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Abstract

Word embedding can represent a word as a point vector or
a Gaussian distribution in high-dimensional spaces. Gaus-
sian distribution is innately more expressive than point vec-
tor owing to the ability to additionally capture semantic
uncertainties of words, and thus can express asymmetric
relations among words more naturally (e.g., animal en-
tails cat but not the reverse). However, previous Gaus-
sian embedders neglect inner-word conceptual knowledge
and lack tailored Gaussian contextualizer, leading to inferior
performance on both intrinsic (context-agnostic) and extrin-
sic (context-sensitive) tasks. In this paper, we first propose a
novel Gaussian embedder which explicitly accounts for inner-
word conceptual units (sememes) to represent word seman-
tics more precisely; during learning, we propose Gaussian
Distribution Attention over Gaussian representations to adap-
tively aggregate multiple sememe distributions into a word
distribution, which guarantees the Gaussian linear combi-
nation property. Additionally, we propose a Gaussian con-
textualizer to utilize outer-word contexts in a sentence, pro-
ducing contextualized Gaussian representations for context-
sensitive tasks. Extensive experiments on intrinsic and ex-
trinsic tasks demonstrate the effectiveness of the proposed
approach, achieving state-of-the-art performance with near
5.00% relative improvement.

Introduction
Word embedding aims to learn low-dimensional word rep-
resentations that encode semantic and syntactic information
(Mikolov et al. 2013a). According to the form of word rep-
resentations, word embedding evolves in two main direc-
tions: point embedding and Gaussian embedding. Point em-
bedding (Figure 1(a)) represents each word as a determinis-
tic point vector (Mikolov et al. 2013a) in a semantic space
where the semantic similarity and other symmetric word re-
lations can be effectively captured by the relative positions
of points. However, it struggles to naturally model entail-
ments among words (e.g., animal entails cat but not the
reverse) or other asymmetric relations. Asymmetries can re-
veal hierarchical structures among words (Athiwaratkun and
Wilson 2018) and are crucial in knowledge representation
and reasoning (Roller, Erk, and Boleda 2014). By contrast,
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Figure 1: Point embedding vs. Gaussian embedding (a multi-
dimensional Gaussian distribution is exemplified as a soft-
region ellipse for better visualization). As for the latter, more
specific words (e.g., cat and lion) have smaller uncertain-
ties, while those denoting broader concepts (e.g., animal)
have larger uncertainties.

Gaussian embedding (Figure 1(b)), on the other hand, rep-
resents each word as a “probabilistic” Gaussian distribu-
tion, which is innately more expressive owing to the abil-
ity to additionally capture semantic uncertainties of words
(as their “geometric shapes”) to represent words more natu-
rally and more accurately than point vectors (Vilnis and Mc-
Callum 2015). For example, as Figure 1(b) shows, a word
with larger uncertainty (e.g. animal) can semantically en-
tail some words with smaller uncertainties (e.g. cat).

Nevertheless, recent advances are primarily focused on
point embedding, making the line of Gaussian embedding
lag very far behind. Concretely, sharing inner-word and
outer-word linguistic information between words has shown
remarkable success in point-embedding-based techniques
(Bojanowski et al. 2017; Peters et al. 2018). Many point
embedders consider inner-word information (e.g., FAST-
TEXT) by explicitly encouraging words sharing similar
inner-word structures (e.g., surface subwords or conceptual
units) to have “close” points (Bojanowski et al. 2017; Niu
et al. 2017). Meanwhile, point-based contextualizers con-
sider outer-word contexts (e.g., ELMO) to yield dynamic
representations for a word in different sentences, leading
to dynamic representations and better word sense disam-
biguation (Peters et al. 2018; Devlin et al. 2019). By con-
trast, the line of Gaussian embedding: 1) represents word
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semantics by utilizing surface subwords merely without con-
sidering the fruitful inner-word conceptual knowledge; and
2) produces merely context-agnostic Gaussian representa-
tions1 due to the lack of tailored contextualizer. The two is-
sues inevitably lead to inferior performance on both intrinsic
(context-agnostic) and extrinsic (context-sensitive) tasks.

In this paper, we upgrade Gaussian embedding with
considering both inner-word conceptual units (sememes2)
and outer-word contexts to benefit both intrinsic context-
agnostic and context-sensitive scenarios. Nevertheless, a key
challenge is the lack of neural techniques specifically tai-
lored for Gaussian embedding, such as attention and contex-
tualization over Gaussian distributions, which limits the use
of fruitful inner-word and outer-word information.

