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Abstract

We summarize full-length movies by creating shorter videos
containing their most informative scenes. We explore the hy-
pothesis that a summary can be created by assembling scenes
which are turning points (TPs), i.e., key events in a movie
that describe its storyline. We propose a model that identifies
TP scenes by building a sparse movie graph that represents
relations between scenes and is constructed using multimodal
information1. According to human judges, the summaries cre-
ated by our approach are more informative and complete, and
receive higher ratings, than the outputs of sequence-based
models and general-purpose summarization algorithms. The
induced graphs are interpretable, displaying different topology
for different movie genres.

Introduction
Automatic summarization has received considerable atten-
tion due to its importance for downstream applications. Al-
though current research has primarily focused on news ar-
ticles (Grusky, Naaman, and Artzi 2018; Narayan, Cohen,
and Lapata 2018; Liu and Lapata 2019), other application
domains include meetings (Murray et al. 2007), lectures (Fu-
jii, Kitaoka, and Nakagawa 2007), social media (Syed et al.
2018), scientific articles (Teufel and Moens 2002), and narra-
tives ranging from short stories (Goyal, Riloff, and Daumé III
2010; Finlayson 2012) to books (Mihalcea and Ceylan 2007),
and movies (Gorinski and Lapata 2015).

In this work, we aim at summarizing full-length movies by
creating shorter video summaries encapsulating their most
informative parts. Aside from enabling users to skim through
movies quickly — Netflix alone has over 148 million sub-
scribers worldwide, with more than 6000–7000 movies, se-
ries, and shows available — movie summarization is an ideal
platform for real-world natural language understanding and
the complex inferences associated with it. Movies are often
based on elaborate stories, with non-linear structure and mul-
tiple characters, rendering the application of popular summa-
rization approaches based on position biases, importance, and
diversity problematic (Jung et al. 2019). Another key chal-
lenge in movie summarization lies in the scarcity of labeled
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1We make our data and code publicly available at https://github.
com/ppapalampidi/GraphTP.

1. Opportunity
Introductory event that occurs after presentation of setting and
background of main characters. (Juno discovers she is pregnant
with a child fathered by her friend and longtime admirer.)

2. Change of Plans
Main goal of story is defined; action begins to increase. (Juno
decides to give the baby up for adoption.)

3. Point of No Return
Event that pushes the main characters to fully commit to their
goal. (Juno meets a couple, and agrees to a closed adoption.)

4. Major Setback
Event where everything falls apart, temporarily or permanently.
(Juno watches the couple’s marriage fall apart.)

5. Climax
Final event of the main story, moment of resolution and “biggest
spoiler”. (Juno gives birth and spouse from ex-couple claims
newborn as single adoptive mother.)

Figure 1: Turning points (from the movie “Juno”) and their
definitions.

data. For most movies there are no naturally occurring sum-
maries (trailers aim to attract an audience to a film without
revealing spoilers which a summary will contain), and manu-
ally creating these would be a major undertaking requiring
substantial effort to collect, watch, preprocess, and annotate
videos. As a result, the majority of available movie datasets
contain at most a few hundred movies focusing on tasks like
Question-Answering (QA) or the alignment between video
clips and captions (Tapaswi et al. 2016; Xiong et al. 2019;
Rohrbach et al. 2015) which are limited to video snippets
rather than entire movies, or restricted to screenplays disre-
garding the video (Gorinski and Lapata 2015; Papalampidi
et al. 2020).

Following previous work (Gorinski and Lapata 2015), we
formalize movie summarization as the selection of a few im-
portant scenes from a movie. We further assume that impor-
tant scenes display events which determine the progression
of the movie’s narrative and segment it into thematic sections.
Screenwriting theory (Thompson 1999; Cutting 2016; Hauge
2017) reserves the term turning points (TPs) for events which
have specific functionality inside a narrative and reveal its sto-
ryline. TPs are considered key for making successful movies
whose stories are expected to consist of six basic stages, de-
fined by five key turning points in the plot. An example of
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TPs and their definitions is given in Figure 1. Interestingly,
TPs are assumed to be the same, no matter the movie genre,
and occupy the same positions in the story (e.g., the Oppor-
tunity occurs after the first 10% of a 90-minute comedy or a
three-hour epic).

