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Abstract
Named Entity Recognition (NER) is a fundamental and im-
portant research topic for many downstream NLP tasks, aim-
ing at detecting and classifying named entities (NEs) men-
tioned in unstructured text into pre-defined categories. Learn-
ing from labeled data only is far from enough when it comes
to domain-specific or temporally-evolving entities (e.g. med-
ical terminologies or restaurant names). Luckily, open-source
Knowledge Bases (KBs) (e.g. Wikidata and Freebase) con-
tain NEs that are manually labeled with predefined types in
different domains, which is potentially beneficial to identify
entity boundaries and recognize entity types more accurately.
However, the type system of a domain-specific NER task is
typically independent of that of current KBs and thus ex-
hibits heterogeneity issue inevitably, which makes matching
between the original NER and KB types (e.g. Person in
NER potentially matches President in KBs) less likely,
or introduces unintended noises without considering domain-
specific knowledge (e.g. Band in NER should be mapped
to Out of Entity Types in the restaurant-related task).
To better incorporate and denoise the abundant knowledge in
KBs, we propose a new KB-aware NER framework (KaNa),
which utilizes type-heterogeneous knowledge to improve
NER. Specifically, for an entity mention along with a set of
candidate entities that are linked from KBs, KaNa first uses
a type projection mechanism that maps the mention type and
entity types into a shared space to homogenize the heteroge-
neous entity types. Then, based on projected types, a noise
detector filters out certain less-confident candidate entities in
an unsupervised manner. Finally, the filtered mention-entity
pairs are injected into a NER model as a graph to predict an-
swers. The experimental results demonstrate KaNa’s state-of-
the-art performance on five public benchmark datasets from
different domain.

Introduction
Named Entity Recognition (NER) is a fundamental and im-
portant research topic in the area of natural language pro-
cessing (NLP), aiming at detecting and classifying named
entities (NEs) mentioned in unstructured text into prede-
fined categories (Ngo, Dien, and Winiwarter 2014). The
data-driven methods, e.g. conditional random fields (CRF)
(Li, Bontcheva, and Cunningham 2005) and BiLSTM-CRF
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(Lample et al. 2016), are widely used for NER due to their
power to effectively capture the sequential dependency ob-
served in training data. Nevertheless, simply learning from
the labeled data is far from enough when it comes to domain-
specific or temporally-evolving entities (e.g. medical termi-
nologies or restaurant names). Luckily, many open-source
Knowledge Bases (KBs) (e.g. Wikipedia and Freebase)
(Vrandečić and Krötzsch 2014) contain the well-structured
NEs that are manually assigned with predefined types in
different domains, which is potentially beneficial for NER
to locate entity boundaries and recognize entity types. For
example, in the text “colon carcinoma cells”, utilizing the
prior knowledge that the mention “colon carcinoma” is as-
sociated with the KB entity colorectal cancer with the type
of Disease, it generally falls into the Disease category
with a much higher probability than other candidates such
as colon or carcinoma.

However, the key challenge of incorporating KB knowl-
edge into NER task is the heterogeneity issue between KB
and NER type systems. Specifically, there are usually thou-
sands of types in a KB type system but a NER type sys-
tem usually has no more than hundred of types (even less),
which shows a gap and further leads to a divergent de-
sign philosophy. We here summarize the main issues de-
rived from the heterogeneity problem into the following as-
pects: 1) Type system generalizability. KB types are pre-
defined relatively stably for general purposes while NER
types are domain-specific (i.e. varying from one task to an-
other). 2) Different namespace. The possible names of the
same entity type could be largely different among different
type systems. 3) One-to-many matching. A NER entity usu-
ally has one type but a KB entity often has multiple types.
The three classes of heterogeneity would cause the follow-
ing problems respectively if careful designs were not con-
sidered: 1) Task-irrelevant noise. Since the number of en-
tity types in NER is much smaller than KB types and NER
types are usually task specific, many task-irrelevant entities
could be unintentionally introduced via the use of KBs. Take
a restaurant-related NER task as an example, as shown in
Figure 1 (a), the subword cracker in “cracker barrel” (a
restaurant name) is linked to a KB entity Cracker with type
Band. The association between mention cracker and KB
entity Cracker could mislead model to predict wrong en-
tity boundaries and types. 2) Complex Noise Identification.
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Figure 1: Problems caused by the type heterogeneity.