Aiming to tackle the challenge, we first propose Gaus-
sian Distribution Attention (GDA) to dynamically aggre-
gate inner-word sememe representations into word represen-
tations, which operates on Gaussian distributions directly
and guarantees the Gaussian linear combination property
(i.e., the linear combination of mutually independent Gaus-
sian variables is still a Gaussian distribution). Moreover, we
adopt a training objective that incorporates the symmetric
measure between a word and its synonym(s) and the asym-
metric measure between the word and its hypernym(s) to ex-
plicitly capture the proper “positions” (i.e., semantics) and
“shapes” (i.e., uncertainties) of words in a high-dimensional
space. We will show that the two key considerations produce
satisfying conceptualized Gaussian representations. Further-
more, after obtaining “static” conceptualized Gaussian rep-
resentations, for a word in different sentences, we utilize
outer-word contexts and introduce a dual contextualizer spe-
cially designed for Gaussian distributions which consists of
two ELMO-style (Peters et al. 2018) context encoders and
is supervised by the labeled signal of a specific downstream
task (e.g., text classification), aiming to produce contextual-
ized Gaussian representations of words in varying sentences.
To the best of our knowledge, we are the first attempt to ex-
plore Gaussian-embedding contextualization.

We conduct extensive experiments on two intrinsic tasks
(word similarity and word entailment) and three types of
extrinsic tasks (single sentence tagging, single sentence
classification and sentence pair classification). The results
show that our approach consistently outperforms state-of-
the-art methods, which validates the effectiveness of the
learned conceptualized and contextualized Gaussian repre-
sentations. Moreover, integrating our Gaussian representa-
tions with advanced point-based contextualizer - BERT (De-
vlin et al. 2019) - achieves further improvement on these
tasks, which shows the complementary information encoded
by our Gaussian representations and proves that Gaussian
embedding can also serve as an effective auxiliary for cur-
rent point-based methods.

1In this paper, we use Gaussian embedding to denote a word
embedding task, and Gaussian representations to denote the word
representations produced by Gaussian embedding.

2The intuition of considering sememes rather than subwords is
that morphologically similar words do not always relate with simi-
lar concepts (e.g., march and match).

Related Work

Point embedding has been an active research area, includ-
ing non-neural (Brown et al. 1992; Blitzer, McDonald, and
Pereira 2006) and neural (Mikolov et al. 2013a,b; Penning-
ton, Socher, and Manning 2014) methods. Recently, incor-
porating morphological subwords (Bojanowski et al. 2017;
Chaudhary et al. 2018; Xu et al. 2018), syntactic structures
(Vashishth et al. 2019; Kulmizev et al. 2019; Levy and Gold-
berg 2014; Li et al. 2017) or external knowledge (Wang
et al. 2014; Yu and Dredze 2014; Liu et al. 2015, 2018; Niu
et al. 2017; Alsuhaibani et al. 2018; Zhang et al. 2019) into
point embedding shows significant improvements. Point-
based contextualizers set out to produce context-sensitive
word representations by integrating contextual information
(Peters et al. 2018; Radford et al. 2018; Devlin et al. 2019).

Recognizing that the point-based world struggles to nat-
urally model entailments among words (e.g., animal en-
tails cat but not the reverse) or other asymmetric relations,
Gaussian embedding emerges to additionally capture uncer-
tainties of words, which can better capture word semantics
and express asymmetries more naturally (than dot product or
cosine similarity in the point-based world). Vilnis and Mc-
Callum (2015) represented the semantic and uncertainty of
each word with the mean and covariance of a Gaussian dis-
tribution. Inspired by multi-prototype embedding that learns
multiple word representations for a word to better capture
the semantics of words (Reisinger and Mooney 2010; Huang
et al. 2012; Tian et al. 2014; Neelakantan et al. 2014), Gaus-
sian mixture embedding (Chen et al. 2015; Athiwaratkun
and Wilson 2017) was proposed to capture the meanings
of polysemous words via multiple Gaussian distributions.
In addition, Athiwaratkun and Wilson (2018) utilized Gaus-
sian embedding to learn hierarchical encapsulation of words.
One drawback of the above approaches was their inability to
represent rare words. To remedy this, Athiwaratkun, Wilson,
and Anandkumar (2018) (the most relevant to our work) rep-
resented a word by the sum of its surface subwords.