We propose that automatic movie summarization can be re-
duced to turning point identification building on earlier work
(Lehnert 1981; Lohnert, Black, and Reiser 1981; Mihalcea
and Ceylan 2007) which claims that high level analysis is
necessary for revealing concepts central to a story. Although
there exist several theories of narrative structure (Cutting
2016), we argue that turning points are ideally suited to sum-
marizing movies for at least three reasons. Firstly, they are
intuitive, and can be identified by naive viewers (Papalampidi,
Keller, and Lapata 2019), so there is hope the process can
be automated. Secondly, TPs have specific definitions and
expected positions which facilitate automatic identification
especially in low resource settings by providing prior knowl-
edge (semantic and positional). Thirdly, they provide data
efficiency, since the summarization problem is re-formulated
as a scene-level classification task and no additional resources
are required for creating the movie summaries over and above
those developed for identifying turning points.

We model TP identification (and by extension summariza-
tion) as a supervised classification task. However, we depart
from previous approaches to movie analysis which mostly
focus on interactions between characters (Do, Tran, and Tran
2018; Tran et al. 2017; Gorinski and Lapata 2015) and model
connections between events. Moreover, we discard the simpli-
fying assumption that a screenplay consists of a sequence of
scenes (Gorinski and Lapata 2015; Papalampidi, Keller, and
Lapata 2019; Papalampidi et al. 2020) and instead represent
interactions between scenes as a sparse graph. Specifically,
we view the screenplay of a movie as a graph whose nodes
correspond to scenes (self-contained events) and edges de-
note relations between them which we compute based on
their linguistic and audiovisual similarity. In contrast to pre-
vious work on general-purpose summarization that relies on
fully connected graphs (Mihalcea and Tarau 2004; Zheng and
Lapata 2019; Wang et al. 2020), we induce sparse graphs by
selecting a subset of nodes as neighbors for a scene; the size
of this subset is not set in advance but learnt as part of the
network. Sparse graphs provide better contextualization for
scenes and tend to be more informative, as different genres
present different degrees of connectivity between important
events. We rely on Graph Convolutional Networks (GCNs;
Duvenaud et al. 2015; Kearnes et al. 2016; Kipf and Welling
2017) to encode relevant neighborhood information in the
sparsified graph for every scene which in turn contributes to
deciding whether it acts as a TP and should be included in
the summary.

Our contributions can be summarized as follows: (a) we
approach movie summarization directly via TP identification
which we argue is a well-defined and possibly less subjective
task; (b) we propose a TP identification model which relies
on sparse graphs and is constructed based on multimodal in-
formation; (c) we find that the induced graphs are meaningful
with differing graph topologies corresponding to different
movie genres.

Related Work
The computational treatment of narratives has assumed vari-
ous guises in the literature (Mani 2012; Richards, Finlayson,
and Winston 2009). Previous work has attempted to analyze
stories by examining the sequence of events in them (Schank
and Abelson 1975; Chambers and Jurafsky 2009), plot units
(McIntyre and Lapata 2010; Goyal, Riloff, and Daumé III
2010) and their structure (Lehnert 1981; Rumelhart 1980),
or the interactions of characters in the narrative (Black and
Wilensky 1979; Propp 1968; Valls-Vargas, Zhu, and Ontanon
2014; Srivastava, Chaturvedi, and Mitchell 2016).

The summarization of narratives has received less attention,
possibly due to the lack of annotated data for modeling and
evaluation. Nevertheless, Kazantseva and Szpakowicz (2010)
summarize short stories as a browsing aids to help users
decide whether a story is interesting to read. Other work (Mi-
halcea and Ceylan 2007; Gorinski and Lapata 2015; Tsoneva,
Barbieri, and Weda 2007) focuses on long-form narratives
such as books or movies and adopts primarily unsupervised,
graph-based methods. More recently, Papalampidi, Keller,
and Lapata (2019) released TRIPOD, a dataset containing
screenplays and TP annotations and showed that TPs can
be automatically identified in movie narratives. In follow-on
work, Papalampidi et al. (2020) further demonstrate that TPs
provide useful information when summarizing episodes from
the TV series CSI. In this work, we consider scenes as the
basic summarization units, and reduce the scene selection
task to a TP identification problem.

