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Abstract

Document editing has become a pervasive component of the
production of information, with version control systems en-
abling edits to be efficiently stored and applied. In light of
this, the task of learning distributed representations of edits
has been recently proposed. With this in mind, we propose a
novel approach that employs variational inference to learn a
continuous latent space of vector representations to capture
the underlying semantic information with regard to the doc-
ument editing process. We achieve this by introducing a la-
tent variable to explicitly model the aforementioned features.
This latent variable is then combined with a document repre-
sentation to guide the generation of an edited version of this
document. Additionally, to facilitate standardized automatic
evaluation of edit representations, which has heavily relied
on direct human input thus far, we also propose a suite of
downstream tasks, PEER, specifically designed to measure
the quality of edit representations in the context of natural
language processing.

Introduction
Editing documents has become a pervasive component of
many human activities (Miltner et al. 2019). This is, to some
extent, explained by the advent of the electronic storage of
documents, which has greatly increased the ease with which
we can edit them.

From source code to text files, specially over an extended
period of time, users often perform edits that reflect a similar
underlying change. For example, software programmers of-
ten have to deal with the task of performing repetitive code
edits to add new features, refactor, and fix bugs during soft-
ware development. On the other hand, right before a confer-
ence deadline technical papers worldwide are finalized and
polished, often involving common fixes for grammar, clarity,
and style (Yin et al. 2019). In light of this, it is reasonable
to wonder if it would be possible to automatically extract
rules from these common edits. This has lead researchers to
recently propose the task of learning distributed representa-
tions of edits (Yin et al. 2019).

In this paper, we explore the performance of latent mod-
els in capturing properties of edits. Concretely, we introduce
a continuous latent variable to model features of the editing
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process, extending previous work and effectively proposing
a new technique to obtain representations that can capture
holistic semantic information in the document editing pro-
cess. Since inference in latent variable models can often be
difficult or intractable, our proposal follows previous work
framing the inference problem as optimization (Kingma and
Welling 2014; Bowman et al. 2016), which makes it an Edit
Variational Encoder (EVE). Since it is a known fact that la-
tent variable models for text face additional challenges due
to the discrete nature of language (Bowman et al. 2016), in
this paper, we also propose a specific mechanism to mitigate
this issue.

In addition to proposing EVE, we also note that the em-
pirical evaluation of edit representation has, so far, mainly
been based on semi-automatic techniques. For example, in-
cluding visual inspection of edit clusters or human evalu-
ation of certain quality aspects of the representations. As
these evaluations mechanisms are generally time consuming
and labor intensive, in this paper we propose a set of extrin-
sic downstream tasks specifically designed to more compre-
hensively evaluate the quality of edit representations. Our
motivation is to help advance research in this task by intro-
ducing a fully automatic, well-defined way to measure what
the learned latent space is capable of capturing. Similar en-
deavors have been a key element in tracking progress and de-
veloping new approaches in computer vision (Russakovsky
et al. 2015; Antol et al. 2015) and natural language process-
ing (Wang et al. 2018). We draw inspiration from several
relevant problems from the latter, and leverage resourced
from three different tasks, namely Wikipedia editing, ma-
chine translation post-editing and grammatical error correc-
tion to present our evaluation scheme.

Our results indicate that evaluation metrics that are related
to the task used to obtain edit representations are generally
good predictors for the performance of these representations
in downstream tasks, although not always. Compared to ex-
isting approaches, our model obtains better scores on the in-
trinsic evaluation, and the representations obtained by our
approach can also consistently deliver better performance in
our set of introduced downstream tasks. Our code and data
are available on GitHub1.

1https://github.com/epochx/PEER
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Related Work
Learning distributed representations for edits was perhaps
first proposed indirectly by Loyola, Marrese-Taylor, and
Matsuo (2017); Jiang and McMillan (2017); Jiang, Armaly,
and McMillan (2017). These works note that source code
changes, or commits, are usually accompanied by short de-
scriptions that clarify their purpose (Guzman, Azócar, and Li
2014) and explore whether this information could be used to
create a mapping between the commits and their descriptive
messages. Models that further improve the performance in
this task have also been proposed in the last few years. For
example, Loyola et al. (2018) proposed ways to provide ad-
ditional context to the encoder or constrain the decoder with
mild success, and Liu et al. (2019) augmented the sequence-
to-sequence methods with a copy mechanism based on a
pointer net obtaining better performance. Liu et al. (2018)
tackled the problem using an approach purely based on ma-
chine translation.