Different namespace increases the difficulties of denoising.
A straightforward method to filter out task-irrelevant noise
is to only preserve those KB entity types in the intersection
of two type systems. As a result, those entities which are
semantically-helpful but morphologically-different could be
largely ignored. As shown in 1 (b), the link from text barack
obama with type Person to entity Barack Obama with
type President is not noise but it is discarded since
President and Person are morphologically-different.
These also could be resolved by manually defining rules at
the cost of manual costs and low generalizability: all human
efforts need redoing once facing a new NER task. 3) Type-
compound noise. As shown in Figure 1 (c), a person entity in
KB could have the Disease type when he/she was dead of
this but NER normally not. Thus, the types of one KB entity
should be considered as a whole, otherwise they could prob-
ably be another noise in NER. To address issues below, (He
et al. 2020) incorporated KB knowledge in NER by a multi-
task pretraining of KB entity embeddings, where KB type
knowledge was discarded so the task-irrelevant noise was
introduced. (Rijhwani et al. 2020) inserted the KB type fea-
tures via an auto-encoder, but the incompatibility between
two type systems was resolved at the expense of expensive
manual costs.

To better incorporate and denoise the abundant knowl-
edge in KBs, we propose a new KB-aware NER framework
(KaNa), which utilizes type-heterogeneous knowledge to
improve NER. Our method consists of three main modules:
knowledge denoising, knowledge injection and knowledge-
based inference. The knowledge denoising module serves

to select task-related, type-compound coherent entities re-
trieved from KBs. This is realized by type projectors which
can project a mention type and some KB entity types into a
common space and a noise detector which filters out entities
according to their projected types. The training of knowl-
edge denoising module is in an unsupervised1 manner, with-
out the need of extra human labors. Knowledge injection
builds raw text and its relations with selected KB knowl-
edge in form of a graph. After encoding the graph by Graph
Attention Networks (GATs) (Veličković et al. 2018), nodes
representing raw text are aware of selected knowledge. Fi-
nally, the node representations of raw text are fed to a stan-
dard CRF layer to predict answers.

To summarize, we make the following main contribu-
tions:

• We propose a novel knowledge-aware NER framework,
which can effectively incorporate KB knowledge into
NER tasks by alleviating the unintended heterogeneity is-
sue. To the best of our knowledge, this work is the first
attempt to alleviate type-related knowledge discrepancy
in KBs for NER without extra human efforts.

• To tackle the heterogeneity issue between NER and KB
type systems, we propose the knowledge denoising mech-
anism. The training of the module is in an unsupervised
manner, without the need of extra labeled data in the
knowledge-injected processes.

• The experimental results on five datasets from differ-
ent domains show that our method consistently achieves
state-of-the-art performance, validating the effectiveness
of our proposed method and mechanisms.

Related Work
Many supervised methods have been successively pro-
posed for NER. Traditional statistical methods, like Hidden
Markov Models (HMM), Super Vector Machines (SVM),
CRF or decision trees, followed some traditional feature-
engineering-based paradigm to fit data and make predic-
tions (Li, Bontcheva, and Cunningham 2009; Passos, Ku-
mar, and Mccallum 2014; Luo et al. 2015). However, this
type of strategies relies on a set of handcrafted features
and/or does not take into account the inherent dependencies
across contexts. To remedy this, a large number of neural
network architectures emerged to utilize different represen-
tations of characters, words, sub-word units or any combina-
tions of these to assign proper categories to words in a sen-
tence. (Strubell et al. 2017; Ma and Hovy 2016; Peters et al.
2017; Cui and Zhang 2019; Lu, Bai, and Langlais 2019;
Chen et al. 2019; Huang, Xu, and Yu 2015; Lample et al.
2016; Tran, Mackinlay, and Yepes 2017). However, merely
learning from finite labeled data is far from enough when
it comes to domain-specific or temporally-evolving entities
(e.g. medical terminologies or restaurant names), which cre-
ates a demand for extra knowledge injection.

