
On the Softmax Bottleneck of Recurrent Language Models

Dwarak Govind Parthiban, Yongyi Mao, Diana Inkpen
University of Ottawa

yottabytt@gmail.com, ymao@uottawa.ca, diana.inkpen@uottawa.ca

Abstract

Recent research has pointed to a limitation of word-level neu-
ral language models with softmax outputs. This limitation,
known as the “softmax bottleneck” refers to the inability of
these models to produce high-rank log probability (logP)
matrices. Various solutions have been proposed to break this
bottleneck, including Mixture of Softmaxes, SigSoftmax, and
Linear Monotonic Softmax with Piecewise Linear Increasing
Functions. They were reported to offer better performance in
terms of perplexity on test data. A natural perception from
these results is a strong positive correlation between the rank
of the logP matrix and the model’s performance. In this
work, we show via an extensive empirical study that such a
correlation is fairly weak and that the high-rank of the logP
matrix is neither necessary nor sufficient for better test per-
plexity. Although our results are empirical, they are estab-
lished in part via the construction of a rich family of models,
which we call Generalized SigSoftmax. They are able to cre-
ate diverse ranks for the logP matrices. We also present an
investigation as to why the proposed solutions achieve better
performance.

Introduction
This paper is concerned with language models constructed
with recurrent neural networks. Suppose that such a lan-
guage model involves a vocabulary V and a dictionary of
contexts C. The model in effect computes a probability esti-
mate PV|C(v|c) of any token v ∈ V conditioned on a context
c ∈ C, using a softmax function in its output layer. When
such an estimated conditional distribution PV|C(v|c) is rep-
resented as a |C| × |V| matrix P , Yang et al. (2018) proved
that the rank of the logP cannot be larger than d+1 where d
is the word embedding dimension. They also hypothesized
that the logP matrix has to be high-rank as a natural lan-
guage is generally believed to be highly diverse and context-
dependent (Mikolov and Zweig 2012). They called the in-
ability of the softmax function to produce high-rank logP
matrices as the “softmax bottleneck”. They introduced the
“Mixture of Softmaxes” (MoS) layer as a replacement to the
output softmax layer that is generally used in language mod-
els, to break the softmax bottleneck. They also introduced a
variant to MoS called the Mixture of Contexts (MoC) as a

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Metrics Model
SS LMS-PLIF MoS

rank
(reported) 4640 N/A 9980

rank
(ours) 4979 580 9979

perplexity difference
(reported) 0.40 1.11 2.88

perplexity difference
(ours) −0.06 0.43 1.28

Table 1: Perplexity difference (subtracted from the baseline
AWD-LSTM’s perplexity; positive means better than the
baseline and negative means worse) for SS, LMS-PLIF and
MoS models and their respective ranks of the log probabil-
ity matrix logP on the test set of PTB. The reported results
in their respective original papers is compared with our re-
produced results. The rank of the logP matrix produced by
the baseline model that uses the softmax function is 402, as
the embedding dimension d is 400. SS and LMS-PLIF use
d = 400. But MoS uses d = 280.

baseline, which does not break the softmax bottleneck but
has the same parameterization as in MoS. In MoC, the mix-
ing is done for the context vectors rather than the probabili-
ties as in MoS.

Inspired by the work of Yang et al. (2018), there are sev-
eral works in the recent literature (Kanai et al. 2018; Takase,
Suzuki, and Nagata 2018; Yang et al. 2019; Ganea et al.
2019) that propose other approaches to overcome the limi-
tation imposed by the softmax bottleneck, including, for ex-
ample, “SigSoftmax” (SS) (Kanai et al. 2018) and “Linear
Monotonic Softmax with Piecewise Linear Increasing Func-
tions” (LMS-PLIF). Specifically, the SS function is used as
a replacement for the softmax function, and the LMS-PLIF
is a learnable piecewise linear increasing function that is ap-
plied on the logits before they are sent to the softmax func-
tion. The successes of SS, LMS-PLIF and MoS seem to have
implied that there is a strong correlation between the perfor-
mance of a language model and the rank of its logP ma-
trix and that the performance improvements demonstrated
in these models are largely attributed to their high ranks.

As all the approaches in existing works were patched

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

13640

on the baseline AWD-LSTM model (Merity, Keskar, and
Socher 2018), frequently we will denote a model’s name by
just mentioning the approach. Hence, we will also mention
the baseline AWD-LSTM model as the Softmax model.

The starting point of this work is some puzzling obser-
vations we obtained concerning SS, LMS-PLIF, and MoS.
In our experiments, we reproduced the results of the base-
line AWD-LSTM model and its SS, LMS-PLIF, and MoS
counterparts. The models were trained on the Penn Tree-
bank (PTB) dataset. Rank values for logP matrices com-
puted from all learned models were obtained in addition
to the testing perplexities. These results together with the
corresponding results reported in the respective papers are
shown in Table 1. In this table, we see that a higher rank
does not seem to correlate with improved performance in
terms of test perplexity. For example, the logP matrix pro-
duced by SS has much higher rank than LMS-PLIF, but it
performs visibly worse than LMS-PLIF; the purpose of in-
troducing LMS-PLIF is to produce a high-rank logP matrix
but the rank is not as high as the those from SS and MoS and
yet LMS-PLIF performs better than the baseline and SS.