Recently, Yin et al. (2019) have directly proposed to learn
edit representations by means of a task specifically designed
for those purposes. While their ideas were tested on both
source code and natural language edits, the work of Zhao
et al. (2019) proposed a similar approach that is specifically
tailored at source code with relatively less success.

In natural language processing, edits have been studied
mainly in two contexts. On one hand, edits are useful for
the problem of machine translation post-editing, where hu-
mans amend machine-generated translations to achieve a
better final product. This task has been crucial to ensure that
production-level machine translation systems meet a given
level of quality (Specia et al. 2017). Although research on
this task has focused mainly on learning to automatically
perform post-editing, some recent work has more directly
addressed the problem of modelling different editing agents
(Góis and Martins 2019) in an effort to understand the nature
of the human post-editing process, which is key to achieve
the best trade-offs in translation efficiency and quality.

On the other hand, edits have also been relevant in the
context of English grammatical error correction (GEC). In
this task, given an English essay written by a learner of En-
glish as a second language, the goal is to detect and correct
grammatical errors of all error types present in the essay and
return the corrected essay. This task has attracted recent in-
terest from the research community with several shared tasks
being organized in the last years (Ng et al. 2014; Bryant et al.
2019).

Additionally, given the importance that edits play in
crowd-sourced resources such as Wikipedia, there has also
been work on indirectly learning edit representations that
are useful to predict changes in the quality of articles,
which is cast as an edit-level classification problem (Sarkar
et al. 2019). Similarly, Marrese-Taylor, Loyola, and Matsuo
(2019) proposed to improve quality assessment of Wikipedia
articles by introducing a model that jointly predicts the qual-
ity of a given Wikipedia edit and generates a description of
it in natural language.

In terms of the proposed model, our approach is related
to autoencoders (Rumelhart, Hinton, and Williams 1986),
which aim to learn a compact representation of input data by

way of reconstruction. Our approach is also related to varia-
tional autoencoders (Kingma and Welling 2014), which can
be seen as a regularized version of autoencoders, specifically
(Bowman et al. 2016), who introduced an RNN-based VAE
that incorporates distributed latent representations of entire
sentences. Our architecture is also similar to that of Gupta
et al. (2018) who condition both the encoder and decoder
sides of a VAE on an input sentence to learn a model suit-
able for paraphrase generation, but we depart from this clas-
sic VAE definition as our generative process includes two
observable variables.

Finally, our proposals are also related to Guu et al. (2018),
who proposed a generative model for sentences that first
samples a prototype sentence from the training corpus and
then edits it into a new sentence, with the assumption that
sentences in a single large corpus can be represented as mi-
nor transformations of other sentences. Instead, in our set-
ting, edits are clearly identified by two distinct versions of
each item (i.e. x− and x+), which we can regard as a paral-
lel corpus. Although this approach also captures the idea of
edits using a latent variable, doing so is not the main goal of
the model. Instead, our end goal is precisely to learn a func-
tion that maps an edit (represented by the aforementioned
x− and x+) to a learned edit embedding space.

Proposed Approach

The task of learning edit representations assumes the exis-
tence of a set x(i) = {x(i)

− , x
(i)
+ }, where x(i)

− is the original
version of an object and x(i)

+ is its form after a change has
been applied. To model the applied change, i.e. the edit, we
propose the following generative process:

p(x+|x−) =
∫

z
p(x+, z|x−)dz =

∫
z
p(x+|z,x−)p(z)dz (1)

In the above equation, x+ and x− are observed random
variables associated to x(i)

+ and x(i)
− respectively, and z rep-

resents our continuous latent variable. Since the incorpora-
tion of this variable into the above probabilistic model makes
the posterior inference intractable, we use variational infer-
ence to approximate it. The variational lower bound for our
generative model can be formulated as follows:

ELBO(x+,x−) = −KL [q(z)||p(z)]
+ Eq(z) [log p(x+|z,x−)] (2)