Work on video understanding has also looked at movies.
Existing datasets (Tapaswi et al. 2016; Rohrbach et al. 2015)
do not contain more than a few hundred movies and focus
mostly on isolated video clips rather than entire narratives.
For example, Tapaswi, Bauml, and Stiefelhagen (2015) align
movie scenes to book chapters, while Xiong et al. (2019)
align movie segments to descriptions using a graph-based
approach. Rohrbach et al. (2015) introduce a dataset where
video clips from movies are aligned to text descriptions in or-
der to address video captioning. Tapaswi, Bäuml, and Stiefel-
hagen (2015) introduce a Question-Answering (QA) dataset
based on movies, although the questions are again restricted
to isolated video clips. Frermann, Cohen, and Lapata (2018)
analyze CSI episodes with the aim of modeling how viewers
identify the perpetrator.

Our work is closest to Papalampidi, Keller, and Lapata
(2019) in that we also develop a model for identifying turn-
ing points in movies. While they focus solely on textual
analysis, we consider additional modalities such as audio and
video. Moreover, we model screenplays more globally by rep-
resenting them as graphs and inferring relationships between
scenes. Our graphs are interpretable and differentially repre-
sent the morphology of different genres. Beyond improving
TP prediction, we further argue that narrative structure can
be directly used to create video summaries for movies of any
genre. Previous work (Papalampidi et al. 2020) treats TPs as
latent representations with the aim of enhancing a supervised
summarization task. We do not assume goldstandard video
summaries are available, we claim that scenes which contain
TPs can yield good enough proxy summaries.
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Figure 2: We construct a fully-connected graph based on pairwise textual and audiovisual similarity between scenes. The graph is
sparsified (by automatically selecting the k nearest neighbors per scene) and together with contextualized scene representations
is fed to a one-layer GCN.

Problem Formulation
Let D denote a screenplay consisting of a sequence of scenes
D = {s1, s2, . . . , sn}. We aim at selecting a smaller subset
D′ = {si, . . . , sk} consisting of the most informative scenes
describing the movie’s storyline. Hence, our objective is to
assign a binary label yi to each scene si denoting whether it
is part of the summary.

Furthermore, we hypothesize that we can construct an
informative summary by identifying TPs directly. As we
explained earlier, screenwriting theory (Hauge 2017) postu-
lates that most movie narratives are delineated by five key
events called turning points (see Figure 1). Hence, we re-
formulate the summarization problem as follows: for each
scene si ∈ D we assign a binary label yit denoting whether
it represents turning point t. Specifically, we calculate proba-
bilities p(yit|si,D, θ) quantifying the extent to which si acts
as the tth TP, where t ∈ [1, 5] (and θ are model parame-
ters). During inference, we compose a summary by selecting
l consecutive scenes that lie on the peak of the posterior
distribution argmaxNi=1 p(yit|si,D, θ) for each TP.

A Turning Point Graph Model
Graph Construction
Let G = (V, E) denote a directed screenplay graph with
nodes V and edges E . G consists of N nodes, each corre-
sponding to a scene (N varies with screenplay size; some
screenplays have many short scenes, while others only a few
long ones). We further represent G by an adjacency matrix
A ∈ RN×N where entry aij denotes the weight of the edge

from node i to node j. We initially construct a dense com-
plete graph G with edge weights representing the probability
pij of scene i being a neighbor of scene j (see Figure 2(b)).
We estimate pij as:

pij =
exp(eij/τ)∑T
t=1 exp(etj/τ)

(1)

where eij denotes the similarity between scenes si and sj
(explained in the next section), T are TPs (see Figure 1),
and τ is a temperature parameter.

Similarity Computation There are various ways to com-
pute the similarity eij between two scenes. In addition to
linguistic information based on the text of the screenplay, we
wish to take advantage of other modalities, such as audio
and video. Audiovisual cues might be relatively superficial;
simply on account of two scenes sounding or seeming alike,
it might not be possible to induce which events are being
described and their relations. Nevertheless, we expect audio-
visual information to contribute to the similarity computation
by helping distinguish scenes which refer to the same sub-
story or event, e.g., because they have the same background,
the same characters, or similar noises. We thus express eij
as a composite term based mostly on textual information but
also modulated by audiovisual cues:

eij = uij

(
tanh(Wivi+bi)

ᵀ tanh(Wjvj+bj)

)
+bij (2)

where Wi and Wj are weight matrices, vi and vj are textual
vectors representing the content of scenes si and sj , and uij

13633



expresses the audiovisual similarity between si and sj . If uij
is high, the similarity between two scenes will be accentuated,
but if it is low when textual similarity is high, its influence
will be modest (see Figure 2(a)).