To better understand the relationship between the rank of
the logP matrix and the model’s performance and to explain
the puzzling observations, this work takes a systematic route
of investigation, which we here outline.

The first question we aim to answer is: is the rank of the
logP matrix truly correlated with performance?

For that purpose, we construct a family of functions which
we call Generalized SigSoftmax (GSS), which, when used to
replace the softmax function in the baseline language model,
is capable of producing logP matrices with diverse ranks.
Via an empirical study using these models, we show that
there is only a fairly weak correlation between the rank of
the logP matrix and the test perplexity. We also perform a
qualitative analysis on Softmax, SS, GSS, LMS-PLIF, MoS,
and MoC models to see how well the model’s ability to pro-
duce high-rank logP matrix correlates with its ability to
make better context-dependent predictions. For a selected
set of contexts, our results suggest that no strong correlation
can be concluded. Going beyond the perplexity metric, we
perform additional experiments where we use the word em-
beddings learned from these models in several downstream
word similarity tasks. An analysis of the experimental re-
sults suggests that a high-rank language model does not nec-
essarily learn word embeddings with a better quality, at least
for these word similarity benchmarks.

These results cast serious doubts on the existence of
strong correlation between a model’s performance and its
ability to produce high-rank logP matrices. But before we
daringly reject this possibility, we move on to investigate an-
other related question: Are the performance improvements
(in terms of perplexity) brought by MoS and LMS-PLIF due
to the high ranks in their logP matrices?

As seen in Table 1 and also confirmed in our many addi-
tional experiments in this work, the logP matrix produced
by LMS-PLIF in fact has a fairly low rank. Thus we suggest
that the performance advantage of LMS-PLIF is not much
related to its rank or its ability to “break the softmax bottle-
neck” as was claimed by the authors. Through an investiga-

tion using a delicate experiment, we suggest that the good
performance of LMS-PLIF is more likely due to an implicit
regularization effect.

To justify that MoS is able to perform better because of
breaking the softmax bottleneck, Yang et al. (2018) showed
that there is a positive correlation between the rank of the
logP matrices produced by MoS models (using different
number of mixtures K) and the performance in terms of test
perplexity. They also showed that, till the rank of the logP
matrix becomes full-rank, increasing K helps in increasing
the test performance of the model. Through a series of ex-
periments, we show that it is possible to increase the rank of
the logP matrix without increasing K and without a posi-
tive correlation with test performance; we speculate that the
point after which increasing K does not help is actually due
to the overfitting resulting from an increased capacity; and
we also show how the hyperparameters used by MoS could
have been an advantage for its better performance.

Overall the extensive experimental study performed in
this work suggests that the performance of a well-trained
model is not necessarily correlated well with the rank of its
logP matrix. Through this study, we conclude that a high
rank of the logP matrix is neither necessary nor sufficient
for a language model to perform well. Other factors, such
as regularization and hyperparameter tuning, may interact
closely with model’s capacity and inductive bias, and play
an important role in the model’s performance.

Experimental Setup for Fair Comparisons
The experimental setup and results that substantiate the
claims in this paper are fully mentioned in Supple-
mentary Material (SM) if they are only partially men-
tioned here. The SM and code can be accessed at
https://github.com/yottabytt/awd-lstm-lmkit .

Code and Datasets Most of our implementation is based
on the open source code released by the authors of AWD-
LSTM and MoS. Following previous works (Yang et al.
2018; Kanai et al. 2018; Ganea et al. 2019), for our lan-
guage modeling experiments, we use the Penn Treebank
(PTB) (Marcus, Santorini, and Marcinkiewicz 1993) and the
WikiText-2 (WT2) (Merity et al. 2017) datasets. The vocab-
ulary sizesN = |V| of PTB and WT2 are 10,000 and 33,278
respectively. To analyze the quality of learned word embed-
dings from language models on downstream word similar-
ity tasks, we evaluate (Faruqui and Dyer 2014) the learned
embeddings on 13 benchmark datasets namely WS-353
(Finkelstein et al. 2001), WS-353-REL (Agirre et al. 2009),
WS-353-REL (Finkelstein et al. 2001), RG-65 (Rubenstein
and Goodenough 1965), MC-30 (Miller and Charles 1991),
MTurk-287 (Radinsky et al. 2011), MTurk-771 (Halawi
et al. 2012), MEN (Bruni et al. 2012), YP-130 (Yang and
Powers 2006), VERB-143 (Baker, Reichart, and Korho-
nen 2014), RW-STANFORD (Luong, Socher, and Manning
2013), SimVerb-3500 (Gerz et al. 2016), and SimLex-999
(Hill, Reichart, and Korhonen 2015).