In Equation 2, p(z) is the prior distribution and q(z) is the
introduced variational approximation to the intractable pos-
terior p(z|x−,x+). We assume that the edits in our dataset
are i.i.d., allowing us to compute the joint likelihood of the
data as the product of the likelihood for each example. This
assumption enables us to write the following expression:

log p(x(i), . . . , x(N)) =
N∑
i=1

log p(x
(i)
+ |x

(i)
− ) (3)
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Finally, we can write (Zhang et al. 2016):

log p(x
(i)
+ |x

(i)
− ) ≥ ELBO(x

(i)
+ , x

(i)
− ) (4)

≥ Ez∼q(z)

[
log p(x

(i)
+ |x

(i)
− , z)

]
− KL [q(z)‖p(z)] (5)

From now on, we refer to x(i)
− and x(i)

+ as x− and x+ re-
spectively. We set x−,x+ ∈ Rd as continuous vectors to
be the representation of the original version of an element
x− and its edited form x+, and z ∈ Rd to be a continu-
ous random vector capturing latent semantic properties of
edits. Our goal is to learn a representation function f∆ that
maps an edit (x−, x+) to a real-valued edit representation
f∆(x−,x+) ∈ Rn. Following previous work, we utilize
neural networks to estimate the following components of our
generative process:

• q(z) ≈ qφ(z|x−,x+) is our variational approximator for
the intractable posterior, where qφ denotes the function
approximated by this neural network parameterized by φ.

• p(x+|x−, z) ≈ pθ(x+|x−, z), where pθ denotes the
function defined by the neural net and its dependence on
parameters θ.

Our model is optimized with the following loss function:

L(φ, θ) = Ez∼qφ [log pθ(x+|x−, z)]
− KL [qφ(z|x−,x+)‖p(z)] (6)

From our component definitions, it follows that the neural
network parameterizing pθ(x+|x−, z) acts as a variational
neural editor and is trained to minimize the negative log-
likelihood of reconstructing the edited version of each ele-
ment. On the other hand, the neural net that parameterizes
the approximate posterior qφ(z) minimizes the Kullback-
Leibler divergence with respect to the prior p(z). Since we
have made this function depend explicitly on each edit, this
component can be considered as a variational neural edit
encoder.

Our loss function contains an expectation term computed
over the random latent variable introduced. To be able to
train our neural components using backpropagation, we uti-
lize the reparameterization trick and express the random
vector z = qφ(x−,x+) as a deterministic variable z =
gφ(x−,x+, e), where e is an auxiliary variable with inde-
pendent marginal p(e), and gφ is a function parameterized
by a neural net with parameters φ. Details about how this
function is specified are provided in the corresponding Sec-
tion.

We can now rewrite the expectation term such that we can
utilize a sampling-based method to estimate it. In addition to
this, we set the prior distribution to be a Gaussian distribu-
tion p(z) ∼ N (0, In) and make our approximate posterior
distribution q(z) also a normal distribution N (µ,Σ) with
Σ a diagonal matrix. Since the Kullback-Leibler divergence
for these distributions has a closed form, we can write the

following loss function:

L(θ, φ,x+) =
1

2

d∑
k=1

(
1 + log (σ2

k)− µ2
k − σ2

k

)
+

1

L

L∑
l=1

log pθ(x+|x−, zl) (7)

In Equation 7, L is the number of samples to take to obtain
a good estimator of the expectation term. In principle, we
follow previous work (Kingma and Welling 2014) and set
the number of samples to 1 given that we train our model
with a minibatch size that is large enough.

Variational Neural Edit Encoder
Edits are represented as sequences of tokens, such that x− =

[x
(1)
− , . . . , x

(T )
− ] and x+ = [x

(1)
+ , . . . , x

(N)
+ ]. To obtain an

edit representation, we further process these sequences using
matching techniques (Yin et al. 2019) to obtain tags which
identify the tokens that have been added (+), removed (−),
replaced (⇔), or remained the same (=). In this process,
as shown in Figure 1, we obtain padded versions of the se-
quences x̃− = [x̃

(1)
− , . . . , x̃

(M)
− ] and x̃+ = [x̃

(1)
+ , . . . , x̃

(M)
+ ],

alongside with a sequence of tags x̃tags with length M in-
dicating the edit operations applied to each position. We de-
note the vocabulary for these tags as Vl = {−,+,=,⇔}
and the vocabularies for the tokens in x̃− and x̃+ as V− and
V+ respectively.