Nevertheless, the line of Gaussian embedding: 1) repre-
sents word semantics by utilizing surface subwords with-
out considering the inner-word conceptual knowledge; and
2) produces merely context-agnostic Gaussian representa-
tions due to the lack of tailored contextualizer. The two is-
sues inevitably lead to inferior performance on both intrinsic
(context-agnostic) and extrinsic (context-sensitive) tasks. In
this paper, we first propose a Gaussian embedder that rep-
resents each word by aggregating its conceptual units (se-
memes), which is more credible to capture intrinsic word
semantics than aggregating surface subwords. We then pro-
pose a Gaussian contextualizer to produce contextualized
Gaussian representations for a word in varying sentences for
more potentially-benefited extrinsic tasks.

Gaussian Embedder

Gaussian embedder represents each word w in a pre-defined
vocabulary V as a standard D-dimensional Gaussian distri-
bution Gw:
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Gw ∼ N (µw,Σw) =
e−

1
2 (x−µw)>Σ−1

w (x−µw)√
(2π)D|Σw|

(1)

where the mean vector µw represents the semantics (“po-
sition”) of w and the covariance matrix Σw represents the
uncertainty (“geometric shape”) of w (see Figure 1(b)).
Gaussian embedder aims to learn the model parameters
{(µw,Σw)}w∈V of words from a large-scale corpus.

Note that the most recent Gaussian embedder (Athi-
waratkun, Wilson, and Anandkumar 2018) represents words
merely based on morphological subwords and distributional
hypothesis (Harris 1954), encouraging co-occurring word-
pairs to have closer representations than randomly selected
(negative) ones, which is too implicit to capture uncertain-
ties of words. Instead, our training objective is to model both
the symmetric relation and the asymmetric relation between
words, i.e., explicitly learning which words should be close
to each other and which words should be “fatter” or “thin-
ner”. Meanwhile, the Gaussian representations are expected
to be conceptualized, i.e., perceiving inner-word conceptual
sememes.

Model Training
Obviously, the pairwise relation between a word and its syn-
onym(s)3 is symmetric (e.g., apple resembles peach, and
vice versa) while asymmetric between the word and its hy-
pernym(s) (e.g., fruit entails apple, but not the reverse).
Thus, the objective (loss function) of our Gaussian embed-
der is to jointly model symmetric word relations (i.e., close
positions and similar shapes) and asymmetric word relations
(i.e., close positions and “inclusive” shapes) via words’ syn-
onyms and hypernyms, respectively. Formally, we devise the
following training objective:

L(wc, ws, wh, w
′
s, w

′
h) = max

(
0,m+

αLS(wc, ws, w
′
s) + (1− α)LA(wc, wh, w

′
h)
) (2)

where m serves as a margin; α ∈ (0, 1) is a trade-off pa-
rameter; (wc, ws, wh, w

′
s, w

′
h) is a training example where

ws and wh are a positive synonym and a positive hypernym
of wc respectively; w′s and w′h are a negative synonym and a
negative hypernym of wc respectively; LS(·) aims to model
the symmetric word relations with word-synonym triples
(wc-ws-w′s); LA(·) models asymmetric word relations with
word-hypernym triples (wc-wh-w′h); The training examples
are generated by a word-quintuple sampler, which will be
detailed in the following. The objective would push the like-
lihood of the positive example over the negative one by a
margin m, i.e., pushing the “positions” of a word and its
positive synonym “closer” than its negative synonym, and
meanwhile pushing the “shapes” of the word and its hyper-
nym “more inclusive” than its negative counterpart.

3Based on distributional hypothesis (Harris 1954; Sahlgren
2008) that words occurring in nearby contexts tend to be seman-
tically related. Here, we use “synonym” to denote a semantically-
related word for brevity.

Following Vilnis and McCallum (2015), we employ a
standard inner product to measure the symmetries between
two Gaussian distributions:

LS(wc, ws, w
′
s) = log S(wc, w

′
s)− logS(wc, ws)

S(u, v) =

∫
N (µu,Σu)N (µv,Σv)dx

= −1

2
log |Σu + Σv| −

D

2
log(2π)

− 1

2
(µu − µv)>(Σu + Σv)

−1(µu − µv)

(3)

Besides, we employ Kullback-Leibler (KL) divergence,
which is widely used for representing asymmetries (Athi-
waratkun and Wilson 2018):

LA(wc, wh, w
′
h) = logA(wc, w

′
h)− logA(wc, wh)

−A(u, v) =

∫
N (µu,Σu) log

N (µu,Σu)

N (µv,Σv)
dx

=
1

2
(log
|Σu|
|Σv|

−D + tr(Σ−1
u Σv)

+ (µu − µv)>Σ−1
u (µu − µv))

(4)

where tr(M) denotes the trace of a matrix M . Note the
leading negative sign since KL is a distance function and
not a similarity. Equation 4 can effectively push a word to
be encompassed by its hyponym (Athiwaratkun and Wilson
2018).