Hyperparameter Configuration To train an AWD-
LSTM based model, there is a hyperparameter called the

13641

non-monotone interval n that is used to switch the optimiza-
tion algorithm from SGD to Averaged SGD. This approach
is called Non-Monotonically Triggered Averaged SGD (NT-
ASGD). The authors of the AWD-LSTM reported that n =
5 worked the best across both PTB and WT2 datasets. But
Takase, Suzuki, and Nagata (2018) showed that n with val-
ues other than 5 worked even better. There are other works
(Wang, Gong, and Liu 2019; Ganea et al. 2019; Wang et al.
2020) in which the switch is made explicitly after 200th
epoch. We call this approach as Epoch Triggered Averaged
SGD (ET-ASGD). We empirically observed that ET-ASGD
works better than NT-ASGD with n = 5 for all existing
works that are based upon the AWD-LSTM model. The rea-
son for a consistent difference between the reported and the
reproduced reduction in test perplexities as seen in Table 1
is partly because of our use of ET-ASGD for all the models.
Hence, we mostly use ET-ASGD for all our experiments.
We use NT-ASGD only for the purpose of investigating the
claims made in the literature which are based out of the re-
sults obtained using NT-ASGD. We emphasize that for a
fair comparison between any two models, both should use
either NT-ASGD (same n) or ET-ASGD (same epoch num-
ber) during training. For rest of the hyperparameters that are
common to all models, we use the same values as that of
the baseline AWD-LSTM model, except for MoS and MoC,
for which we use the values used by the authors of MoS
(Yang et al. 2018), because there is a significant number of
hyperparameters whose values are different when compared
to those used by the authors of AWD-LSTM. Though it is
not fair, changing all of them in one shot could turn out to be
disadvantageous to MoS and MoC. But we will be address-
ing this difference in more detail and its potential impact on
model’s performance later in this work.

Rank Calculation The learned language model is evalu-
ated on the test set to construct the logP matrices. For all
contexts c ∈ C in the test set, the log of conditional probabil-
ity distribution over the tokens in the vocabulary logP (V|c)
computed by the model are vertically stacked together re-
sulting in a logP matrix of size |C| × |V|. In PTB and WT2
datasets, there are 82,430 and 245,370 contexts in their re-
spective test sets. In the case of the PTB dataset, we use
all 82,430 contexts to construct the logP matrix. However
for WT2, due to time and space complexities involved, we
consider only the first 33,320 contexts. Following previous
works (Yang et al. 2018; Kanai et al. 2018; Ganea et al.
2019), we perform SVD on the logP matrix to get the sin-
gular values and then use Press et al. (2007)’s approach to
identify non-zero singular values for calculating the rank of
the logP matrix.

Statistical Significance Tests Wherever there is a need to
claim that one language model is statistically significantly
better than the other, we train each of the model 10 times
using 10 randomly sampled seeds for the random initializa-
tion of the parameters of the model, and then evaluate each
instance of the model on the test set resulting in a sample
of test perplexities with sample size being 10. Finally, the
p-value between the samples of test perplexities from two
different models is calculated using an unpaired t-test. Con-

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y x

P̃L(x; 2, 4)

PL(x; 2, 4)

P̃L(x; 0, 2)

PL(x; 0, 2)

Figure 1: P̃L(x; c, k) vs PL(x; c, k)

ventionally, a p-value less than 0.05 is required to say that a
model A is statistically significantly better than a model B.

GPUs All model training and evaluation were conducted
using NVIDIA’s V100 GPUs with 32GB of memory. To
train a single instance of a model, we use only one GPU
and not multiple GPUs.

Is Rank Correlated with Performance?
Generalized SigSoftmax
Kanai et al. (2018) introduced the SigSoftmax (SS) function
as an alternative to the softmax function, which can be de-
fined as:

SS(lz) =
exp(lz)σ(lz)∑N
i=1 exp(li)σ(li)

(1)

where lz is the z-th component in the logits vector. SS(lz)
can also be written in terms of softmax as softmax(2lz −
ln(1+ exp(lz))). This dual form of SS(lz) served as a start-
ing point for our approach. First, we define a piecewise lin-
ear function with two pieces and two parameters c and k as:

PL(x; c, k) =

{
x x > c

k(x− c) + c x ≤ c (2)

Note that equation 2 is a generalization to the Parametric
ReLU function (He et al. 2015). Now, we introduce a smooth
approximation of the function in equation 2 as:

P̃L(x; c, k) = k(x− c) + c

− (k − 1) softplus(x− c) (3)

P̃L is a smooth approximation of PL because,

as x→∞, P̃L(x; c, k)→ x

as x→ −∞, P̃L(x; c, k)→ k(x− c) + c

This can also be seen in Figure 1. Now, we can represent
SS(lz) in terms of P̃L:

SS(lz) = softmax(P̃L(lz; 0, 2)) (4)

13642

58.6 57.6 56.6
0

5000

10000
R

an
k

Trained on PTB

67.0 65.5 64.0

Trained on WT2

Test ppl

Figure 2: Correlation between the rank of the logP matrices
and perplexity calculated on the test set for several models
that use different values for the parameters c and k of GSS.
On the PTB dataset, the Pearson correlation coefficient is
0.48. On WT2, it is 0.53.