We then separately embed the three sequences returned
from the matching operation and perform element-wise con-
catenation to get ẽ. We then feed ẽ to a bidirectional LSTM
(Graves and Schmidhuber 2005; Graves, Mohamed, and
Hinton 2013) as follows:

ẽi =

 E+(x̃
(i)
− )

E−(x̃
(i)
− )

Etags(x̃
(i)
tags)

 (8)

~h(i)
e = LSTM(~h(i−1)

e , ẽi) (9)
~h(i)
e = LSTM( ~h(i+1)

e , ẽi) (10)

h(i)
e = [~h(i)

e ; ~h(M−i)
e ] (11)

In the equations above E+, E−, Etags are embedding ma-
trices for x̃−, x̃+, and x̃tags, respectively. The bi-directional
LSTM returns a sequence of hidden states or annotations.
Each one of these can be seen as a contextualized, position-
aware representation of the edit. We choose the last hidden
state, h(M)

e , as a fixed-length representation for the whole
edit.

Document Encoder
To generate a fixed-length representation for each original
document x−, we use another bidirectional LSTM as fol-
lows:

h
(i)
d = BiLSTM(h

(i−1)
d ,E−(x

(i)
− )) (12)

In a similar fashion to the variational edit encoder, we take
the last hidden state as a fixed-length representation of x−.
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x̃−: Disposal of Waste material according to the local policies , respectively .
x̃+: Disposal of waste material according to the local policies . φ φ

x̃tags: = = ⇔ = = = = = = ⇔ − −

Figure 1: Example of the edit matching pre-processing step. The example in this figure is taken from the QT21 De-En MQM
dataset (index B1 A6 4w 620). Its labels indicate that this post edit solves with problems related to spelling, typography, and
the deletion of extra terms that are not needed.

Variational Neural Inferer
As mentioned earlier, the posterior distribution is set to be a
multivariate Gaussian parameterized by the mean and vari-
ance matrices. Specifically, we treat these as functions of
both the original document x− and the edited document x+

as follows:
gφ(z|x−,x+) ∼ N (µφ(x−, x+),Σφ(x−, x+)) (13)

To approximate this posterior, we project the representation
of the edit onto the latent space by using a linear projec-
tion layer to derive the vector µ for the mean and another
linear projection layer to derive a vector σ for the variance
(we assume that Σφ is a diagonal matrix so we only need to
estimate the values in its diagonal). We do this as follows:

µ =Wµh
(M)
e + bµ (14)

logσ2 =Wσh
(M)
e + bσ (15)

In the equations above, Wµ ∈ Rdz×de , Wσ ∈ Rdz×de rep-
resent trainable weight matrices, and bµ ∈ Rdz , bσ ∈ Rdz
represent the bias vectors of the linear projections we use.
Finally, we can write the following:

z = gφ(x−,x+, e) := µ+ σ � e (16)
Here, e ∼ N (0, I) is our introduced independent auxiliary
random variable, and parameters of gφ are therefore charac-
terized by matricesWµ,Wσ and bias vectors bµ and bσ .

For use during generation, we project our latent variable,
z, to the target space with a linear transformation. We refer
to this projected vector as h′e. This is shown below:

h′e =Wez + be (17)

Variational Neural Editor
To reconstruct x+, we use a decoder which acts as a neu-
ral editor. This is implemented using another LSTM. This
neural editor is conditioned both on the input document x−
and the edit representation z, and it uses this information to
apply the edit by generating x+.

The procedure works as follows: (1) Firstly, the decoder is
initialized with the concatenation of the projected latent vec-
tor and the representation of the original document [z;h(T )

d ],
(2) Since we want the decoder to reuse information from
x− as much as possible, the decoder attends its representa-
tion, making use of the set of annotation vectors hd on each
timestep, (3) At each timestep, h′e is concatenated with the
hidden state returned during the previous timestep as fol-
lows:

h
′(j)
d = LSTM(h

′(j−1)
d , [E+(x̃

(j)
+ );h′e], cj) (18)

The decoder’s hidden state at timestep j is referred as h′d(j)
and the context vector cj =

∑
i αjihd is computed using

general attention.