Sememe
Inspired by the success of considering conceptual knowl-
edge in point embedding, our Gaussian embedder incorpo-
rates sememe which is the minimum conceptual (semantic)
unit in linguistics (Bloomfield 1926). Linguistic experts con-
structed commonsense knowledge bases where words are
composed of sememes. For instance, HowNet (Dong and
Dong 2003) annotates a word with three-layer concept hier-
archy (word-sense-sememe) and utilizes sememes to differ-
entiate diverse senses of each word (Qi et al. 2018, 2019).
As shown in Figure 2, the word bank is annotated with
three main senses (institution, land and facility)
and the sense land is annotated with two main sememes
(near, and waters). In the remainder, we use the notation
� to denote the (conceptually) subordinating relations. If a
word w contains a sense s and s contains a sememe m, m is
subordinated by w, denoted as m � w.

institution land facility

bankWord

Sense

watersnear storeputSememe finance money borrow

Figure 2: The concept hierarchy of the word bank.
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Gaussian Distribution Attention
To better represent the semantics of a word by utilizing its
concept hierarchy, we aggregate Gaussian representations of
its sememes into its word representation. The intuition is to
“pull” sememe-sharing words closer to each other, similar
to feature-sharing mechanisms (Liu et al. 2019). To achieve
that, inspired by the success of attention mechanism in NLP
tasks, we propose Gaussian Distribution Attention4 (GDA)
to perform dynamic aggregation over sememe representa-
tions. The key difference between GDA and previous at-
tention mechanisms designed for point vectors is that GDA
operates over Gaussian distributions and guarantees the lin-
ear combination property of Gaussian distributions (Dwyer
1958) (i.e., the linear combination of mutually independent
Gaussian variables is still a Gaussian distribution):

∑
βmN (µm,Σm) ∼ N (

∑
βmµm,

∑
β2
mΣm) (5)

Note that all sememe Gaussian representations are inde-
pendently initialized, aggregated and updated; any of them
doesn’t numerically influence another, i.e., without numer-
ical conditional dependence, which makes it possible to
aggregate several sememe Gaussian representations into a
word representation by utilizing the Gaussian property.

In the following, to differentiate words and sememes, we
useN (µ̂m, Σ̂m) to denote the Gaussian representations of a
sememe m. Specifically, the formulation of GDA is:

GDA({Gm|m � w}) ∼ N (βmµ̂m, β
2
mΣ̂m) (6)

where βm is the coefficient of sememe m indicating its im-
portance towards word w, which is calculated as:

βm =
exp

(
LeakyReLU(em)

)∑
m′�w exp

(
LeakyReLU(em′)

)
em = max

l�wi∈S

cos(Wµ̂m,W µ̂l)
(7)

where em is calculated according to the contextual sememes
which are subordinated by contextual words of w in a sen-
tence S = 〈w1, · · · , wi, · · · , wn〉; W ∈ RD×D is the learn-
able parameter of GDA; LeakyReLU is a non-linear acti-
vation unit. Intuitively, the importance of sememe m to w
will be high if similar sememe occurs in the context of wc,
which is a more reliable method than knowledge-free (i.e.,
subword-aggregated) methods.

Word Sampling
We now describe how to sample the word quintuple
{(wc, ws, wh, w′s, w′h)} used in the training objective. Most
of the distributional hypothesis (Harris 1954; Sahlgren
2008) based approaches only select window-based contexts
as “synonyms” (Mikolov et al. 2013a,b; Niu et al. 2017; Xu

4Although similar names, the previous Gauss-style attention
mechanisms (Guo, Zhang, and Liu 2019; Sah et al. 2017; Zhang,
Winn, and Tomioka 2017) use Gaussian-distribution-normalized
weights to score point vectors, while our proposed mechanism here
learns weights to score Gaussian distributions.

et al. 2018; Athiwaratkun, Wilson, and Anandkumar 2018).
That is to say, these approaches select a word within and out-
side a fixed window centered by wc as the positive (ws) and
negative (w′s) synonyms respectively. However, as Vashishth
et al. (2019) indicated, these approaches inevitably neglect
some semantically relevant words lying beyond the win-
dow. To overcome this issue, based on the concept hier-
archies of words, we sample additional positive synonyms
which have common sememes with wc although they lie be-
yond the window. Specifically, in a sentence, for a central
word wc, we sample a word co-occurring with wc in a fixed
window or a word ws sharing common sememes with wc
(∃m,m � wc ∧m � ws) as a positive synonym of wc.

