through Relations

Figure 3: Examples of the proposed semantics-focused pre-training. We draw word knowledge from classical word definitions
as in Figure 3(a), which contain rich semantic features, and broaden the scope by relations to other words as in Figure 3(b).

notated text to learn to interpret sentences, (2) semantics-
focused pre-training, where the model is enhanced in seman-
tic capabilities with the help of definitional and relational
word knowledge, and (3) downstream fine-tuning, where the
model adapts to the target task.

General-Purpose Pre-Training
General-purpose pre-training follows the existing success-
ful self-supervised technique, specifically using the masked
language model objective, and aims to understand the struc-
ture of language with large-scale unannotated text (Clark
et al. 2019; Tenney et al. 2019). As syntax learning and
semantics learning are highly coupled, this stage also pro-
motes the model in some semantic aspects, e.g., selectional
preferences (Ettinger 2020; Tenney et al. 2019), which have
prominent syntactic clues.

The input to BERT-like masked language models (Devlin
et al. 2019; Liu et al. 2019) is a sequence of word tokens
x = {xi}Ni=1, where N is the input sequence length. 15%
of the tokens are further masked, of which 80% are replaced
with the [M] token, 10% are replaced with a random token,
and 10% are kept unchanged. Let x̂ denote the sequence af-
ter masking. A neural network, most commonly a stack of
Transformer encoder blocks (Vaswani et al. 2017), is applied
to the input sequence to obtain the contextualized represen-
tation si for each word token. For each masked position j, a
classification network is tasked to predict the original word
token using cross-entropy loss over the entire vocabularyD:

L = − log p(xj |x̂), (1)

where xj is the original word token before masking.

Semantics-Focused Pre-Training
Semantics-focused pre-training (SemPre) aims to enhance
the learning of sentence meaning by learning word mean-
ings. However, the fundamental question is: what is the
meaning of a word and how can it be described? Moreover,
can word meanings stand alone aside from context or use
and is there a borderline between linguistic knowledge and
encyclopedic knowledge? Those topics are extensively dis-
cussed in the literature of generative lexical semantics and
a number of approaches to represent word meanings have
been proposed, such as lexical field theory, componential
analysis, and relational semantics. Our investigation builds
on a practical, mixed view of those theories.

To be precise, we rely on the classical dictionary-like def-
initions for semantic features and the relational structures

among the words for a conceptual understanding of word
meanings. Such lexical knowledge is drawn from Word-
Net (Miller 1995) and some examples are shown in Fig-
ure 1. WordNet is organized in synonym sets, also known
as synsets, which group concrete “words” (including multi-
word expressions, e.g., hot dog) of similar meanings to-
gether. A word can belong to multiple synsets, in which case
polysemy occurs. Each synset is accompanied with a def-
inition, example sentences, and semantic relations to other
synsets. As the natural input to pre-trained language models
is words instead of synsets, we flatten synsets to words and
introduce a synonym relation among the words in a synset
to account for the synset information.

Predicting Definitional Knowledge The definition of a
word contains rich semantic features, which are curated,
noise-free, and deemed essential by lexicographers. In order
to familiarize the model with such features, we recast the
masked language model task in the previous training stage
to operate on masked word-definition sequences. For a word
w and its definition sentence sequence d = {d}Mi=1 in the
lexicon A, an artificial sentence is constructed in the format
of x(w) = {w,[D], d1, d2, . . . , dM}, where M is the length
of the definition and [D] is a special symbol separating the
word and the definition to allow for multi-token words. This
input format is used because it is non-trivial to construct
a grammatically correct sentence and format indicators, in
our case [D], can adequately inform the model of struc-
tural meanings (Lewis et al. 2020; Raffel et al. 2020). The
same masking procedure as general-purpose pre-training is
applied and the model is supposed to recover the masked
tokens. It corresponds to two special cases. Let’s take the
definition of spring in the season sense as an example:
• “spring [D] the season of [M]”: This is a semantic feature

filling task. Note that different from real sentences, the
definition itself provides no clue of the correct word. The
model needs to encode such features in its parameters.

• “[M] [D] the season of growth”: This is a word guessing
task. As definitions are information-dense, an incomplete
reading can lead to wrong prediction. The model needs to
associate the features comprehensively.