The x∆ Loss
Variational auto-encoders are often found to ignore latent
variables when using flexible generators like LSTMs. Thus,
in order to increase the likelihood of the latent space to be
useful, we propose to encourage the latent vector to contain
information about the tokens that have been changed (added,
replaced, or removed), which we denote as x∆.

Specifically, we require a decoder network to predict the
set of tokens that have been changed in an unordered fash-
ion. If we let f = MLP(z) ∈ R|V+|, we have:

log p(x∆|z) = log

|x∆|∏
t=1

exp fxt∑V
j exp fj

(19)

This term is added to Equation 7, and our model is trained
to jointly minimize − log p(x∆|z) together with the rest of
the loss terms.

Experimental Setup
PEER: Performance Evaluation of Edit
Representations
Previous research on evaluating the quality of edit represen-
tations has mainly been by proposed Yin et al. (2019). We
mainly find two kinds: intrinsic evaluations of edit repre-
sentations, for which no additional labels are required, and
extrinsic evaluations, which require additional labels or in-
formation.

A detailed revision of the existing literature in terms of in-
trinsic evaluations showed us that this is performed mainly
by measuring the gold-standard performance of the neural
editor in terms of the average token-level accuracy, by vi-
sually inspecting the semantic similarity of neighbors in the
latent space using human judgement, or by performing clus-
tering and later visually inspecting some of the clusters ob-
tained. We provide more details about each one of these
techniques in our supplementary material. As can be seen,
intrinsic evaluations are largely dependent on human stud-
ies, which are expensive and difficult to replicate. Instead of
relying on this kind of evaluation, in this paper, we resort
to automatic and more standard ways to do so. In addition
to standard metrics used for generative models such as the
cross entropy and BLEU-4, we propose the GLEU (Napoles
et al. 2015) evaluation metric. This metric was developed for
the GEC task and is essentially is a variant of BLEU modi-
fied to account for both the source and the reference, making
it more adequate for our task. It can also be interpreted as a
more general version of the token-level accuracy metric uti-
lized by Yin et al. (2019).

Regarding intrinsic evaluations, we found that literature
also offers a broad variety of alternatives. Among these,
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the most relevant included (1) visual inspection of the 2D-
projected edit space, generally performed for a subset of
the edits known to be associated to a certain label, (2) one-
shot performance of the neural editor on similar edits —
previously identified by means of additional information—
, and (3) the ability to capture other properties of the edit
(Marrese-Taylor, Loyola, and Matsuo 2019; Sarkar et al.
2019), namely one or many labels associated to it.

Based on these findings, we propose a combination of
training and evaluation datasets, each associated to a spe-
cific task in natural language processing, to automatically
evaluate the quality of edit representations. We define a set
of downstream tasks based on three different sources of ed-
its, which we call PEER (Performance Evaluation for Edit
Representations). Table 1 provides a descriptive summary of
the datasets included in PEER, and we provide details about
each below:

Dataset Size Only + Only − Length

WikiAtomicSample 104,000 50.0% 50.0% 25.1

WikiEditsMix 113,983 24.1% 16.6% 61.6

QT21 En-De 24,877 8.4% 8.0% 20.0

QT21 En-De MQM 1,255 10.3% 11.3% 19.2

Lang 8 498,359 13.2% 4.6% 13.5

WI + Locness 25,556 11.9% 4.1% 21.4

Table 1: Description of the datasets we utilize to train and
evaluate our models.

Wikipedia Edits: We work with two large resources of
human edits on Wikipedia articles.
• WikiAtomicSample: We randomly sampled approxi-

mately 150K insertion and deletion examples from the
English portion of the WikiAtomicEdits (Faruqui et al.
2018). After cleaning, we keep 104K samples.

• WikiEditsMix: We randomly selected 20 of the 200 most
edited Wikipedia articles and extract the diff for each revi-
sion for each article using the WikiMedia API. We make
use of the Wikimedia’s ORES (Halfaker and Geiger 2020)
API and scrape the draftquality label for each revision.
There are 4 draftquality labels: spam, vandalism, attack,
and OK, each corresponding to a different quality of the
edit.