Most previously, KBs are used to create NER training
data (Kazama and Torisawa 2007; Richman and Schone

1Note that the mentioned “unsupervised” is only limited in the
proposed modules, and the original NER task is still supervised.
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2008; Nothman et al. 2013; Morgan et al. 2003; Vlachos
and Gasperin 2006). A prominent technique is to follow
links back from KB articles to documents that mention the
subject of the article, heuristically labelling high-precision
matches to create training data. This has been used for ge-
netic KBs (Morgan et al. 2003; Vlachos and Gasperin 2006),
and Wikipedia (Kazama and Torisawa 2007; Richman and
Schone 2008; Nothman et al. 2013).These works do not
consider our setting where gold-standard entities are given
at training as their goal is to generate training data. Re-
cently, He et al. (2020) pretrained KB entity embeddings
for NER based on the entity relations defined in KB where
the knowledge type was unused so the task-irrelevant noise
was introduced. Radford, Carreras, and Henderson (2015)
explored to improve NER performance by infusing text with
KB knowledge under a task specific setting. In this set-
ting, we have metadata for each document in the form of
document-specific KB tags, which doesn’t consider task-
irrelevant noise and the difference of namespace. In real sce-
nario, the incompatibility between two type systems is re-
solved at the expense of expensive manual costs. Rijhwani
et al. (2020) proposed the SoftGaz model which adapted
the BMEOW feature encoding mechanism by using an auto-
encoder for neural models, which is the state-of-the-art KB-
aware NER model but only works under a task specific set-
ting.

Methodology
Task Definition
We start by giving the formal definition of NER. Given an
input text X = 〈x1, x2, · · · , xn〉 with length n, the task is
to output a tag sequence Y = 〈y1, y2, · · · , yn〉, where yi ∈
Y, 1 ≤ i ≤ n and Y is the set of predefined tags following
the BIO tagging scheme. Each tag in Y is composed of the
boundary of the entity and the entity type. Specifically, ‘B-
’, ‘I-’, ‘O’ denote the beginning, inner, outside of an entity
name respectively.

Model Overview
We propose a new KB-aware NER framework (KaNa) and
the overall architecture of KaNa is shown in Figure 2. KaNa
can be divided into three parts including: knowledge denois-
ing, knowledge injection and inference. For every mention
in a text, we retrieve candidate entities from KBs. Then, ev-
ery mention-entity pair is fed to the knowledge denoising
module, which makes discard-select decision by comparing
the projected mention and entity types. Then, text infused
with selected knowledge is modeled in form of a text-entity
graph, which can be further encoded by GATs to obtain
knowledge-aware context embeddings for every word. Fi-
nally, these knowledge-aware embeddings are fed to a CRF
to predict output.

Type System Heterogeneity
In this section , we briefly describe the problem of type sys-
tem heterogeneity informally. For those widely-used KBs
(e.g. Wikidata), their type systems are quite different from
NER type system. For a typical NER task, several types (e.g.

Disease,Restaurant) are defined. The tag set varies
from one task to another. There are few NER tasks with
more than 100 types. Except for the nested NER task, one
entity usually has only one type. However, for a KB type
system, there are tens of thousands of types which form
a tree structure. A KB entity can have tens of types asso-
ciated to accurately describe it (e.g. Buger King is associ-
ated with popstra.company, dining.restaurant,
common.topic, popstra.restaurant, etc.).

Knowledge Denoising
For a mention m ∈ {xi...xj , 1 ≤ i ≤ j ≤ n} in X , we
generate related KB entities C(m) = {e1, ..., ek}. For ev-
ery mention-entity pair in C(m), due to the heterogeneity of
two type systems, it could be noise even with prior being
100%. As the example case “Patrick Swayze died of pancre-
atic cancer.” in Figure 2, aside from the shown pair exam-
ple, Patrick Swayze is also linked to an Actor entity, which
should be filtered out since it is task-irrelevant. Therefore
we put forward a denoising module, where a type projec-
tion mechanism is proposed to map the mention type (ob-
tained via a FC layer) and entity types into a shared space
to homogenize the heterogeneous entity types. Then, based
on projected types, a noise detector filters out certain less-
confident candidate entities in an unsupervised manner. The
training of knowledge denoising module is finished before
the training of knowledge injection and inference module.