Finally, we define Generalized Sigsoftmax (GSS) as follows:

GSS(lz; c, k) = softmax(P̃L(lz; c, k)) (5)

Despite being members of the same family (GSS), softmax
and SS had resulted in distinct ranks for their logP matrix
(Table 1), which is our inspiration that other members of
the family may allow us to produce diversely ranked logP
matrices, and having such matrices can help us in better un-
derstanding the consequences of breaking the softmax bot-
tleneck.

Correlation between Rank of the logP Matrix and
Perplexity on Test Set
To empirically show that the models using GSS(lz; c, k) can
produce logP matrices with diverse ranks, we grid search
over the cross product of c = {0.5 x | x ∈ [−4, 4]}
and k = {0.25 x | x ∈ [5, 12]} on the PTB dataset, and
over the cross product of c = {0.5 x | x ∈ [−4, 4]} and
k = {0.5 x | x ∈ [3, 6]} on the WT2 dataset. Note that we
fix the values for c and k before training. The ranks of the
logP matrices produced by these models along with their
test perplexities are shown in Figure 2, in which we can see
that GSS is indeed able to produce logP matrices with di-
verse ranks. For all our further experiments concerning GSS,
the parameters (c, k) are (−1.5, 2.5) and (−1.5, 3) for PTB
and WT2 datasets respectively. We picked these values for c
and k arbitrarily from the set of (c, k) pairs that result in a
high-rank logP matrix as well as a lower test perplexity.

On both PTB and WT2 datasets, the Pearson correlation
coefficients for the relationship between the two variables
of interest (1. The rank of the logP matrix, 2. The test per-
plexity) is around 0.50. To the best of our knowledge, in-
terpreting the correlation coefficient and classifying them
into correlation classes such as weak, moderate, and strong
is not standardized and is dependent on the context where
it is used. If we exclude the outliers and consider only the
test perplexity range of [56.6, 57.6] for the PTB dataset and

[64.0, 65.0] for the WT2 dataset, the Pearson correlation co-
efficient drops to 0.24 and 0.21 on PTB and WT2 datasets
respectively. Now, we can safely conclude that the correla-
tion between the two variables of interest is fairly weak.

Quantitative Comparison

We compare Softmax, SS, GSS, LMS-PLIF, and MoS mod-
els on both PTB and WT2 datasets. Each of these models
were trained 11 times using 11 different seeds (10 randomly
sampled seeds and the reported seed by respective authors)
for the random initialization of model parameters. All mod-
els were trained till they converged. We report the mean and
one standard deviation for performance metrics. The results
are shown in Table 2. On the PTB dataset, we could see that
SS and GSS models are not statistically significantly bet-
ter than the Softmax model, as the p-values are greater than
0.05 despite their differences in the rank of the logP ma-
trix. On the WT2 dataset, though SS and GSS models are
statistically significantly better than the Softmax model, the
relative performance improvements in terms of test perplex-
ity are very minimal. On both datasets, LMS-PLIF and MoS
models are statistically significantly better than the Softmax
model. The relative performance improvements when com-
pared with the Softmax model is small for LMS-PLIF and
indeed noteworthy for MoS.

Qualitative Analysis

Yang et al. (2018) conducted a qualitative analysis by com-
paring the quality of predictions made by MoS and MoC
models. They cherry-picked six different contexts from the
test set of PTB and compared the top-5 predictions made
by MoS and MoC models. They showed that MoS was able
to get the true next-token among its top-5 predictions for
all the six contexts, but MoC did not get the true token
among its top-5 predictions for any of the contexts. They
claimed that MoS was able to make such accurate context-
dependent predictions because of its ability to produce high-
rank logP matrices. We redo the same analysis but we also
include Softmax, SS, GSS, LMS-PLIF models in addition
to MoS and MoC. Remember that all these models were
trained by us using ET-ASGD. The test perplexity of MoC
on PTB is 55.81. As they had used NT-ASGD, we also in-
clude MoS∗ and MoC∗ models that were trained by us using
NT-ASGD whose test perplexities are 56.07 and 57.40 re-
spectively, whereas their reported test perplexities are 55.97
and 57.55. In addition to the six contexts cherry-picked by
them, we cherry-picked a different set of six contexts that
we believe is challenging for the models to make the right
context-dependent prediction. Also, we included another six
randomly selected contexts. In Figure 3, note that for the
contexts cherry-picked by them, there is always a low-rank
model that is able to get the true token among its top-5 pre-
dictions, in addition to a high-rank model if any. We can ob-
serve the same for the contexts cherry-picked by us as well
as the randomly chosen contexts. Hence, we believe that a
model’s qualitative performance has no strong correlation
with its ability to produce high-rank logP matrices.