It is relatively straightforward to obtain textual represen-
tations for scenes. The latter contain mostly dialogue (lines
the actors speak) as well as descriptions explaining what the
camera sees. We first calculate representations for the sen-
tences included in a scene via a pre-trained transformer-based
sentence encoder (Cer et al. 2018b). We then obtain contex-
tualized sentence representations using a BiLSTM equipped
with an attention mechanism. A scene is represented as the
weighted sum of the representations of its sentences.

We also assume that a scene corresponds to a sequence
of audio segments extracted from the movie and a sequence
of frames sampled (with a fixed sampling frequency) from
the video. We first non-linearly project the features of each
modality to a lower dimension and obtain scene-level rep-
resentations (as the attention-weighted average of the seg-
ments/frames in each scene). The two modalities are com-
bined into a joint representation using late fusion (Frermann,
Cohen, and Lapata 2018; Papasarantopoulos et al. 2019). The
audiovisual similarity uij (applied in Eq. (2)) between scenes
si and sj is the dot product of their fused representations.

Graph Sparsification Next, we sparsify graph G (or equiv-
alently, matrix A) by considering only k neighbors per scene
(see Figure 2(d)). Compared to fully connected graphs, sparse
representations are computationally more efficient and also
have shown better classification accuracy (Ozaki et al. 2011;
Zhu 2005). Moreover, we hypothesize that sparse graphs are
crucial for our turning point identification task. We antici-
pate the screenplay graph to capture high-level differences
and similarities between movies which would be difficult to
discern when each scene is connected to every other scene.

The most common way to obtain a sparse graph is to
construct a k-NN graph by introducing a threshold on the
number of nearest neighbors k (Szummer and Jaakkola 2002;
Goldberg and Zhu 2006; Niu, Ji, and Tan 2005). Specifically,
we create sparse graph G′ by selecting the set of neighbors Pi

for each scene si as follows:

Pi = argmaxj∈[1,N ],|Pi|=k pij (3)

where pij is calculated as in Eq. (1). After removing for each
node the neighbors not included in the set Pi, the new graph
G′ contains edges |E ′| � |E| which are unweighted.

Instead of a priori deciding on a fixed number of neigh-
bors k for all scenes, which may cause false neighborhood
assumptions, we treat k as a parameter to be learned as part of
the network which computes p(yit|si,D), the probability of
a scene being a TP. Figure 2(c) illustrates this neighborhood
selection module. All connections of si ∈ G serve as input
to a non-linear fully-connected layer which outputs a proba-
bility distribution zi over a pre-defined set of neighborhood
sizes [1, C]. We then select ki = argmaxt∈[1,C] zit as the
neighborhood size for scene si in the sparse graph G′.

When deciding on the neighborhood size ki and the set
of neighbors Pi for scene si, we perform discrete choices,

which are not differentiable. We address these discontinuities
in our model by utilizing the Straight-Through Estimator
(Bengio, Léonard, and Courville 2013). During the backward
pass we compute the gradients with the Gumbel-softmax
reparametrization trick (Maddison, Mnih, and Teh 2017; Jang,
Gu, and Poole 2017). To better approximate the argmax
selections (for k and P) during backpropagation, we also add
a low temperature parameter τ = 0.1 (Hinton, Vinyals, and
Dean 2015) in the softmax function, shown in Eq. (1).

Graph Convolutional Networks
We rely on graph convolutional networks (GCNs; Duvenaud
et al. 2015; Kearnes et al. 2016; Kipf and Welling 2017)
to induce embeddings representing graph nodes. Our GCN
operates over the sparsified graph G′ and computes a represen-
tation for the current scene si based on the representation of
its neighbors. We only encode information from the scene’s
immediate neighbors and thus consider one layer of convolu-
tion.2 Moreover, in accordance with Kipf and Welling (2017),
we add a self-loop to all scenes in G′. This means that the
representation of scene si itself affects the neighborhood
representation ti:

ti=f

 1

|Pi∪{si}|
∑

j∈Pi∪{si}

(Wgcj+b)

 (4)

where f(.) is a non-linear activation function (i.e., ReLU),
and vectors c represent the content of a scene (in relation to
the overall screenplay and its relative position).