Type System Projector For an entity e ∈ C(m) associ-
ated with |T | types T = {te,j}1≤j≤|T |, we first represent
each type by a dk dimension vector v(te,j). Then, we sum
over all type vectors to get its type embeddings. Later, a KB
type projector Pkb is used to map the type embeddings into
a common type space of dimension dc:

re = Pkb(
1

|T |

|T |∑
j=1

v(te,j))

Pkb(x) = ReLU(Wkbx+ bkb)

(1)

whereWkb ∈ Rdc×dk and bkb ∈ Rdc are learned parameters.
re is the type representation of entity in common type space
and it could be seen as a summary of original types, serving
to reduce type-compound noise.

The mention embeddings are calculated by concatenating
its surrounded LSTM hidden states. Specifically, every word
xi in the input text X is encoded by a look-up table Ww ∈
Rdw×|V |:

wi =Ww(xi) (2)
where |V | is the size of vocabulary and dw is the word em-
beddings dimension. Word vectors are fed to forward and
backward LSTM models to get contextual information:

→
hi =

→
LSTM(wi,

→
hi−1)

←
hi =

←
LSTM(wi,

←
hi−1)

(3)

The mention embeddings em of m = xi:j is formed of:

em = [
→
hi−1,

←
hi−1,

→
hj+1,

←
hj+1] (4)
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Figure 2: Model Architecture. Take the sentence “Patrick Swayze died of pancreatic cancer.” as an example. For an entity
mention Pancreatic cancer along with a set of candidate entities (e.g. Pancreatic Cancer) that are retrieved from KBs, KaNa
first uses a type projection mechanism that maps the mention type (obtained via a FC layer) and entity types into a shared
space to homogenize the heterogeneous entity types. Then, a noise detector filters out certain less-confident candidate entities
in an unsupervised manner. Finally, the filtered mention-entity pairs are injected into a text-entity graph, in which GATs are
used to encode the graph. Once obtaining those knowledge-aware node embeddings, KaNa feeds the graph-interacted context
embeddings into a standard CRF layer for the final prediction.

We get the type embeddings tm ofm by a fully connected
layer:

tm =Wtem + bt (5)

where Wt ∈ R|L|×4dh , bt ∈ R|L| are learned parameters,
|L| is the size of NER type set, dh is the dimension of LSTM
hidden states.

The mention type projector Pner maps tm into the com-
mon type space:

rm =Pner(tm)

Pner(x) =Wnerx+ bner
(6)

where Wner ∈ Rdc×|L|, bner ∈ Rdc are learned param-
eters, rm is the type representation of mention in common
type space. From now on, both mention type and entity types
are mapped to common type space which reduces the differ-
ent namespace problem when comparing types between two
type systems.

Noise Detector We get now type representations for both
mention and entity in a shared space. The noise detector can
calculate the probability of an entity being noise in a given
context by comparing projected type embeddings:

fnd(m, e) = PN (0|m, e) =Wn([re, rm, em]) + bn (7)

where Wn ∈ R1×(4dh+2dc) and bn ∈ R are learned parame-
ters, fnd is the noise detector function.

Unsupervised Training We train type projectors along
with noise detector in an unsupervised manner since the la-
beled data for noise detection is unavailable. The data of this
task is in form of mention-entity pairs with labels showing
whether they are useful knowledge or not.

The positive samples are hard to find. The type of men-
tion m is given in NER training data. In this part, we use
mentions not being tagged with ‘O’ to generate samples.
For a mention m, entities in the candidate set C(m) gen-
erally could have a higher probability being positive, but
we have no access to gold entities. However, we know there
could be at least one positive entity if KB was big enough.
This setting is similar to the one of Multi Instance Learn-
ing (MIL) (Zhou and Zhang 2006). Instead of receiving a
set of instances which are individually labeled, the learner
of MIL receives a set of labeled bags, each containing many
instances. Thus, we propose using the candidate mention set
C(m) as positive samples bag Tpos = C(m).