Propagating Relational Knowledge The classical defini-
tion is by no way an exhaustive description of the meaning of
a word. Definitions are often written in a way to distinguish
one word from similar words. The notion is prominently re-
flected in the structural view of lexical semantics, which be-
lieves the word meaning can be defined by relations among
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words in the same semantic field. In light of this, we expand
the semantic scope of a word to its related words, whose def-
initions also contain valuable semantic features. For a rela-
tion triple (ws, r, we), we first construct the word-definition
sequences x(s) and x(e) for the pair of words. Then, the pair
of word-definition sequences are connected with a separa-
tor as a new sequence. However, it is important to interpret
semantic features from other words cautiously, because re-
lations also vary in semantics. For example,
• spring and season have the hypernym relation and the se-

mantic features of season usually applies to spring; but
• hot and cold have the antonym relation and have contra-

dictory semantic features high and low for temperature.
To this end, we add a classification objective to predict the
type of the semantic relation, e.g., hypernym, antonym, etc.,
from the sequence representations. The input sequence is of
the format x = {[C], x(s)

1 , . . . , x
(s)
M ,[S], x(e)

1 , . . . , x
(e)
N },

where [C] and [S] are two special tokens, and M and N
are the length of the two word-definition sequences, respec-
tively. The representation of the [C] token is used as the se-
quence representation (Devlin et al. 2019) to predict the re-
lation. Let x̂ denote the sequence after masking. The multi-
task loss for this stage could be formalized as

Lsem = − log p(r|x̂)−
∑

j∈M
log p(xj |x̂), (2)

where M is the set of masked positions and we forbid the
special tokens to be masked.

With the semantics-focused pre-training, the model is en-
hanced in its lexicon coverage and injected with explicit se-
mantic features. The approach is conceptually simple and
compatible with the previous training stage to avoid catas-
trophic forgetting of syntactic capability. In addition, it uses
far fewer data than the previous training stage.

Experiments
To verify whether the proposed method can enhance the
semantic understanding of sentences, we conduct both in-
trinsic evaluation that inspects knowledge learned by the
pre-trained models themselves and extrinsic evaluation on
semantics-oriented downstream tasks with fine-tuning.1

Tasks
Word Games (WGs) is a word ranking task, where a system
is required to predict the word by its definition. The words
are extracted from the Oxford 3000 list, which contains the
most important English words to learn. Two variants of the
datasets are constructed by using definitions from the Word-
Net (WG1) and the Oxford Advanced Learner’s Dictionary
(OALD) (WG2). For each pair of a word and its definition,
we make up several sentences with various templates to al-
low the models to understand the sentence better. The eval-
uation metric is the average of the lowest rank of the target
word predicted by the system across the template sentences

1For detailed introduction to the tasks and the experimental set-
tings, please refer to the appendix. The code and the appendix are
available at https://github.com/lancopku/sempre

for an example. For testing, the target word is replaced with
the [M] token.

Commonsense Ability Tests (CATs) (Zhou et al. 2020)
contain eight datasets, i.e., Sense Making (SM), Wino-
grad Schema Challenge (WSC), Conjunction Acceptabil-
ity (CA), SWAG, HellaSwag, Sense Making with Reason-
ing (SMR), and Argument Reasoning Comprehension Task
(ARCT1 and ARCT2), re-framed from six existing bench-
marks (Wang et al. 2019c; Levesque, Davis, and Morgen-
stern 2012; Zellers et al. 2018, 2019; Habernal et al. 2018;
Niven and Kao 2019). The tested system is supposed to de-
termine the sentence that makes sense from several adver-
sarial sentences, which have differences on the token-level
or the sentence-level that require various kinds of common-
sense knowledge to resolve. The evaluation metric is accu-
racy. For the testing protocol, we follow Zhou et al. (2020).

Word-in-Context (WiC) is a word sense disambiguation
task, where a system is required to determine if the polyse-
mous target word has the same sense in two short sentences
with minimum contexts (Pilehvar and Camacho-Collados
2019). For negative cases, the target word senses are ensured
to be differentiable and of different supersenses. The evalu-
ation metric is accuracy.