13643

Model #Param
Time

(/epoch)
Train
ppl

Validation
ppl

Test
ppl

p-value (compared
with Softmax)

Rank (of
logP matrix)

Penn Treebank dataset
Softmax 24.22M ∼55s 33.91±0.25 59.55±0.12 57.08±0.09 N/A 402±0

SS 24.22M ∼57s 32.87±0.19 59.69±0.15 57.05±0.15 3.92 ×10−1 5,113±85
GSS 24.22M ∼58s 33.68±0.32 59.51±0.13 57.00±0.14 2.62 ×10−1 8,904±57

LMS-PLIF 24.32M ∼59s 36.67±0.30 59.08±0.09 56.80±0.11 1.91 ×10−5 496±83
MoS 21.50M ∼100s 31.84±0.23 57.14±0.26 54.91±0.26 2.02 ×10−15 9,981±2

WikiText-2 dataset
Softmax 33.55M ∼72s 39.32±0.14 67.57±0.14 64.63±0.08 N/A 402±0

SS 33.55M ∼83s 39.29±0.17 67.28±0.16 64.35±0.17 3.46 ×10−4 6,634±46
GSS 33.55M ∼87s 39.42±0.41 67.35±0.22 64.50±0.13 2.74 ×10−2 10,122±72

LMS-PLIF 33.65M ∼93s 41.13±0.15 67.15±0.21 64.16±0.17 2.98 ×10−7 524±74
MoS 34.90M ∼600s 36.17±0.30 64.54±0.36 61.96±0.40 2.04 ×10−13 15,734±188

Table 2: Performance comparison between different models after each model was trained 11 times using 11 different seeds for
random initialization of the parameters in the model. Values mentioned as x± y denote the mean± one standard deviation. For
unpaired t-tests, the sample size of test perplexities is 10 and not 11, as we consider only the model instances whose parameters
were randomly initialized using the 10 randomly sampled seeds. More details in SM Table 1.

1 2 3 4 5 6
Yang et al.
 (2018)'s

 cherry-picked
 contexts

GSS
LMS-PLIF

MoC
MoC*
MoS

MoS*
SS

Softmax

1 2 3 4 5 6
Our

 cherry-picked
 contexts

1 2 3 4 5 6
Randomly
 selected
 contexts

Figure 3: Non-black colored cells ci,j denote that the model
i got the true next-token among its top-5 predictions for the
given context j. Otherwise, black colored. MoS∗ and MoC∗
were trained using NT-ASGD. Rest of the models use ET-
ASGD. More details in SM Table 2.

Analysis on Word Embeddings
Among the trainable parameters of all these models, word
embeddings are the ones that can be evaluated using differ-
ent well-known techniques. Hence, the learned embeddings
from Softmax, SS, GSS, LMS-PLIF, MoS, and MoC models
are evaluated on 13 word similarity benchmark datasets, to
identify if there is any additional benefit in having a high-
rank language model, and the results are pairwise compared
with each other. The results are shown in Figure 4. One of
the key observation is that MoC’s embeddings has a bet-
ter Spearman’s correlation coefficient than that of MoS on 8
word similarity benchmarks when the models were trained
on PTB. Similarly, on WT2, MoC’s embeddings performs
better than that of MoS on 12 benchmarks. Remember that
MoC does not break the softmax bottleneck. Hence, we state
that a model which can produce a high-rank logP matrix
does not necessarily learn better embeddings, at least on

G
SS

LM
S-
PL

IF
M
oC

M
oS SS

So
ft
m
ax

GSS
LMS-PLIF

MoC
MoS
SS

Softmax

7 7 9 6 6
5 7 9 6 5
6 6 8 5 5
4 4 5 4 4
7 7 8 9 6
6 8 8 9 7

Trained
 on PTB

G
SS

LM
S-
PL

IF
M
oC

M
oS SS

So
ft
m
ax

12 9 10 9 11
1 6 10 2 4
4 7 12 4 7
3 3 1 3 3
4 10 9 10 10
2 9 6 10 3

Trained
 on WT2

Figure 4: Each cell cij denotes the number of benchmarks
on which the embeddings from the model i has better Spear-
man’s correlation coefficient than those from the model j.
On PTB, MoS and MoC use d = 280, rest use d = 400. On
WT2, MoS and MoC use d = 300, rest use d = 400. More
details in SM Table 3.

these word similarity benchmarks.

Is the Better Performance of LMS-PLIF Due
to High Rank?

As seen in Table 2, we know that the rank of the logP matrix
produced by LMS-PLIF on both PTB and WT2 datasets is
fairly low, but the model has a better test performance than
the Softmax and SS models. Hence, we set out to find the
reason for its better test performance. In LMS-PLIF model,
the PLIF layer is responsible to learn a piecewise linear in-
creasing function. Essentially, the parameters in the PLIF
layer that gets learned are the slopes of several lines (pieces).
As LMS-PLIF introduces these additional trainable param-
eters unlike SS and GSS models, we attempt to find the im-
pact of PLIF layer on the performance of LMS-PLIF model.