We use negative sampling to better discriminate useful
knowldge from noise. The negative samples are easy to con-
struct. Since NER types are of limited size. So we can use
those mentions which are not tagged with ‘O‘ to generate
negative samples by randomly selecting KB entities under
obviously fault root types. For example, if the mention type
is Disease, KB types under roots like V ehicle, Company
are obviously fault. We form the negative samples Tneg by
this simple but effective way.
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For every mentionm, we now have negative samples Tneg
and positive samples bag Tpos. We train our noise detector
to score at least one candidate in Tpos higher than any can-
didate in Tneg . This is achieved by using max-margin loss.
The loss of denoising task can be described as:

lnd(m, e) = max(0, max
e∈Tneg

fnd(m, e)− max
e∈Tpos

fnd(m, e) + δ)

Lnd =
∑

m,e∈D
lnd(m, e)

(8)
where δ is a margin, D is the automatically constructed
training set. The objective is that the distance between posi-
tive and negative samples is greater than δ.

By training in such unsupervised manner, we get our
trained knowledge denoising module which can then help
denoise knowledge and send selected mention-entity pairs
to knowledge injection and inference module.

Knowledge Injection
After knowledge denoising, we get some selected mention-
entity pairs. We need to integrate such knowledge into NER
model. Recently, graph based models (Gui et al. 2019; Sui
et al. 2019; Ding et al. 2019) are widely used to incorporate
external knowledge in NER. They model boundary and type
information along with text explicitly in form of a graph.
Then, knowledge-aware text features are calculated by a
node propagation mechanism following works of graph rep-
resentation learning (Perozzi, Alrfou, and Skiena 2014; Tang
et al. 2015; Grover and Leskovec 2016; Hamilton, Ying, and
Leskovec 2017; Kipf and Welling 2017). Results show ex-
plicit boundary and type information are more effective than
implicit feature representations.

Inspired by previous works which show benefits of explic-
itly representing knowledge, we propose a text-entity inter-
active graph to model the relation between mentions and KB
entities. As shown in Figure 2, the vertex set of this graph is
made up of word nodes (e.g. yellow nodes) and entity nodes
(e.g. green nodes). Word nodes represent the text informa-
tion. We build inter-word edges connecting every sequential
word in sentence. Once a mention (e.g. pancreatic cancer)
is matched to an entity (e.g. Pancreatic Cancer), we build
two extra edges from corresponding entity node to the start
and end word nodes of mention.

We apply GATs to model over the text-entity graph. GATs
is a neural network architectures that operate on graph-
structured data, leveraging masked self-attentional layers to
enable (implicitly) specifying different weights to different
nodes in a neighborhood. In our work, GATs can facilitate
assigning different weights to different knowledge. For a
multi-layers GATs, node representations are updated itera-
tively, each layer takes the output of previous layer and the
final output of GATs is the output of the last layer. We start
by initializing entity nodes with entity embeddings and word
nodes with their hidden states in BiLSTM over the input sen-
tence. Then, each layer is updated in the following process:
Suppose the input to the i-th GATs layer is a set of node fea-
tures {f1, f2, ..., fn+m|fi ∈ RF } where F is the dimension
of node features, n is the number of word nodes and m is

the number of entity nodes. We have the adjacency matrix
A ∈ R(n+m)×(n+m). The i-th GATs layer outputs a new set
of node features {f ′1, f ′2, ..., f ′n+m} by:

f ′i = ‖Kk=1σ(
∑
j∈Ni

αk
ijW

kfj) (9)

αk
ij =

exp(LeakyReLU(a[W kfi‖W kfj ]))∑
k∈Ni

exp(LeakyReLU(a[W kfi‖W kfk]))
(10)

where K is the number of attention heads, ‖ represents con-
catenation, αk

ij are normalized attention coefficients by k-th
attention head, a is a weight vector and W k is the corre-
ponding input linear transformation’s weight matrix.

Specially, to update the final layer, we employ averaging,
and delay applying the final nonlinearity:

f ′i = σ(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kfj) (11)

where σ is the sigmoid function.