Meanwhile, we observe that a sense of a word in HowNet
usually refers to one of its hypernyms. As Figure 2 shows, a
bank could refer to an institution, a land or a facility. Ben-
efiting from this, for a central word wc, we sample a sense
wh in its concept hierarchy as a positive hypernym of wc.

Negative synonym (w′s) and hypernym (w′h) are sampled
according to a distribution Pn(w′) ∝ U(w′)

3
4 , which is a

distorted version of the unigram distribution U(w′) that also
serves to diminish the relative importance of frequent words
(Mikolov et al. 2013b).

Gaussian Contextualizer
Gaussian embedding produces merely context-agnostic
Gaussian representations due to the lack of tailored con-
textualizer (for downstream tasks) (Vilnis and McCallum
2015; Athiwaratkun and Wilson 2017, 2018; Athiwaratkun,
Wilson, and Anandkumar 2018). Hence, the representation
of words would not be adapted according to their chang-
ing contexts. As such, applying these Gaussian representa-
tions typically leads to inferior performance especially on
context-sensitive tasks such as named entity recognition and
text classification. To this end, we make the first attempt to
propose to produce contextualized Gaussian representations
given a sentence by utilizing the outer-word contexts in vary-
ing sentences.

Considering that 1) Gaussian distributions could be pa-
rameterized by mean vectors (µ) and covariance matrices
(Σ), 2) µ and Σ represent two different aspects: semantics
and uncertainties, and 3) µ and Σ are on different scales
and ranges where µ ∈ (−∞,+∞) but Σ ∈ [0,+∞), we
thus equip the Gaussian contextualizer (C) with two ELMO-
style contextual encoders (Peters et al. 2018) (multi-layer
BiLSTMs) to contextualize semantics and uncertainties re-
spectively. As shown in Figure 3, given a sequence of words
S = 〈w1, w2, · · · , wn〉, for each pretrained (conceptual-
ized) Gaussian representation of wi, we extract its mean
vector and the covariance matrix: µi and ξi (the flatten Σi).
We then pass the two sequential vectors (〈µ1, µ2, · · · , µn〉
and 〈ξ1, ξ2, · · · , ξn〉) through two ELMO encoders (posi-
tion encoder Cµ and shape encoder Cξ), and “assemble” the
context-aggregated outputs as the mean and covariance of
the contextualized Gaussian distribution of wi:

C(N (µi,Σi)) ∼ N
(
Cµ(µi), Cξ(ξi)

)
(8)

Moreover, inspired by Devlin et al. (2019), we can uti-
lize a starting symbol [CLS] and a separating symbol
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µ0 ξ0 µ2 ξ2 µn ξn

[CLS] w1 w2 wn

µ1 ξ1

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

µ0 ξ0~ ~
µ1 ξ1~ ~

µ2 ξ2~ ~
µn ξn~ ~

µ-encoder ξ-encoder

Figure 3: The architecture of our ELMO-style Gaussian con-
textualizer tailored for Gaussian embedding.

[SEP] to unambiguously represent a single sentence or a
sentence pair. It it also worth mentioning that although the
two parts are structurally independent, the parameters of the
two ELMO architectures are jointly updated with the super-
vised signals of a downstream task, so that the contextual-
ized Gaussian representations are dynamically and interac-
tively adapted to the task.

Evaluation
In this section, we refer to the conceptualized Gaussian
embedder as TIGER and the Gaussian contextualizer as
GIANT for brevity. We validate whether our conceptual-
ized Gaussian representations learned by TIGER can capture
symmetric and asymmetric word relations well on intrinsic
tasks, including Word Similarity and Word Entailment. We
also validate whether the contextualized Gaussian represen-
tations generated by GIANT effectively capture the semantic
and syntactic information on three types of extrinsic tasks:
single sentence tagging, single sentence classification and
sentence pair classification. Furthermore, we concatenate
contextualized Gaussian representations with point vectors
produced by BERT (Devlin et al. 2019) to explore whether
our Gaussian embedding can augment point-based methods.

Baselines
We compare the proposed approach against three groups of
representative word embedders:
• The first group of point embedders precisely captures

semantic and syntactic relations of words based on lo-
cal or global co-occurrence statistics in large-scale lin-
guistic corpora. It includes a) WORD2VEC (SKIPGRAM)
(Mikolov et al. 2013a) that captures the semantic simi-
larity of co-occurring word-pairs in a local window; b)
GLOVE (Pennington, Socher, and Manning 2014) that
captures global linguistic information through the fac-
torization of global word co-occurrence matrix; and c)
WORD2SENSE (Panigrahi, Simhadri, and Bhattacharyya
2019) that represents words as sparse points where the
magnitude of each coordinate represents the importance
of the corresponding sense to the word.