13644

Dataset
Train
ppl

Validation
ppl

Test
ppl

PTB 37.16±0.24 59.23±0.11 56.83±0.10
WT2 41.67±0.15 67.22±0.13 64.28±0.17

Table 3: Performance of LMS-PLIF† in which the PLIF
layer is frozen.

Dataset Test ppl p-value
LMS-PLIF LMS-PLIF†

PTB 56.81 ± 0.11 56.82 ± 0.09 8.26 ×10−1
WT2 64.15 ± 0.17 64.30 ± 0.17 6.41 ×10−2

Table 4: p-value from an unpaired t-test between samples of
test perplexities of LMS-PLIF† and that of LMS-PLIF. The
sample size is 10.

We freeze the PLIF layer so that the randomly initialized
slope values remain constant and do not get changed dur-
ing training. As shown in Table 4, if we compare the LMS-
PLIF model against LMS-PLIF† in which the PLIF layer is
frozen, we can see that LMS-PLIF is not statistically signif-
icantly better than LMS-PLIF† on both the datasets in terms
of test perplexity. What we could potentially infer from this
observation is that either the learned slopes are not better
than the randomly initialized slopes or the slopes are not
getting learned well enough. Note that LMS-PLIF† is ex-
actly the same as the Softmax model except for the constant
changes made to the logits before passing them to the soft-
max function. We get another interesting insight when the
LMS-PLIF† model (Table 3) is compared against the Soft-
max model (Table 2). If we look at the perplexities of both
these models, we can see that LMS-PLIF† has traded its per-
formance on the training set for a small performance gain on
its validation and test sets, which is essentially a form of reg-
ularization. Hence, we suggest that the better performance of
LMS-PLIF is more likely due to this implicit regularization
because of the PLIF layer.

Is the Better Performance of MoS Due to High
Rank?

To verify the role of rank in the better performance of MoS,
Yang et al. (2018), on the PTB dataset, showed that increas-
ing the number of mixturesK lead to an increase in the rank
of the logP matrix, and observed a positive correlation be-
tween the rank of the logP matrix and test performance. We
repeated this experiment on both PTB and WT2 datasets and
observed the same (SM Tables 4 and 5). We also conducted
an experiment on the WT2 dataset to show that it is possible
to increase the rank of the logP matrix without increasing
K. As shown in Figure 5, we fix K = 15 and decrease the
dropout rates applied to the MoS layer, and observe a neg-
ative correlation between the rank of the logP matrix and
test performance. Hence, we think that the rank of the logP
matrix being high is just a by-product and doubt the claim
that it plays a major role for the better test performance of
MoS.

10 15 20
#Mixture

62.75

63.25

63.75Te
st

 p
pl

0.290 0.145 0.000
Dropout

63

66

69Te
st

 p
pl

#Mixture=15

13000

16000

19000

R
an

k

11000

13000

15000

R
an

k

Figure 5: Positive (left) and negative (right) correlation be-
tween the rank of the logP matrix and test performance (in
terms of perplexity) for MoS models trained on WT2.

1 10 20

40

50

60

Pe
rp

le
xi

ty

10 15 20

19.05 20.62 22.37 33.92 34.90 35.88

#Mixture

#Parameter
 (in millions)

Trained on PTB Trained on WT2

Train Test

Figure 6: Relationship between the number of mixtures, ca-
pacity (in terms of model parameters), and the performance
(in terms of perplexity) for trained MoS models.

Then, to understand why MoS is able to have a better test
performance when K is increased, we look at the relation-
ship between K and the capacity (in terms of parameters)
for MoS models on both PTB and WT2 datasets. As shown
in Figure 6, increasing K actually increases the capacity of
the model which might have been the reason forK’s positive
correlation with better test performance. Yang et al. (2018),
on the PTB dataset, had showed that using K = 15 result
in an almost full-rank logP matrix, and stated that further
increasing the value of K leads to overfitting as there is no
more room for improvement in the rank of the logP ma-
trix. We speculate that the overfitting is actually because of
further increasing the capacity, which results in a wider gen-
eralization gap (Figure 6).

Yang et al. (2018) used a different set of hyperparameters
for MoS on both PTB and WT2 datasets when compared
to the baseline Softmax model, which we think as unfair.
The differences in hyperparameters were few in the case
of PTB when compared to WT2. Also for MoS, it is less
time consuming to conduct extensive experiments on PTB
over WT2. Hence, we set out to do a fair comparison be-
tween MoS and Softmax models on the PTB dataset. To be-
gin with, we want to highlight three hyperparameters that
are different in MoS namely the training batch size (bsz),
the context vector dimension (d′), and the embedding vector
dimension (d). Note that the context vector in AWD-LSTM
based models is the output from the top-most LSTM layer.
The MoS model uses bsz = 12, d′ = 620, and d = 280
whereas the Softmax model uses bsz = 20, d′ = 400,
and d = 400. Having such a high context vector dimen-