Inference
We concatenate the output of GATs and original word em-
beddings to form the input features of inference module
R = {r1, r2, ..., rn}. We adopt CRF to capture label de-
pendencies by adding transition scores between neighboring
labels. The probability of the ground-truth tag sequence Y
is:

p(y|s) =
exp(

∑
i(W

yiri + T(yi−1,yi)))∑
y′ exp(

∑
i(W

y′iri + T(y′i−1,y
′
i)
))

(12)

where T is the trainsition matrix and W yi ,W y′i are learned
parameters.Finally, the loss function of NER is defined as:

L = −
N∑
i=1

log(p(yi|si)) (13)

Experiments
Datasets The main experiments are conducted on five
datasets from different domains, including spoken queries
(MIT-Movie, MIT-Restaurant), defense and security
(RE3D), anatomical (AnEM), and biomedical (BC5CDR-
Disease).

• MIT-Movie (Liu et al. 2013b) contains 10343 movie
queries where long constituents are annotated such as a
movie’s origin and plot descriptions. The size of type set
is 12 including Actor, Character, Director, etc.

• MIT-Restaurant (Liu et al. 2013a) contains 7,136 restau-
rant queries. The dataset is annotated with 8 types includ-
ing Restaurant Name, Amenity, Cuisine, etc.

• RE3D (DSTL 2017) consists of 1,009 sentences
and is relevant to the defence and security anal-
ysis domain. It contains 10 kinds of entities, in-
cluding Document Reference, Location,
Military Platform, etc.
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Methods Metrics MIT-movie RE3d MIT-rest BC5CDR AnEM Average
BiLSTM-CRF P 76.78±0.35 67.68±0.44 79.96±0.28 83.42±1.30 75.41±1.13 76.65±0.70

R 71.82±0.78 67.46±0.43 79.25±0.32 84.62±0.97 51.75±0.54 70.98±0.61
F1 74.22±0.30 67.66±0.16 79.60•±0.23 84.02±0.35 61.38±0.31 73.38±0.30

BERT-CRF P 76.57±0.42 63.56±0.36 79.36±0.30 84.00±1.09 64.46±1.11 73.59±0.66
R 70.30±0.11 75.00 ±0.49 78.30±0.48 86.35±1.00 61.47±0.46 74.28±0.51
F1 73.30±0.23 68.81•±0.18 78.82±0.35 85.16•±0.27 62.93•±0.29 73.80•±0.26

SoftGaz P 77.07±0.36 66.06±1.30 78.46±0.32 86.33±0.70 66.15±1.13 74.81±0.76
R 72.32±0.14 69.38±1.76 78.71±0.31 83.69±0.69 58.04±0.55 72.43±0.69
F1 74.62•±0.20 67.68±0.26 78.59±0.31 84.99±0.35 61.83±0.32 73.54±0.29

KaNa (ours) P 79.33±0.32 67.13±0.34 80.88±0.40 86.37±0.68 70.94±0.24 76.93±0.40
R 73.64±0.28 71.60±0.33 79.98±0.32 85.89±0.66 57.32±0.29 73.69±0.38
F1 76.38±0.06 69.29±0.12 80.43±0.19 86.13±0.12 63.41±0.09 75.13±0.12

Table 1: Experiment results of all methods on the five dataset. The best performance is highlighted in boldface. • indicates the
best performing baselines. ± means the value plus/minus Standard Deviation.

• AnEM (Ohta et al. 2012) is a dataset manually annotated
from 500 documents for anatomical entity mentions us-
ing a fine-grained classification system. The corpus an-
notation covers mentions of both healthy and patholog-
ical anatomical entities, such as Kidney, Muscle and
Blood.

• BC5CDR-Disease (Li et al. 2016) is a collection of 1,500
PubMed titles and abstracts. It was used in the BioCre-
ative V chemical disease relation. It contains one type of
NEs: Disease.

Baselines We compare our model with three representa-
tive and state-of-the-art models.

BiLSTM-CRF: BiLSTM-CRF is a state-of-the-art NER
model without considering knowledge incorporation. The
BiLSTM effectively captures the sequential relationships
amongst the input tokens and the CRF permits optimal, joint
prediction of all the labels in the sentence, capturing the re-
lationships at label level. We implement BiLSTM-CRF by
using NCRF++(Yang and Zhang 2018).