Physical Interaction: Question Answering (PIQA) is a
question answering task, where given a goal and two possi-
ble solutions, the system must choose the most appropriate
solution (Bisk et al. 2020). The dataset is human generated
and focuses on everyday situations with physical common-
sense knowledge, which is inherently limited in text due to
reporting bias, e.g., flexibility and being porous. The evalu-
ation metric is accuracy.

Settings
Our implementation is based on the fairseq (Ott et al. 2019)
package. For general-purpose pre-training, we adopt the
pre-trained RoBERTa-base and RoBERTa-large models (Liu
et al. 2019) to save computation resources, which contain
125M and 355M parameters, respectively. They are trained
on a combined corpus including fictions, encyclopedia, and
news, totaling over 160GB text, which contains approxi-
mately 1500M sentences. The input word cases are kept
and the input sequence is pre-processed using BPE. For
semantics-focused pre-training, the models are trained on
word-definition pairs using the objective in Eq. (2) and
we extract 0.2M word-definitions and 1.4M word-definition
pairs in 23 relations from WordNet. For the two WG datasets
only, we use models that train on parts of WordNet, such
that one-third of the words in testing are not seen in train-
ing, to avoid memorization that may favor SemPre in WG1.
We use a batch size of 2048 sequences, a peak learning rate
of 2 × 10−5 with linear warm-up and decay peaked at the
295th update scheduled for at most 6910 updates and keep
at most 128 tokens of a sequence. The rest is kept similar
to RoBERTa pre-training. We use the model after the first
epoch for further evaluations.

For downstream fine-tuning, following Liu et al. (2019);
Bisk et al. (2020), we conduct a grid search with respect
to certain hyper-parameters, i.e., the learning rates [1 ×
10−5, 2×10−5, 3×10−5] and the maximum epochs [10, 50].

13739



Model
Word Game (↓) Commonsense Ability Tests (↑)
WG1 WG2 CA WSC SM SMR SWAG HellaSwag ARCT1 ARCT2

RoBERTa-base (our reproduction) 592 464 95.6 62.5 75.0 40.0 69.1 41.3 50.0 53.7
RoBERTa-base + SemPre 111 236 95.1 63.6 77.7 39.5 68.0 41.7 53.8 55.9

RoBERTa-large (our reproduction) 332 262 96.2 69.3 79.2 47.3 76.1 48.9 54.3 60.0
RoBERTa-large + SemPre 86 130 96.7 73.5 80.4 48.4 75.9 48.5 58.3 60.9

Table 2: Intrinsic evaluation without fine-tuning. ↓ denotes the lower the better; ↑ is the opposite. SemPre causes a significant
lead in Word Game and enjoys a comfortable margin on CATs, especially on WSC, which highly involves object knowledge
rarely reported in natural sentences, except for SWAG and HellaSwag, which involve event and temporal knowledge that is
rarely covered by semantic features in definitions.

Model #Parameters
WiC (↑) PIQA (↑)

Validation Test Validation Test

ELMo-inspired (Ansell, Bravo-Marquez, and Pfahringer 2019) - 67.4 61.2 - -
GPT (Bisk et al. 2020) 124M - - 70.9 69.2
BERT-large (Wang et al. 2019a; Bisk et al. 2020) 340M 74.9 69.5Σ 67.1 66.8
KnowBERT-W+W (Peters et al. 2019) 523M 72.6 70.9Σ - -
RoBERTa-large (Liu et al. 2019; Bisk et al. 2020) 355M 75.6 69.9Σ 79.2 77.1
T5-large (Raffel et al. 2020) 770M - 69.3 - -

RoBERTa-base (our reproduction) 125M 69.4 66.9 73.7 -
RoBERTa-base + SemPre 125M 71.5 69.3 75.0 -

RoBERTa-large (our reproduction) 355M 74.6 70.3 81.3 -
RoBERTa-large + SemPre 355M 75.7 72.1 81.6 79.0

Table 3: Extrinsic evaluation on downstream tasks with fine-tuning. ↑ denotes the higher the better; Σ denotes results obtained
using model averaging or model ensemble. Results are directly taken from the related papers. SemPre demonstrates consistent
improvements on the tasks relying on various aspects of semantics with a competitive parameter budget.