We encode the screenplay as a sequence v1, v2, ..., vN
of textual scene representations with a BiLSTM network
and obtain contextualized representations c by concatenat-
ing the hidden layers of the forward

−→
h and backward

←−
h

LSTM (c = [
−→
h ;
←−
h ]). In other words, graph convolutions

are performed on top of LSTM states (Marcheggiani and
Titov 2017). The one-layer GCN only considers information
about a scene’s immediate neighbors, while contextualized
scene representations c capture longer-range relations be-
tween scenes. Figure 2(e) illustrates our GCN and the com-
putation of the neighborhood representations t.

Finally, we concatenate the neighborhood representation
ti and the content representation ci to obtain an encoding for
each scene si: [ci; ti]. This vector is fed to a single neuron
that outputs probabilities p(yit|si,D).

Model Training
Our description so far has assumed that TP labels are avail-
able for screenplay scenes. However, in practice, such data
cannot be easily sourced (due to the time consuming nature
of watching movies, reading screenplays, and identifying TP
locations). The only TP related dataset we are aware of is TRI-
POD (Papalampidi, Keller, and Lapata 2019) which contains
TP labels for sentences (not scenes) contained within movie
synopses (not screenplays). For this reason, we first train a
teacher model which takes as input synopses marked with

2Performance deteriorates when stacking GCN layers.
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gold-standard TP sentences and the corresponding screen-
plays D and outputs the probability q(yit|si, D) for scene
si to convey the meaning of the tth TP sentence, where
t ∈ [1, 5].

We use the model proposed in Papalampidi, Keller, and
Lapata (2019) as teacher to obtain probability distribution
q(yt|D) over screenplay D. The TP-specific posterior dis-
tributions produced by the teacher model are used to train
our model which only takes scenes as input. Similarly to
knowledge distillation settings (Ba and Caruana 2014; Hin-
ton, Vinyals, and Dean 2015) we utilize the KL divergence
loss between the teacher posterior distributions q(yt|D) and
the ones computed by our model p(yt|D):

Ot = DKL (p(yt|D)‖q(yt|D)) , t ∈ [1, T ] (5)

where T is the number of TPs. We further add a second
objective to the loss function in order to control adjacency
matrix S and hence the latent graph G′. Intuitively, we want
to assign higher probabilities for scenes to be neighbors in
G′ if they are also temporally close in the screenplay. For
this reason, we add a focal regularization term F to the loss
function. Specifically, we assume a Gaussian distribution
gi over the screenplay centered around the current scene
index i and try to keep the probability distribution in matrix S
that corresponds to candidate neighbors for scene si close to
the prior distribution: Fi = DKL (pi‖gi).3 The loss function
now becomes:

L =
1

T

T∑
t=1

Ot + λ
1

N

N∑
i=1

Fi (6)

where λ is a hyperparameter.

Experimental Setup
Multimodal TRIPOD We performed experiments on the
TRIPOD dataset 4 (Papalampidi, Keller, and Lapata 2019)
originally used for analyzing the narrative structure of movies.
We augmented this dataset by collecting gold-standard anno-
tations for 23 new movies which we added to the test set. The
resulting dataset contains 17,150 scenes from 122 movies,
38 of which have gold-standard scene-level annotations and
were used for evaluation purposes. We also collected the
videos and subtitles for the TRIPOD movies. Table 1 presents
the dataset statistics.

Data Preprocessing We used the Universal Sentence En-
coder (USE; Cer et al. 2018a) to obtain sentence-level repre-
sentations. Following previous work (Tapaswi, Bäuml, and
Stiefelhagen 2015), subtitles (and their timestamps on the
movie video) were aligned to the dialogue parts of the screen-
play using Dynamic Time Wrapping (DTW; Myers and Ra-
biner 1981). Subsequently, we obtained alignments of screen-
play scenes to video segments. Finally, we segmented the
video into scenes and extracted audiovisual features.