BERT-CRF: BERT captures implicit language informa-
tion from unlabeled text, achieving state-of-the-art results
on many NLP tasks including NER. We use the BERT (De-
vlin et al. 2019) model pretrained on English Wikipedia and
BookCorpus as a baseline. On top layer, a CRF module is
employed as the inference layer.

SoftGaz: SoftGaz (Rijhwani et al. 2020) is a state-of-the-
art knowledge-aware NER model. SoftGaz inserts the KB
type features via an auto-encoder under a task specific KB
setting. In our implementation, instead of manually resolv-
ing type heterogeneity, we use a hard filter method where
only entities having type names appearing in intersection of
two type systems are kept.

Implementation For hyper-parameter settings, the hidden
state size of BiLSTM is 200. The dropout rate is set as 0.2
and 0.5 for BiLSTM output and pretrained embedding re-
spectively. We apply a two-layer GATs for knowledge in-
jection. The first layer consists of K = 5 attention heads.
We set F = 30 for the node dimension of first layer. The
last layer is a single attention head where F = C (where

C is the number of types in NER). The dropout rate is set
to 0.1 and 0.4 for GATs layers and pretrained entity em-
bedding respectively. We use the SGD optimizer in a mini-
batch size of 10 with learning rate γ = 1 × 10−3 and L2

regularization λ = 0.005. We use Wikidata (Vrandečić and
Krötzsch 2014) as our KB. Wikidata is a free and open
sourced knowledge base, which covers tens of thousands of
entities with types over many domains. For the nodes ini-
tialization of text-entity graph, we use Entity-GloVe embed-
dings (Mikolov 2013). We also explore using PBG (Lerer
et al. 2019) (i.e. pre-trained graph embeddings) as nodes ini-
tialization in ablation study.

In experiment, we leverage KnowBERT (Peters et al.
2019), a powerful knowledge-aware language model to gen-
erate every mention-entity pair.The evaluation metric for all
experiments on various datasets is entity-level F1.

Result and Analysis
Overall Performance Table 1 presents the performance
of our proposed model KaNa and compared baselines. From
the table, we have several observations:
• In all cases, our proposed model KaNa outperforms all

baselines. In particular, compared to the strongest base-
line (BERT-CRF), KaNa improves F1 1.33 on average.
Comparisons with knowledge free models (i.e. BiLSTM-
CRF, BERT-CRF) validate the effectiveness of using KB
knowledge in NER and comparisons with knowledge
aware model (i.e. SoftGaz) show that our model has a bet-
ter way of incorporating knowledge.

• Compared to those knowledge free models, KaNa leads
to an F1 1.75 improvement on average over BiLSTM-
CRF. The recall is increased by 2.71% on average, this
improvement could be brought by the extra entity infor-
mation of KB. On the other hand, since BERT learns from
unstructured text, it could lack structured knowledge. Our
model learn from more accurate knowledge and outper-
form BERT-CRF by 3.34% on average precision.

• SoftGaz is a strong baseline under a task specific KB
setting. However, without manually resolving type sys-
tem heterogeneity, SoftGaz perform worse than BiLSTM-
CRF on MIT-rest where a precision decline of 1.5% is
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Method P R F1
KaNa w/o Denoising 76.71 72.68 74.64
KaNa w Denoising 79.33 73.64 76.38

Table 2: Performance comparison of knowledge denois-
ing with and without denoising module(Results reported on
MIT-movie).

Method P R F1
KaNa (Entity-Glove) 79.33 73.64 76.38
KaNa (PBG) 78.29 73.23 75.68
KaNa (One-Hop) 77.69 73.54 75.56

Table 3: Different ways of using selected knowledge (Re-
sults reported on MIT-movie). Entity-Glove: use Glove to
initialize entity nodes. PBG: use translation embeddings
(e.g. TransE) to initialize entity nodes. One-Hop: introduc-
ing one-hop knowledge (the entity with its corresponding
relation and tail entity).

observed. It could probably due to type-compound noise
since many restaurant names are ambiguous. KaNa out-
performs SoftGaz by 1.59%, showing the effectiveness of
knowledge denoising and injection module.