For this task, we evaluate the quality of the edit represen-
tations by means of running a multi-class classifier over
the edit representations to predict the quality labels in the
WikiEditsMix datasets. We use both datasets to train mod-
els.

Post-editing: As explained earlier, post-editing is the pro-
cess whereby humans amend machine-generated translation.
We choose one of the largest resources of human-annotated
examples to train and evaluate our models.
• QT21 De-En: We work with the German-English portion

of the QT21 dataset (Specia et al. 2017), which originally
contains a total of 43,000 examples of machine translation

human post-edits. The machine translation output over
which post-editing is performed to create this dataset is an
implementation of the attentional encoder-decoder archi-
tecture and uses byte-pair encoding (Sennrich, Haddow,
and Birch 2016).

• QT21 De-En MQM: A subset of 1,800 examples of the
De-En QT21 dataset, annotated with details about the ed-
its performed, namely the reason why each edit was ap-
plied. Since the dataset contains a large number of edit
labels, we select the classes that are present in at least 100
examples and generate a modified version of the dataset
for our purposes. Examples where no post-edit has been
preformed are also ignored.

The evaluation scheme on the post-editing task is based on
the unlabeled data in QT21 De-En for training and the la-
beled data in the QT21 De-En MQM dataset for testing.
Since each test example is associated to a variable number
of labels, this task is cast as multi-label classification.

Grammatical Error Correction (GEC): We consider
the task of English GEC, which has attracted a lot of inter-
est from the research community in the last few years. Since
grammatical errors consist of many different types we fol-
low previous work by Bryant et al. (2019) and use some of
the datasets released for this shared task, which work with
well-defined subsets of error types.

• Lang-8 Corpus of Learner English (Lang 8): A corpus
for GEC derived from the English subset of the Lang-8
platform, an online language learning website that en-
courages users to correct each other’s grammar (Mizu-
moto et al. 2012). In particular, we work with the version
of the dataset released by Bryant et al. (2019) and further
process it to skip examples where there are no grammar
corrections.

• W&I + LOCNESS (WI + Locness): A dataset which
was compiled by Bryant et al. (2019), built on top of (1)
a subset of the LOCNESS corpus (Granger 2014), which
consists of essays written by native English students man-
ually annotated with grammar errors, and (2) manually
annotated examples from the Write & Improve online
web platform (Yannakoudakis et al. 2018). This dataset
contains 3,600 annotated examples across three different
CEFR levels (Little 2006): A (beginner), B (intermedi-
ate), and C (advanced). Again, we ignore examples where
there are no grammar corrections.

The evaluation scheme for GEC consists on training mod-
els on the unlabeled Lang 8 dataset, and the evaluation is
performed using the labels in WI + Locness, which asso-
ciates CEFR difficulty levels to each example. Concretely,
the problem is a multi-class classification problem.

Comparison to Prior Work
Using PEER as a test bed, we compare the performance of
EVE against two relevant baselines. Firstly, we consider a
variation of the deterministic encoder by Yin et al. (2019),
with the only difference being that we do not include the
copy mechanism in order to make results directly compara-
ble.
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Secondly, we consider the approach by Guu et al. (2018).
To adapt this to our setting, we skip the sampling procedure
required in their case since our edits are already pairs of sen-
tences and proceed to directly incorporate their edit encod-
ing mechanism into our model. Following their approach,
we first identify the tokens that have been added and re-
moved for each edit, which we denote as x+

∆ and x−∆. Each
one of these token sequences is treated like a bag-of-words,
encoded using trainable embedding matrix E, aggregated
using sum pooling and finally projected using two different
linear layers to obtain h+ and h−. These are finally com-
bined to obtain f = [h+;h−]. In their approach, a sample
from the approximate posterior q is simply a perturbed ver-
sion of f obtained by adding von-Mises Fisher (vMF) noise,
so they perturb the magnitude of f by adding uniform noise.

q(zdir|x+
∆, x

−
∆) = vMF (zdir;fdir, κ) (20)

q(znorm|x+
∆, x

−
∆) = Unif(znorm; [f̃norm, f̃norm + ε]) (21)

In the equations above, fnorm = ‖f‖, fdir = f/fnorm,
vMF (v;µ, κ) denotes a vMF distribution with mean vec-
tor µ and concentration parameter κ, and f̃norm =
min(fnorm, 10− ε) is the truncated norm. Finally, the result-
ing edit vector is z = zdir · znorm, resulting in a model whose
KL divergence does not depend on model parameters. We
adapt their code release2 and integrate it into our codebase
utilizing the same hyper-parameters. In order to make results
comparable, we do not use pre-trained embeddings. For ad-
ditional details, please refer to their paper and/or implemen-
tation.