For the visual modality, we first sampled one out of every
50 frames within each scene. However, the length of a scene

3We disregard τ (see Eq. (1)) while recalculating probabili-
ties pij , since we want to directly regulate the eij values.

4https://github.com/ppapalampidi/TRIPOD

Train Test
movies 84 38
scenes 11,320 5,830
TP scenes 1,260 (SS) 340 (GS)
vocabulary 37.8k 28.3k

per movie
scenes 133.0 (61.1) 153.4 (54.0)
sentences 3.0k (0.9) 2.9k (0.6)
tokens 23.0k (6.6) 21.5k (4.0)
video length (secs) 6.8k (1.1) 6.9k (1.3)
video frames 4.2k (3.0) 3.5k (1.1)
audio segments 12.0k (10.3) 9.7k (3.1)

per scene
sentences 22.2 (31.5) 19.0 (24.9)
tokens 173.0 (235.0) 139.9 (177.5)
sentence tokens 7.8 (6.0) 7.4 (6.0)
video length (secs) 88.1 (152.5) 81.6 (114.8)
video frames 29.2 (37.3) 23.0 (26.3)
audio segments 82.8 (133.6) 62.9 (94.0)

Table 1: Statistics of the augmented TRIPOD dataset; means
are shown with standard deviation in brackets. SS: silver-
standard labels based on Papalampidi, Keller, and Lapata
(2019), GS: gold-standard labels.

can vary from a few seconds to several minutes. For this rea-
son, in cases where the number of sampled frames became
too big for memory, we lowered the sampling frequency to
one frame per 150. We employed ResNeXt-101 (Xie et al.
2016) pre-trained for object recognition on ImageNet (Deng
et al. 2009) to extract a visual representation per frame. Simi-
larly, for the audio modality, we used YAMNet pre-trained
on the AudioSet-YouTube corpus (Gemmeke et al. 2017) for
classifying audio segments into 521 audio classes (e.g., tools,
music, explosion); for each audio segment contained in the
scene, we extracted features from the penultimate layer.

Implementation Details Following (Papalampidi, Keller,
and Lapata 2019), we select l = 3 consecutive scenes to
represent each TP in the summary. Moreover, we set the max-
imum size of neighbors C that can be selected for a scene
in graph G′ to 6, since we want to create a sparse and inter-
pretable graph. Experiments with fixed-sized neighborhoods
also showed that performance dropped when considering
neighborhoods over 6 scenes. For training our model we set
the hyperparameter λ in Eq. (6) to 10. We used the Adam al-
gorithm (Kingma and Ba 2014) for optimizing our networks.
We chose an LSTM with 64 neurons for encoding scenes in
the screenplay and an identical one for contextualizing them.
We also added a dropout of 0.2. Our models were developed
in PyTorch (Paszke et al. 2019) and PyTorch geometric (Fey
and Lenssen 2019). For analyzing the movie graphs we used
NetworkX (Hagberg, Swart, and S Chult 2008).

Results
Our experiments were designed to answer three questions:
(1) Is the proposed graph-based model better at identifying
TPs compared to less structure-aware variants? (2) To what
extent are graphs and multimodal information helpful? and
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TA ↑ PA ↑ D ↓
Random (evenly distributed) 4.82 6.95 12.35
Theory position 4.41 6.32 11.03
Distribution position 5.59 7.37 10.74
TEXTRANK 6.18 10.00 17.77

+ audiovisual 6.18 10.00 18.90
SCENESUM 4.41 7.89 16.86

+ audiovisual 6.76 11.05 18.93
TAM 7.94 9.47 9.42

+ audiovisual 7.36 10.00 10.01
GRAPHTP 6.76 10.00 9.62

+ audiovisual 9.12 12.63 9.77

Table 2: Five-fold crossvalidation. Total Agreement (TA),
Partial Agreement (PA), and mean distance D.

(3) Are the summaries produced by automatically identified
TPs meaningful?