13645

Model
Train
ppl

Validation
ppl

Test
ppl

MoS† 42.45±1.03 58.53±0.17 56.39±0.19
Softmax‡ 40.87±0.18 58.61±0.10 56.45±0.10

Table 5: Fair comparison between MoS† and Softmax†mod-
els on the PTB dataset. MoS† and Softmax† have 17.53M
and 17.56M parameters respectively.

sion can be advantageous for the MoS model as it could
encode much more context information. Hence, for a fair
comparison, we make bsz = 12 and d′ = d = 280 for
both MoS and Softmax models which we call as MoS† and
Softmax† respectively. The MoS† model would then have a
total of 17.53M parameters whereas Softmax† would have
only 16.35M parameters. This difference is due to the ad-
ditional trainable parameters introduced by the MoS layer.
For rest of the regularization hyperparameters like dropouts
and weight decay, we perform a small-scale hyperparame-
ter finetuning for the Softmax† model to make it perform as
good as the MoS† model. However, we were not success-
ful. We assume that it could be because of the less capacity
of the Softmax† model. Hence, we made the models under
comparison to have a comparable capacity in terms of the
number of parameters. To do so, we make d′ = d = 340
for the Softmax model, which we call Softmax‡ that has a
total of 17.56M parameters which is comparable to that of
MoS†. We once again perform a hyperparameter finetuning
for Softmax‡ to make its performance as good as the MoS†.
We were also fair to the MoS† model by finetuning its reg-
ularization hyperparameters for an even better performance.
The details about hyperparameter finetuning are in SM Sec-
tion 2. Finally, when MoS† is compared against Softmax‡,
we observe that MoS† is not statistically significantly bet-
ter than Softmax‡, as the p-value is 0.62. We are aware that
there could be another set of hyperparameters with which
the MoS model could perform significantly better than Soft-
max model and vice-versa. But we speculate that either the
better performance of MoS model in general could be due to
its inductive bias or the Softmax model can be made to per-
form as good as the MoS model when it is made to encode a
better inductive bias through techniques like regularization
and if the comparison is fair.

Conclusions and Further Discussion
We showed that the high rank of the logP matrix is neither
necessary nor sufficient for the better performance of a re-
current language model. We suggested that an implicit regu-
larization due to the PLIF layer is more likely the reason for
LMS-PLIF’s better performance. We also suggested that the
high-rank logP matrix produced by MoS could just be a by-
product and speculate that the better performance of MoS in
general could primarily be due to various other factors that
deal with inductive bias and capacity of the model.

Fast Singular Value Decay We also inspected the singu-
lar value distributions resulting from the SVD of the logP
matrices. Though there were differences on a log scale (SM

0 200 400
0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 S

in
gu

la
r

Va
lu

e

0 200 400

Trained on PTB Trained on WT2

Index

Softmax SS GSS LMS-PLIF MoS

Figure 7: Normalized singular values obtained from the
SVD of logP matrices. For better visibility, the range of
y-axis is limitted to [0.0, 0.2] and only the first 500 indices
are shown in the x-axis.

Model
Press’
rank

Effective rank
for various ε

10−3 10−4 10−5

Penn Treebank dataset
Softmax 402 52 201 306

SS 4,979 100 297 1,038
GSS 8,989 100 559 3,456

LMS-PLIF 580 50 198 335
MoS 9,983 81 1,521 6,428

WikiText-2 dataset
Softmax 402 27 141 274

SS 6,590 54 249 1,201
GSS 10,145 60 391 2,988

LMS-PLIF 513 29 150 287
MoS 15,738 49 773 5,982

Table 6: Comparison between Press’ rank and ε-effective
rank

Figures 2 and 4), the distributions look more or less the same
when the singular values were normalized to [0,1] as seen
in Figure 7. Also, the decay rate of all these distributions
seems to be very high. Hence, we suspect that the rank val-
ues calculated using Press et al. (2007)’s approach could be
an overestimate of the effective rank. To support our sus-
picion, we introduce an alternative metric for calculating
the rank which we call ε-effective rank. Let σ1, σ2, .., σn be
the singular values resulting from the SVD of a logP ma-
trix. Then, the smallest value for k, to which the inequality∑k

i=1 σ
2
i ≥ (1 − ε)∑n

i=1 σ
2
i ∀ε ∈ [0, 1] holds true, is de-

fined as the ε-effective rank. In words, “the smallest number
of singular values whose squares sum to equal or more than
1−ε fraction of the total sum of squares of singular values” is
called the ε-effective rank. We compare Press et al. (2007)’s
rank and ε-effective rank for the logP matrices produced by
different models. As shown in Table 6, it seems that Press
et al. (2007)’s rank is most likely an overestimate. We dis-
cuss more about Press’ rank vs ε-effective rank on our SM’s
Section 5.