The batch size is 32. Each configuration is run multiple times
with different random start. We adopt early stopping based
on validation accuracy and report the results of the best-
scoring configuration on the validation set. Results of other
models are taken directly from the corresponding papers, ex-
cept for RoBERTa, for which we also report results of our
reproduction for fair comparison.

Results
Intrinsic Evaluation The results on WGs and CATs,
which are obtained in a zero-shot manner without fine-
tuning, are shown in Table 2. SemPre benefits almost all
datasets indicating improved understanding of words and
their semantic features.

As we can see, significant improvements are achieved on
WGs for definitions from both WordNet and OALD. We
report results on all test words. For results on WG1 cate-
gorized by whether the word definition is seen in training,
please refer to the appendix and the results are similar. One
may wonder why the model could predict the word better
without training on its definition in SemPre. It is most likely
that the models learn to better connect and elicit the seman-
tic features in the sentences, because meanings of words are
not isolated and knowledge will transfer to words even if
they are unseen in SemPre. For example, knowing spring
better may help knowing season better.

For CATs, SemPre improves the pre-trained models by
a comfortable margin except for SWAG and HellaSwag,
suggesting that the semantic features in word definitions
promote commonsense knowledge to a certain extent, that
is, for conceptual and perceptual knowledge tested by CA,
WSC, SM, SMR, and ARCT, but not event and temporal
knowledge required by SWAG and HellaSwag. Apart from
the difference in datasets, model sizes also affect the results
and smaller models could be unstable in internalizing some
types of knowledge injected by SemPre, as demonstrated by
the results of RoBERTa-base models.

Extrinsic Evaluation The results from intrinsic evalua-
tion validate that SemPre can indeed inject lexical knowl-
edge to the pre-trained models, but it is also important to see
whether improved learning of lexical semantics can benefit
downstream tasks. For this evaluation with fine-tuning, apart
from our baseline reproductions, we also compare with other
pre-trained models, including ELMo, GPT, BERT, and T5,
which are for general domains, and KnowBERT, which en-
hances BERT with entity embeddings from Wikipedia and
WordNet. The results are reported in Table 3.

For WiC, comparing BERT-large and RoBERTa-large, we
can see that although RoBERTa-large uses 10 times of data
compared to BERT-large, only 0.4 to 0.8 performance in-
crease can be observed, suggesting purely training on more
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Model Word Def. Pair CATs WiC Avg

(a) RoBERTa ◦ ◦ ◦ 66.4 74.6 70.5
(b) + Def. ◦ • ◦ 66.9 74.3 70.6
(c) + Word Pair • ◦ • 64.3 74.3 69.3
(d) + Word-Def. • • ◦ 67.6 74.8 71.2

(e) + SemPre • • • 67.8 75.7 71.8
(f) - Word Mask ∗ • • 67.1 75.1 71.1
(g) - Def. Mask • ∗ • 67.4 74.9 71.2
(h) - Rel. Pred. • • ∗ 67.7 74.6 71.1

Table 4: Results of the ablation study. ◦, ∗, and • denote the
respective information is not used, used only as inputs, and
learned with an objective. We show the average of 8 datasets
for CATs. The results on WiC are based on the validation
set. Avg denotes the average of CATs and WiC.

data has diminishing benefits on the WiC task, which re-
quires accurate understanding of words. With our approach,
a further improvement of 1.8 in accuracy can be obtained.

PIQA targets at physical commonsense in interactive
environment, requiring reasoning of affordance (Gibson
1979), e.g., using a sharp kitchen knife to mince a carrot,
and specific routine knowledge, e.g., how to put a game in
an Xbox. While SemPre can help the former, as physical fea-
tures in definitions are fundamental for affordance and defi-
nitions often link actions and general objects, it can be hard
to provide assistance to the latter, which involves named en-
tities and event knowledge. Even so, we still observe a pos-
itive lead on PIQA with SemPre, indicating the general use-
fulness of semantic-focused pre-training. For the validation
results using RoBERTa-large, the difference is statistically
significant (p < 0.05, t-test, one-sided).