Which Model Identifies TPs Best Table 2 addresses our
first question. We perform 5-fold cross-validation over
38 gold-standard movies to obtain a test-development split
and evaluate model performance in terms of three metrics: To-
tal Agreement (TA), i.e., the percentage of TP scenes that are
correctly identified, Partial Agreement (PA), i.e., the percent-
age of TP events for which at least one gold-standard scene
is identified, and Distance (D), i.e., the minimum distance in
number of scenes between the predicted and gold-standard
set of scenes for a given TP, normalized by the screenplay
length (see Appendix for a more detailed definition of the
evaluation metrics). We consider TA and PA as our main eval-
uation metrics as they measure the percentage of exact TP
matches. However, apart from identifying important events,
when producing a summary it is also important to display
events from all parts of the movie in order to accurately
describe its storyline. For this reason, we also employ the
distance D metric which quantifies how well distributed the
identified TP events are in the movie. Hence, a disproprion-
ately large D suggests that the model fails to even predict the
correct sections of a movie where TPs might be located let
alone the TPs themselves.

The first block in the table compares our graph-based TP
identification model (henceforth GRAPHTP) against the fol-
lowing baselines: a random selection of a sequence of three
scenes from five evenly segmented sections of the movie
(reported mean of five runs); the selection of a sequence of
three scenes that lie on the expected position of each TP event
according to screenwriting theory (Hauge 2017); and the se-
lection of a sequence of three scenes based on the position
of gold-standard TPs in the synopses of the TRIPOD train-
ing set. The second block includes the performance of two
unsupervised summarization models: TEXTRANK (Mihalcea
and Tarau 2004) with neural input representations (Zheng
and Lapata 2019)5 and SCENESUM (Papalampidi et al. 2020;
Gorinski and Lapata 2015), a variant of TEXTRANK that
takes the characters participating in each scene into account.

5We also experimented with directed TEXTRANK (Zheng and
Lapata 2019), but these results were poor and are omitted for the
sake of brevity.

TA ↑ PA ↑ D ↓
Fully connected graph 5.00 7.37 9.73
Content 5.59 7.37 9.98
Neighborhood & position 9.71 13.16 10.98
GRAPHTP 6.76 10.00 9.62

+ vision 6.18 7.89 9.84
+ audio 7.06 8.95 10.38
+ audiovisual 9.12 12.63 9.77

Table 3: GRAPHTP variants. Total Agreement (TA), Partial
Agreement (PA), and mean distance D.

SCENESUM TAM GRAPHTP Gold
TP1 28 28 64 66
TP2 36 54 64 62
TP3 38 18 44 54
TP4 26 34 52 56
TP5 8 16 24 48
Mean 27 30 50 57
Rating 2.63 2.68 3.02 3.58

Table 4: Human evaluation; proportion of TPs found in
video summaries (shown as percentages) and average ratings
attributed to each system (ratings vary from 1 to 5, with 5
being best). All pairwise differences are significant (p < 0.05,
using a χ2 test).

Finally, we report results for the Topic-Aware Model (TAM;
Papalampidi et al. 2020); TAM is sequence-based supervised
model which employs a sliding context window and com-
putes the similarity between sequential contexts. We discuss
implementation details for comparison systems in the Ap-
pendix. We also report the performance of a multimodal
variant for all comparison systems (+audiovisual). For the
unsupervised models, we add scene-level features as extra
weights to the pairwise similarity calculation between scenes
similarly to GRAPHTP. For TAM, we add audiovisual in-
formation via early fusion; we concatenate the scene-level
vectors from all modalities (i.e., text, vision, audio).

The unsupervised summarization models (TEXTRANK,
SCENESUM) have competitive performance in terms of TA
and PA, but significantly higher average distance D. This
suggests that they do not select events from all parts of a
story but favor specific sections. For the supervised models
(TAM and GRAPHTP), the average D is in general lower,
which means that they are able to adapt to the positional bias
and select events from all parts of a movie. Moreover, both
models seem to benefit from multimodal information (see TA
and PA metrics). Finally, GRAPHTP seems to perform best,
by correctly identifying a higher number of gold-standard
TP events (based on both TA and PA metrics), whereas D is
comparable for TAM and GRAPHTP.

Which Information Matters Table 3 answers our second
question by presenting an ablation study on GRAPHTP. We
observe that the performance of a similar model which uses
a fully-connected graph drops across metrics. This is also
the case when we do not take into account a graph or any
other form of interaction between scenes (i.e., only content).
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Figure 3: Average node connectivity per TP across movie
genres (GRAPHTP (+audiovisual), test set.)