13646

Acknowledgements
This research was funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC). The
experiments were enabled by the support provided by
Calcul Quebec (www.calculquebec.ca), Compute Ontario
(www.computeontario.ca), West Grid (www.westgrid.ca),
and Compute Canada (www.computecanada.ca). We also
thank Octavian Ganea and Lingxiao Wang for sharing their
code with us.

References
Agirre, E.; Alfonseca, E.; Hall, K. B.; Kravalova, J.; Pasca,
M.; and Soroa, A. 2009. A Study on Similarity and Related-
ness Using Distributional and WordNet-based Approaches.
In Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Lin-
guistics, Proceedings, 19–27.
Baker, S.; Reichart, R.; and Korhonen, A. 2014. An Unsu-
pervised Model for Instance Level Subcategorization Acqui-
sition. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, 278–289.
Bruni, E.; Boleda, G.; Baroni, M.; and Tran, N. 2012. Dis-
tributional Semantics in Technicolor. In Proceedings of the
50th Annual Meeting of the Association for Computational
Linguistics, 136–145.
Faruqui, M.; and Dyer, C. 2014. Community Evaluation and
Exchange of Word Vectors at wordvectors.org. In Proceed-
ings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics, 19–24.
Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.;
Solan, Z.; Wolfman, G.; and Ruppin, E. 2001. Placing search
in context: the concept revisited. In Proceedings of the Tenth
International World Wide Web Conference, 406–414.
Ganea, O.; Gelly, S.; Bécigneul, G.; and Severyn, A. 2019.
Breaking the Softmax Bottleneck via Learnable Monotonic
Pointwise Non-linearities. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of
PMLR, 2073–2082.
Gerz, D.; Vulic, I.; Hill, F.; Reichart, R.; and Korhonen, A.
2016. SimVerb-3500: A Large-Scale Evaluation Set of Verb
Similarity. CoRR abs/1608.00869.
Halawi, G.; Dror, G.; Gabrilovich, E.; and Koren, Y. 2012.
Large-scale learning of word relatedness with constraints.
In The 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1406–1414.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. In International Conference on
Computer Vision, 1026–1034.
Hill, F.; Reichart, R.; and Korhonen, A. 2015. SimLex-999:
Evaluating Semantic Models With (Genuine) Similarity Es-
timation. Computational Linguistics 41(4): 665–695.
Kanai, S.; Fujiwara, Y.; Yamanaka, Y.; and Adachi, S. 2018.
Sigsoftmax: Reanalysis of the Softmax Bottleneck. In Ad-
vances in Neural Information Processing Systems, 284–294.

Luong, T.; Socher, R.; and Manning, C. D. 2013. Better
Word Representations with Recursive Neural Networks for
Morphology. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning, 104–113.
Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A.
1993. Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics 19(2): 313–330.
Merity, S.; Keskar, N. S.; and Socher, R. 2018. Regularizing
and Optimizing LSTM Language Models. In 6th Interna-
tional Conference on Learning Representations.
Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R. 2017.
Pointer Sentinel Mixture Models. In 5th International Con-
ference on Learning Representations.
Mikolov, T.; and Zweig, G. 2012. Context dependent re-
current neural network language model. In IEEE Spoken
Language Technology Workshop, 234–239.
Miller, G.; and Charles, W. 1991. Contextual correlates of
semantic similarity. Language and Cognitive Processes 6:
1–28.
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flan-
nery, B. P. 2007. Numerical recipes: the art of scientific
computing, 3rd Edition. Cambridge University Press.
Radinsky, K.; Agichtein, E.; Gabrilovich, E.; and
Markovitch, S. 2011. A word at a time: computing
word relatedness using temporal semantic analysis. In
Proceedings of the 20th International Conference on World
Wide Web, 337–346.
Rubenstein, H.; and Goodenough, J. B. 1965. Contextual
correlates of synonymy. Communications of the ACM 8(10):
627–633.
Takase, S.; Suzuki, J.; and Nagata, M. 2018. Direct Out-
put Connection for a High-Rank Language Model. In Pro-
ceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, 4599–4609.
Wang, D.; Gong, C.; and Liu, Q. 2019. Improving Neu-
ral Language Modeling via Adversarial Training. In Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of PMLR, 6555–6565.
Wang, L.; Huang, J.; Huang, K.; Hu, Z.; Wang, G.; and
Gu, Q. 2020. Improving Neural Language Generation with
Spectrum Control. In 8th International Conference on
Learning Representations.
Yang, D.; and Powers, D. M. W. 2006. D.M.W.: Verb sim-
ilarity on the taxonomy of WordNet. In The Third Interna-
tional WordNet Conference, 121–128.
Yang, Z.; Dai, Z.; Salakhutdinov, R.; and Cohen, W. W.
2018. Breaking the Softmax Bottleneck: A High-Rank RNN
Language Model. In 6th International Conference on Learn-
ing Representations.
Yang, Z.; Luong, T.; Salakhutdinov, R.; and Le, Q. V.
2019. Mixtape: Breaking the Softmax Bottleneck Effi-
ciently. In Advances in Neural Information Processing Sys-
tems, 15922–15930.

13647