The Effect of of Knowledge We investigate the effec-
tiveness of knowledge denoising by comparing KaNa mod-
els with and without denoising module. From the Table2,
we can observe that KaNa model with knowledge denois-
ing performs better than that without knowledge denoising.
Those gains could be brought by filtering out task-irrelevant,
incorrect type-compound entities.

Moreover, we explore what and how to use selected
knowledge. The different ways of using selected KB knowl-
edge in text-entity graph can fall into two aspects including
what to use and how to use. Firstly, except for entity names
and types, relational knowledge is also contained in KB. One
selected entity can have certain relations with another in KB,
which we call one-hop knowledge. So we implement KaNa
(One-Hop) model to investigate whether NER benefits from
such relational knowledge. Results in Table 3 show a decline
of 0.82% on F1. The reason could be that one-hop knowl-
edge brought by selected entities is not filtered, thus more
noise than useful information is introduced. Secondly, for
the entity nodes initialization, instead of infusing nodes with
semantic information (Entity-Glove), we could also use KB
representations (i.e. PBG) to provide more structural infor-
mation. The use of PBG slightly decreases KaNa by 0.70%.
It could be deduced that after using structural KB knowl-
edge in the candidate generation and denosing phases, the
semantic information of entities themselves dominates in the
following use of KB knowledge.

Case Study We conduct case study to investigate the influ-
ence of using KB and how the knowledge denoising module
impacts upon NER. The first case compares KaNa with and
without knowledge base, displayed in Figure 3a. In case 1,

…has been detected in peripheral blood mononuclear cell   …
B-Cell

Peripheral_blood_mononuclear_cell

Text:
Gold:
KaNa w/o KB:
KaNa w KB:

B-CellO
B-Cell I-Cell

Type:
cellKB Entity:

I-Cell I-Cell I-Cell
I-Cell I-Cell
I-Cell I-Cell

(a) Case 1: KaNa w/o KB means using BiLSTM-CRF to predict
labels without considering knowledge base, KaNa w KB means
incorporating knowledge base to predict labels.

… did         peter               parker     turns     evil   …
B-Actor I-Actor

Spiderman

Text:
Gold:
KaNa w/o Denoising:
KaNa w Denoising:

B-Character I-Character
B-Actor I-Actor

Type:
comic_book_character
fictional_character
film_character

KB Entity:

(b) Case 2: KaNa w/o Denoising means predicting labels by di-
rectly incorporating raw knowledge base without knowledge de-
noising. KaNa w Denoising means predicting labels by utilizing a
refined knowledge base after knowledge denoising.

Figure 3: Case Study. Case 1 is selected from the test file of
AnEM dataset. Case 2 belongs to the test file of MIT-Movie.

there is an entity Peripheral blood mononuclea cell linked
to the mention Peripheral blood mononuclea cell. Without
the linked entity, the model can not integrate the correct
boundary information and predict the label of Peripheral as
O. With the linked entity, our model can correctly recognize
the mention boundary. It illustrates the need of introducing
KB knowledge. In case 2, we compare KaNa with and with-
out denoising module. The mention peter parker is an actor,
but is linked to his character Spiderman. Without denoising
module, incorrect KB information misleads model to pre-
dict wrong type. By adding denoising module, such noise is
filtered out and our model predicts the correct type Actor.

Conclusion and Future Work
In this paper, we proposed a novel knowledge-aware NER
framework (KaNa), which is the first model using type-
heterogeneous knowledge to improve NER performance.
Type heterogeneity issues are alleviated via an unsupervised
denoising method. Experiments on five challenging datasets
demonstrate the effectiveness and generalization of our pro-
posed model. As we described in ablation study, a straight-
forward way of using relational knowledge in NER couldn’t
lead to a performance improvement. Thus, in the future, we
would like to investigate a more sophisticated KB knowl-
edge incorporating mechanism, which can take more entity
information, such as entity descriptions and relations, into
consideration. We believe that, with a strong enough knowl-
edge incorporating method, a unified multi-domain NER
framework could be achieved by leveraging multi-domain
KB knowledge.
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