• The second group of point embedders utilizes knowledge
bases or syntactic dependencies to improve the quality of
point vectors. It includes a) SEWRL (Niu et al. 2017) that

utilizes inner-word conceptual sememes from HowNet to
capture the semantics of words accurately; b) JOINTREPS
(Alsuhaibani et al. 2018) that utilizes WordNet (Miller
1995) to augment semantic similarity prediction and en-
tailment recognition; and c) SYNGCN (Vashishth et al.
2019) that utilizes dependency structures and graph con-
volutional networks to propagate syntactic information
among words.

• The third group of Gaussian embedders includes a) W2G
(Vilnis and McCallum 2015) that represents each word
with a high-dimensional Gaussian distribution; b) W2GM
(Athiwaratkun and Wilson 2017) that represents each
word with multiple (a.k.a. multi-prototype) Gaussian rep-
resentations to capture word meanings; and c) PFTGM
(Athiwaratkun, Wilson, and Anandkumar 2018) that rep-
resents each word as a Gaussian mixture distribution
where the mean vector of a mixture component is given
by the sum of inner-word subwords.

Implementation Details
We train on a concatenation of two English datasets: UKWAC
and Wackypedia (Baroni et al. 2009), which consists of
3.3 billion tokens. We discard words that occur fewer than
100 times in the corpora, which results in a vocabulary with
216,249 words. The fixed hyperparameters include an em-
bedding dimensionD=300, a marginm=1, the layer of BiL-
STM in GIANT L=2 and a batch size of 128. We also ex-
periment with a linearly decreasing weight α from 1.0 to 0.9
and Adagrad optimizer with a dynamic learning rate from
0.05 to 0.00001. Additionally, following Athiwaratkun and
Wilson (2017), we use the diagonal covariances to reduce
computation complexity from O(D3) to O(D).

Evaluation on Intrinsic Tasks
Does our approach capture symmetric and asymmetric word
relations better? We evaluate the learned symmetric word
relations via word similarity (evaluating the closeness be-
tween two words) and the asymmetric word relations via
word entailment (inferring whether a word is semantically
inclusive in another).

For word similarity (SIM), we evaluate on multiple stan-
dard word similarity datasets: MC (Miller and Charles
1991), MEN (Bruni, Tran, and Baroni 2014), RG (Ruben-
stein and Goodenough 1965), RW (Luong, Socher, and
Manning 2013), SL (Hill, Reichart, and Korhonen 2015),
YP (Yang and Powers 2006) and SCWS Huang et al. (2012).
Each dataset contains a list of word pairs with a real-
valued score of their gold-standard similarity. Following
Athiwaratkun and Wilson (2017), we use cosine similar-
ity (COS) to calculate word similarity between point vec-
tors or the mean vectors of Gaussian representations. We re-
port the Spearman correlation (ρ) (Spearman 1904) between
gold-standard scores and evaluated ones. For word entail-
ment (ENT), we evaluate on the standard word entailment
dataset (SED) (Baroni et al. 2012) which contains hyponym-
hypernym pairs and gold-standard binary labels. Following
Athiwaratkun and Wilson (2017), we use COS and KL di-
vergence (KL) for entailment scoring, produce binary labels
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Method Dim. Word Similarity (ρ) Word Entailment (F1)
MC MEN RG RW SL YP SCWS AVG. SEDCOS SEDKL AVG.

WORD2VEC 300 63.96 70.27 70.01 25.43 29.39 39.34 59.57 51.14 63.79 54.62 59.21
GLOVE 300 70.20 73.75 76.95 33.55 37.05 56.13 55.42 57.58 70.47 67.65 69.06
WORD2SENSE 2,250 80.61 77.25 79.00 37.48 38.83 45.10 72.26 61.50 68.26 70.64 69.45

SEWRL 300 82.69 76.58 73.56 43.15 48.99 59.78 70.80 65.08 75.46 69.39 72.43
JOINTREPS 300 76.61 73.03 78.55 26.91 35.15 54.07 62.28 58.09 76.10 69.61 72.86
SYNGCN 300 82.40 65.65 63.07 40.51 44.75 57.68 63.02 59.58 75.02 66.14 70.58

W2G 300 82.42 78.40 80.34 35.49 38.84 46.40 66.20 61.16 76.49 76.02 76.26
W2GM 300 84.58 78.76 80.95 42.73 39.62 47.12 66.50 62.89 75.31 77.90 76.61
PFTGM 300 80.93 79.65 79.81 49.36 39.60 54.93 67.20 64.50 76.82 78.29 77.56

TIGER 300 85.18 79.85 85.05 50.54 51.50 66.60 72.55 70.20 78.48 82.33 80.40

Table 1: Comparison on the standard word similarity and entailment datasets. For each dataset, we boldface the score with the
best performance and underline the score with the second-best performance across all methods.