We also evaluate on the GLUE benchmark (Wang et al.
2019b) and Semantic Role Labeling on the CoNLL-2012
dataset (Pradhan et al. 2013). Our RoBERTa-base and
the SemPre-enhanced version both achieve test scores of
76.4∼76.5 on GLUE and overall F1 measures around 86.9
on CoNLL-2012. For these tasks that have rich contexts
and strong syntactic indicators, SemPre maintains the ability
of fundamental language understanding. Moreover, we find
that those datasets are not effective in evaluating the aspects
enhanced by SemPre in terms of coverage in lexical seman-
tics. The detailed results are reported in the appendix.

Analysis
Ablation Study As SemPre introduces information
sources and techniques to learn such information, the abla-
tion study is conducted to analyze the effects from both per-
spectives and the results on CATs and WiC using RoBERTa-
large are shown in Table 4. Please see the appendix for full
CATs results. For ablated models that do not use pairs of
words or word-definitions, the training data shrink 7 times
and we take the models after the entire training, i.e., 10
epochs, for further evaluation. The upper part of Table 4
studies from the perspective of information sources. As we
can see from model (a) to model (e), introducing word-
definitions is the main source of improvements and defini-

Input: [M] can be used to make furniture.
Baseline: It (0.27), They (0.14), This (0.10)
+ SemPre: Wood (0.68), It (0.16), Steel (0.03)

Input: My dream job is [M].
Baseline: here (0.25), gone (0.07), over (0.06)
+ SemPre: teaching (0.12), writing (0.05), marketing (0.03)

Input: Fruits are [M].
Baseline: expensive (0.06), important (0.02), optional (0.02)
+ SemPre: edible (0.36), nutritious (0.05), food (0.02)

Input: Food is for [M].
Baseline: everyone (0.10), people (0.06), you (0.05)
+ SemPre: eating (0.41), consumption (0.18), living (0.12)

Table 5: Masked sentences recovered by RoBERTa-large
and our proposal. We show the top-three predictions and
their probabilities. As we can see, the predicted words are
more semantics-oriented with SemPre.

tions are the crucial component. Moreover, using pairs of
words alone as model (c) is not beneficial, and only when
pairs of word-definitions are incorporated, that is, the pro-
posed SemPre, the best results can be obtained. The lower
part of Table 4 demonstrates the effectiveness of the tech-
niques in harnessing the definitional knowledge. As shown
by the results of model (f), model (g), and model (e), mask-
ing words and definitions are both instrumental in injecting
definitional knowledge. Comparing model (h) and model (d)
to model (e), we can see that relation prediction is impor-
tant when propagating definitions through relations. These
results indicate the improvements of SemPre do not come
from simply using more data but the way the extra data are
used for learning word meanings. We further conduct abla-
tion study in terms of distributional characteristics of words,
i.e., part-of-speech, to reveal the systematic tendencies of the
pre-trained models that are purely based on language distri-
butions, and the analysis is elaborated in the appendix.

Case Study From a qualitative view, we further test
whether SemPre helps grasp the meaning of the sentences.
The baseline is RoBERTa-large. First, in Table 5, we show
some representative cases, where the model is asked to pre-
dict the most likely replacements for the masked position.
We can see that RoBERTa tends to prefer words that are
more general and less specific to the context, while SemPre
can improve the prediction in terms of semantic informative-
ness. Second, in Figure 4, we show the UMAP visualization
(McInnes and Healy 2018) of representations for the word
spring in different contexts, in a similar way to Reif et al.
(2019). RoBERTa has difficulty in differentiating the device
and the water sense, while with SemPre, a clear boundary
can be determined. It is important to note that SemPre en-
hances the pre-trained models only using the definitions in-
stead of using examples sentences as in Levine et al. (2020),
yet it can enhance the comprehension of words in real con-
texts, suggesting SemPre most likely activates the semantic
knowledge in a continual learning manner rather than builds
the related skills from scratch.
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(a) Baseline

(b) Baseline + SemPre

Figure 4: Visualization for spring of different meanings in
contexts. Representations generated by SemPre are better
clustered in terms of meaning.