We also test the model’s performance when we remove the
content representation and keep only the neighborhood in-
teractions together with a vector that simply encodes the
position of a scene in the screenplay (as a one-hot vector).
This model may not be able to adapt to the positional bias
as well (higher D), but is able to predict TPs with higher
accuracy (high TA and PA). Finally, we find that audio and
visual information boost model performance in combination
but not individually.

How Good Are the Summaries We now answer our last
question by evaluating the video summaries produced by our
model. We conducted a human evaluation experiment using
the videos created for 10 movies of the test set. We produced
summaries based on the gold scene-level annotations (Gold),
SCENESUM, TAM, and GRAPHTP (see Appendix). For all
systems we used model variants which consider audiovisual
information except for SCENESUM. Inclusion of audiovisual
information for this model yields overly long summaries (in
the excess of 30 minutes) for most movies. All other systems
produce 15 minutes long summaries on average.

Our study was conducted on Amazon Mechanical Turk
(AMT). Crowdworkers first read a short summary of the
movie (i.e., an abridged version of the Wikipedia plot synop-
sis). Subsequently, they were asked to watch a video summary
and answer five questions each pertaining to a specific TP
event (described in the textual summary). AMT workers an-
swered with ’Yes’ if they were certain it was present in the
video, ’No’ if the event was absent, and ‘Unsure’ otherwise.
Finally, we asked AMT workers to provide an overall rating
from 1 to 5, with 5 being the most informative summary.
Workers were asked to take into account the questions an-
swered previously, but also consider the overall quality of the
summary (i.e., how compressed it was, whether it contained
redundant events, and the overall information provided). We
asked 5 different workers to evaluate each movie summary.
Instructions and example questions are in the Appendix.

Table 4 shows the proportion of ’Yes’ answers (per TP and
overall mean) and the average system rating.6 Perhaps un-
surprisingly gold summaries are the most informative. Some

6We omit ’Unsure’ from Table 4, since it only accounts for 4.1%
of the answers.
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Figure 4: Examples of graphs produced by GRAPHTP (+au-
diovisual) for two movies from the test set. Nodes (in color)
are scenes which act as TPs and their immediate neighbors
(in gray).

key events might still be absent due to errors in the auto-
matic alignment between the screenplay scenes and the video.
GRAPHTP is the second best system overall (and across TPs),
while SCENESUM and TAM have similar ratings. GRAPHTP
manages to create more informative and diverse summaries,
presenting important events from all parts of the story.

What Do the Graphs Mean We further analyzed the
graphs induced by our model, in particular their connec-
tivity. Figure 3 shows the average node connectivity per TP
(i.e., minimum number of nodes that need to be removed to
separate the remaining nodes into isolated subgraphs) for the
movies in the test set. For this analysis, graphs were pruned
to nodes which act as TPs and their immediate neighbors and
movies were grouped in four broad genre categories (com-
edy/romance, thriller/mystery, action and drama/other). We
find that thrillers and mysteries correspond to more discon-
nected graphs followed by dramas, while comedies, romance
and especially action movies display more connected graphs.
This is intuitive, since comedies and action movies tend to
follow predictable storylines, while thrillers often contain sur-
prising events which break screenwriting conventions. More-
over, for comedies and dramas the introductory events (i.e.,
first two TPs) are the central ones in the graph and connec-
tivity decreases as the story unfolds and unexpected events
take place. We see the opposite trend for thrillers and ac-
tion movies. Initial events present lower connectivity, while
the last ones are now central when crucial information is
revealed justifying earlier actions (e.g., see the last two TPs
which correspond to ’major setback’ and ’climax’). A similar
picture emerges when visualizing the graphs (see Figure 4).
”Die Hard”, a conventional action movie, has a clear story-
line and seems more connected, while ”American Beauty”, a
drama with several flashbacks, contains several disconnected
subgraphs (see Appendix for more illustrations).

Conclusions
In this paper we demonstrate that TP identification can be
used directly for summarizing movies. We propose GRAPH-
TP, a model that operates over sparse graphs relying on
multimodal information. Summaries created by GRAPHTP
are preferred by humans in contrast to general summarization
algorithms and sequence-based models. In the future, we will
explore ways to further exploit the graph structure and defini-
tions of TPs in order to produce personalized summaries.
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