(under a best score threshold) and measure the classification
performance via macro-F1 score. Note that COS only con-
siders mean vectors while KL incorporates both means and
covariances; thus, for KL, we associate point vectors with
covariance matrices filled with tiny constant 10−6 to make
them as “tiny balls” (i.e., points).

The results are shown in Table 1, from which we have sev-
eral key observations. 1) Our method TIGER outperforms
all baselines on standard word similarity and entailment
datasets, obtaining 5.70% and 2.84% relative performance
improvement compared to the prior best-performing base-
line (PFTGM) respectively. The results demonstrate that the
learned conceptualized Gaussian representations are capa-
ble of capturing symmetric similarity and asymmetric en-
tailment between words effectively. 2) Specifically, the im-
provement of TIGER over SEWRL which also considers the
sememe HowNet-based hierarchies validates the effective-
ness of employing Gaussian distributions to represent words.
Moreover, TIGER outperforms PFTGM, a Gaussian embed-
der considering subwords instead of sememes, validating
the effectiveness of utilizing concept hierarchies. 3) We can
see that considering inner-word subwords (PFTGM) or se-
memes (SEWRL and TIGER), in comparison to the outer-
word relation incorporated method (JOINTREPS), can effec-
tively improve the ability to express word similarity; while
JOINTREPS is relatively more beneficial on word entailment
recognition. 4) Interestingly, as for the performance differ-
ence between two metrics in entailment recognition, we ob-
serve that considering uncertainties (KL) boosts the per-
formance for the third group of Gaussian embedders. This
shows that uncertainties of Gaussian embedding can effec-
tively capture the “geometric shapes” of words to better ex-
press their asymmetric relation such as entailment, which is
consistent with previous evidence of Athiwaratkun and Wil-
son (2017). This finding thus provides a promising pattern
that considering both semantics and uncertainties to capture
entailment relations in word-semantic studies.

Evaluation on Extrinsic Tasks
Can our Gaussian representations facilitate diverse down-
stream tasks with the help of the Gaussian contextualizer?
We evaluate the contextualized Gaussian representations
on 1) single-sentence-tagging tasks - Part-of-Speech tag-
ging (POS) and Named Entity Recognition (NER) - with
the CoNLL-2003 dataset (Sang and Meulder 2003); 2) sin-
gle text classification task (STC) with the WeBis (Chen
et al. 2019) dataset; and 3) sentence pair classification task
- Recognition Textual Entailment (RTE) - with the RTE-5
(Bentivogli et al. 2009) dataset. For fair comparisons, all the
baseline methods are also contextualized by the proposed
GIANT. Moreover, we perform ablation studies by remov-
ing the contextualization operation (\GIANT), removing the
HowNet (\HowNet; i.e., without the sememe aggregation
mechanism), removing the Gaussian distribution attention
mechanism (\GDA), removing sampling sememe-sharing
words (\SAM; i.e., adopting traditional window-based sam-
pling), and removing uncertainty information while retain-
ing contextualized mean vectors of Gaussian representations
(\ξ) in inference. We follow the standard procedure to train
a task-specific prediction layer (i.e., MLP) on top of GIANT.

The results are summarized in Table 2, from which
we have several key observations. 1) Overall, when pro-
vided with the same contextualizer (i.e., GIANT), TIGER
achieves the best performance on the four downstream tasks,
which validates that conceptual knowledge and Gaussian
embedding are also helpful for extrinsic tasks. 2) The phe-
nomenon that considering outer-word context information
(TIGER+GIANT) consistently boosts the performance on
extrinsic (context-sensitive) tasks shows that incorporating
context information produces dynamic word representations
and is thus beneficial for sentence-level tasks. 3) We can
also see that the variant, \HowNet, hurts the performance
much, indicating that conceptual knowledge incorporation is
indeed effective for capturing word semantics via explicitly
“exposing” sememes. The employed mechanisms, \GDA
and \SAM, are also helpful. 4) Interestingly, we find that
removing the uncertainty information (\ξ) does not hurt the
performance much on the first three tasks. We conjecture
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Method POS NER STC RTE