Related Work
Self-Supervised Pre-Training This approach typically
takes in unannotated data as contexts and predicts cer-
tain parts of the input data as the target. It has been used
in natural language processing to learn word representa-
tions (Mikolov et al. 2013; Pennington, Socher, and Man-
ning 2014) and recently contextualized word representations
(Howard and Ruder 2018; Peters et al. 2018). The rather
successful BERT-like models (Devlin et al. 2019; Liu et al.
2019) use a masked language model objective and consid-
erable efforts have been devoted to discovering better se-
quence corrupting scheme (Sun et al. 2019; Joshi et al.
2020; Wang et al. 2020; Clark et al. 2020), applying auto-
regressive objectives (Song et al. 2019; Dong et al. 2019;
Lewis et al. 2020; Yang et al. 2019), reducing the compu-
tational complexity (Jiao et al. 2020; Sanh et al. 2019; Sun
et al. 2020; Lan et al. 2020), etc. The approach presented
in this work can be extended further to those models and is
mostly independent to those improvements.

Pre-Training with Semantics Substantial efforts have
been put into understanding the BERT-like models and most
studies affirm that BERT has learned syntactic structures ex-
ceptionally well (Clark et al. 2019; Tenney et al. 2019; Gold-
berg 2019; Lin, Tan, and Frank 2019; Hewitt and Manning
2019) and while there is evidence that the model encodes

certain limited semantic knowledge (Niven and Kao 2019),
e.g., selectional preference (Bouraoui, Camacho-Collados,
and Schockaert 2020) and semantic categorization (Wiede-
mann et al. 2019; Ettinger 2020; Reif et al. 2019), such
knowledge relies on context providing clues (Bouraoui,
Camacho-Collados, and Schockaert 2020). To remedy this,
several extensions are proposed to incorporate world knowl-
edge (Sun et al. 2019; Zhang et al. 2019; Peters et al. 2019)
or commonsense (Ye et al. 2019; Levine et al. 2020) into
BERT, but most of them focused on specific downstream
tasks, such as commonsense question answering (Ye et al.
2019) and word sense disambiguation (Loureiro and Jorge
2019; Huang et al. 2019; Levine et al. 2020). Lauscher et al.
(2019) incorporated into BERT the linguistic knowledge of
the so-called true semantic similarity, consisting of synonym
or hypernym-hyponym word pairs, via a binary classifica-
tion objective. Different from them, we first explore the effi-
cacy of learning word meanings from lexicon definitions.

Semantic Knowledge Sources In this work, we extract
definitions and relations from WordNet (Miller 1995). Al-
though it does not contain closed-set words, e.g., determin-
ers and prepositions, its coverage of concrete words is more
than adequate for normal language understanding purposes.
Moreover, a variety of other resources exist for the appli-
cation of the proposed method. Definitions via dictionaries
are not in shortage, since traditional dictionaries exist for al-
most all languages and there are wiki-based online dictionar-
ies constantly absorbing new terms, such as Wiktionary and
Urban Dictionary. Semantic relations with different focuses
are also proposed, including commonsense (Speer, Chin,
and Havasi 2017) and sentiment (Baccianella, Esuli, and Se-
bastiani 2010). Definitions could establish new knowledge
sources by mapping to existing semantic relational graphs,
which is the practice of Open Multilingual Wordnet (Bond
and Paik 2012; Bond and Foster 2013) and BabelNet (Nav-
igli and Ponzetto 2012).

Conclusion and Future Work
We explore a semantics-focused training approach for pre-
trained masked language models to see whether better un-
derstanding of words can lead to better understanding of sen-
tences. Harnessing the knowledge of an external linguistic
knowledge source, both definitional and relational knowl-
edge of lexical semantics are incorporated into the models.
In contrast to previous methods that try to instantiate such
kinds of knowledge as natural sentences, we make use of a
masked word-definition prediction objective with a relation
classification objective. The resultant approach is concep-
tually simple and self-contained without the need of cor-
pora to retrieve related sentences or tools such as entity
linkers, but can also elevate the performance on semantics-
oriented tasks. Our analysis indicates the proposed interme-
diate training method drives the model to elicit semantic fea-
tures from sentences. For future work, we would like to ex-
plore more elaborate ways to generate word pairs, especially
in terms of abductive relation paths, and pre-training with
named entities, e.g., Wikipedia, instead of general words.
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