Implementation Details
Despite the VAE’s appeal as a tool to learn unsupervised
representations through the use of latent variables, there ex-
ists the risk of “posterior collapse” (Bowman et al. 2016).
This occurs when the training procedure falls into the triv-
ial local optimum of the ELBO objective, in which both the
variational posterior and true model posterior collapse to the
prior. This often means these models end up ignoring the
latent variables, which is undesirable because an important
goal of VAEs is to learn meaningful latent features for in-
puts. To deal with these issues, we utilize word dropout, and
we anneal the KL term in the loss utilizing a sigmoid func-
tion, following the work of Bowman et al. (2016). Addition-
ally, we also follow recent work of Li et al. (2019), who dis-
covered that when the inference network of a text VAE is ini-
tialized with the parameters of an encoder that is pre-trained
using an auto-encoder objective, the VAE model does not
suffer from the posterior collapse problem. Therefore, our
model is first trained with zero KL weight until convergence.
Then, the decoder is reset, and the whole model is re-trained.

For the intrinsic evaluation, BLEU and GLEU scores are
computed over the beam-search-generated output. Follow-
ing the scheme of PEER, we first pre-train each model us-
ing the training scheme (i.e. the intrinsic task) and obtain a
function that maps edits to a fixed-length vector represent-
ing a point in the latent space. We then evaluate this mapping

2https://github.com/kelvinguu/neural-editor

function using the extrinsic evaluation setup. Since EVE is
a probabilistic model, we utilize MAP and select the vector
that parameterizes the mean of the posterior distribution as
a deterministic edit representation for each example.

Results
To assess the contribution of each of our proposals, we
performed an ablation study in two settings, WikiAtomic-
Sample → WikiEditsMix and Lang 8 → WI + Locness.
Specifically, we were interested in studying the effect on
performance of our x∆ loss, of the Kullback-Leibler diver-
gence and of the pre-training technique proposed by Li et al.
(2019). We evaluated each model variation in both the in-
trinsic and extrinsic tasks using the validation set on each
case.

Data Model BLEU GLEU Acc

WikiAtomicSample
→WikiEditsMix

Base 0.81 0.79 0.672
+ x∆ loss 0.82 0.80 0.767
+ KL loss 0.77 0.75 0.649

EVE 0.84 0.82 0.780

Lang 8→
WI + Locness

Base 0.65 0.58 0.831
+ x∆ loss 0.65 0.57 0.939
+ KL loss 0.56 0.46 0.409

EVE 0.68 0.61 0.958

Table 2: Results of our ablation studies. BLEU and GLEU
scores are computed over the validation split, and Acc stands
for accuracy of the respective downstream classification task
for each dataset, also computed on the validation split.

Table 2 summarizes the results of our ablation experi-
ments. Results show the effectiveness of the introduced x∆

loss, which consistently helps the baseline model obtain bet-
ter performance. The fact that performance not only im-
proves on the intrinsic tasks, but also on the extrinsic eval-
uation, suggests that this technique effectively helps the la-
tent code store meaningful information about the edit. On
the other hand, we see that the addition of the KL term to
the loss tends to have negative effects on both the intrinsic
and extrinsic tasks, evidencing the instability added by this
constraint to the encoder. This result is not surprising, be-
ing consistent with previous findings in the context of text
VAEs (Bahuleyan et al. 2018; Li et al. 2019). Finally, re-
sults of our full model show that both the x∆ loss as well
as the pre-training trick can be effectively combined to help
the encoder stabilize and encourage the latent space to con-
tain relevant information about the edits, leading to better
performance overall.