WORD2VEC + GIANT 66.89 83.67 66.00 55.00
GLOVE + GIANT 77.49 88.15 75.50 55.50
WORD2SENSE + GIANT 73.14 83.16 74.00 55.00

SEWRL + GIANT 79.38 87.29 76.50 56.00
JOINTREPS + GIANT 70.07 83.67 76.50 57.00
SYNGCN + GIANT 79.66 83.57 76.50 57.50

W2G + GIANT 73.02 84.06 67.00 55.00
W2GM + GIANT 73.76 84.38 68.00 56.00
PFTGM + GIANT 74.03 85.74 69.50 56.50

TIGER + GIANT 81.46 89.68 77.50 58.50
\GIANT 67.20 80.85 56.85 45.50
\HowNet 76.88 85.93 71.84 56.98
\GDA 79.66 86.30 76.48 56.48
\SAM 79.89 88.81 75.88 56.77
\ξ 81.40 88.36 77.50 56.50

Table 2: F1-score (%) on four downstream tasks: POS, NER,
STC and RTE. For each dataset, we boldface the score with
the best performance and underline the score with the best
performance across all baselines.

that the reason is that the performance on these tasks mainly
depends on the semantics of words and their uncertainties
are relatively unimportant.

Further Investigations
Does our contextualized Gaussian representations encode
complementary information to advanced point-based con-
textualizers? Recent work has shown that the strong point-
based contextualizer BERT (Devlin et al. 2019) performs
well on diverse NLP tasks (Wang et al. 2019; Lin, Tan, and
Frank 2019). Following Vashishth et al. (2019), we perform
evaluation by concatenating the outputs of pretrained un-
cased BERTBASE and our contextualized Gaussian represen-
tations on the aforementioned six tasks.

The results are reported in Table 3. We can see that BERT
behaves worse on two intrinsic tasks. This is somewhat sur-
prising but consistent with previous findings of Meng et al.
(2019). It is probably because BERT aims to learn context-
aware representations, but the word similarity and entail-
ment evaluation are conducted in a context-free manner.
Thus, BERT is more like a contextualizer rather than a pure
word embedder. Moreover, the results further show that our
conceptualized and contextualized Gaussian representations
indeed encode complementary information which is not cap-
tured by BERT, i.e., the consideration of extra knowledge
can improve the performance of BERT on both intrinsic and
extrinsic tasks consistently. Hence, our Gaussian represen-
tations could serve as an effective combination with other
point vectors by integrating Gaussian representations into
current point-based systems.

Conclusion and Future Work
We proposed a conceptual-knowledge-based Gaussian em-
bedder (TIGER) and a dual-ELMO Gaussian contextual-
izer (GIANT) to produce conceptualized and contextualized

Method + GIANT SIM ENT POS NER STC RTE

BERT 32.22 57.55 87.67 96.40 82.50 62.23
⊕WORD2SENSE 56.73 65.85 87.70 96.40 82.50 62.23
⊕SEWRL 57.04 67.87 88.86 96.50 82.55 62.25
⊕PFTGM 60.23 73.55 89.51 96.95 83.00 62.38
⊕TIGER 63.36 76.96 90.20 96.95 83.00 62.46

Table 3: The average results of concatenating BERT rep-
resentations with GIANT-contextualized representations on
the two intrinsic tasks and four extrinsic tasks.

Gaussian representations. The extensive experiments eval-
uated on multiple intrinsic and extrinsic datasets validate
the effectiveness of the learned conceptualized and contextu-
alized Gaussian representations, consistently outperforming
state-of-the-art methods by a margin.

Here, we list main conclusions/findings as follows: 1)
Equipped with the ability to capture both “positions” and
“shapes”, TIGER can capture the word semantics more pre-
cisely, including symmetric word similarity and asymmetric
word entailment. 2) GIANT can effectively produce contex-
tualized Gaussian representations (first attempt in Gaussian-
embedding studies) to facilitate different types of context-
sensitive tasks. and 3) Our approach provides complemen-
tary information to BERT and thus can also serve as an effec-
tive auxiliary by integrating into current point-based models.

In the future, we are interested to explore more advanced
encoders. For instance, contextualizing Gaussian represen-
tations with two BERT-style encoders may further improve
performance. Besides, according to Dubossarsky, Gross-
man, and Weinshall (2018), random assignment of words to
senses is shown to improve performance in the same task, we
would assign a word to its specific sememe/sense. We hope
this methodology can shed light on the scenarios where the
uncertainty information and asymmetric relation are crucial,
by embedding fruitful semantic information to reduce the
stress of designing downstream algorithms.
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