Table 3 shows our obtained results and compares them
to relevant prior work by means of PEER. If we focus on
the intrinsic evaluations, we can see that our approach is
able to provide better performance in two datasets, with the
deterministic baseline by Yin performing better elsewhere.
Since these metrics are highly concerned with the recon-
structive capabilities of the neural editor, we think this ev-
idence mostly suggests that the Guu et al. (2018) neural edit
encoder is less capable of storing relevant information from
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Train. Data Model
Intrinsic Evaluation Extrinsic Evaluation

Valid Test Eval. Data Accuracy

BLEU GLEU BLEU GLEU Train Valid Test

WikiAtomicSample
Guu 0.63 0.60 0.28 0.26

WikiEditsMix

0.738 0.740 0.743
Yin 0.81 0.79 0.81 0.79 0.671 0.672 0.668
EVE 0.84 0.82 0.84 0.82 0.782 0.780 0.774

WikiEditsMix
Guu 0.56 0.53 0.54 0.52 0.670 0.668 0.666
Yin 0.65 0.65 0.65 0.65 0.604 0.597 0.600
EVE 0.58 0.61 0.55 0.57 0.637 0.642 0.638

Lang 8
Guu 0.53 0.43 0.51 0.41

WI + Locness
0.924 0.856 0.856

Yin 0.65 0.58 0.65 0.58 0.836 0.831 0.831
EVE 0.68 0.61 0.68 0.60 0.971 0.958 0.958

QT21 De-En
Guu 0.47 0.37 0.32 0.30

QT21 De-En MQM
0.925 0.896 0.933

Yin 0.57 0.49 0.57 0.49 0.972 0.952 0.964
EVE 0.53 0.45 0.54 0.46 0.999 0.992 0.992

Table 3: Result of the intrinsic and extrinsic evaluations on our datasets, as defined by the PEER framework.

the edits in the latent vector, which is probably because it de-
pends only on the tokens that were modified, in an unordered
manner.
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Figure 2: Effect of model depth on the accuracy on the test
set of the extrinsic evaluation as a function of the num-
ber of hidden layers of the classifier. WikiAtomicSample
→ WikiEditsMix in red, WikiEditsMix→ WikiEditsMix in
blue and Lang 8→WI + Locness in yellow. Results on post
editing are omitted for clarity.

Performance differences across settings are suggestive of
the intrinsic difficulty of the task on each case. This is
likely related to the nature of each dataset, which is evi-
denced in features such as average sentence length and vo-
cabulary size. In this context, it is interesting to see mod-
els pre-trained on WikiAtomicSample outperforming mod-
els trained on WikiEditsMix. In this case, we think the much
longer average sentence length may have hindered the learn-
ing process, since it is known that without the attention com-
ponent, RNNs struggle on longer inputs (Bahdanau, Cho,

and Bengio 2015).
In terms of the extrinsic evaluation, we see that our model

obtains better performance in three out of the four settings,
which we believe validates the effectiveness of our approach
and shows that the information contained in our learned rep-
resentations can actually be useful for downstream tasks. To
select the best classifier, on each case we studied how per-
formance varies with the depth of the classifier.

Finally, as Figure 2 shows, we see that at low depths,
performance is poor, and differences across models tend
to be small, suggesting that the classifiers are not capable
of using the information stored in the vectors. Meanwhile,
an increase in depth benefits all models, and as expected,
it also allows us to clearly see the superiority of certain
encoders. In this context, we think good results on WI +
Locness and QT21 De-En MQM suggest that the labels in
these are strongly correlated with the information stored in
the edit representations, which is in agreement with the la-
bel nature (mostly related to the presence of certain mis-
spelled/mistranslated terms). Conversely, the lower perfor-
mance on WikiEditsMix suggests that a richer understand-
ing of the edit semantics is needed.

Conclusions

In this paper, we have introduced a model that employs vari-
ational inference to learn a continuous latent space of vector
representations to capture the underlying semantic informa-
tion with regard to the document editing process. We have
also introduced a set of downstream tasks specifically de-
signed to evaluate the quality of edit representations, which
we name PEER. We have utilized these to evaluate our
model, compare it to relevant baselines, and offer empirical
evidence supporting the effectiveness of our approach. We
hope the development of PEER will help guide future re-
search in this problem by providing a reliable programmatic
way to test the quality of edit representations.
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