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Abstract

Most previous works on neural sentence simplification ex-
ploit seq2seq model to rewrite a sentence without explicitly
considering the semantic information of the sentence. This
may lead to the semantic deviation of the simplified sen-
tence. In this paper, we leverage semantic dependency graph
to aid neural sentence simplification system. We propose
a new sentence simplification model with semantic depen-
dency information, called SDISS (as shorthand for Semantic
Dependency Information guided Sentence Simplification),
which incorporates semantic dependency graph to guide sen-
tence simplification. We evaluate SDISS on three benchmark
datasets and it outperforms a number of strong baseline mod-
els on the SARI and FKGL metrics. Human evaluation also
shows SDISS can produce simplified sentences with better
quality.

Introduction
Sentence simplification aims to reduce the linguistic com-
plexity of a sentence, while still preserving its salient in-
formation and meaning. Sentence simplification has many
practical applications. For instance, it can provide assis-
tance for low-literacy reader (Watanabe et al. 2009) or for
patients with linguistic and cognitive disabilities (Carroll
et al. 1999). In addition, a simplification component could
be used to improve the performance of tasks such as pars-
ing(Chandrasekar, Doran, and Srinivas 1996), summariza-
tion(Klebanov, Knight, and Marcu 2004) and so on.

Inspired by the success of machine translation (MT),
many text simplification (TS) systems treat sentence sim-
plification as a monolingual translation task. Most current
TS systems based on neural machine translation employ
seq2seq models to transform a source sentence to a simpli-
fied target sentence. The common practice for Seq2seq mod-
els is to use recurrent neural networks (RNNs) with Long
Short-Term Memory (Hochreiter and Schmidhuber 1997)
or Transformer (Vaswani et al. 2017). However, there still
exists the problem of semantic irrelevance and deviation
from the source sentence in many case, which will reduce
the quality of simplified sentences. An example of sentence
simplification is shown in Table 1. The Transformer model
without using semantic information tends to copy the whole
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source sentence and cannot catch the theme of the original
sentence.

Many researches in other tasks have got positive effect
by introducing semantic information into neural models. For
instance, Song et al. (Song, Zhao, and Liu 2018) combined
source syntactic structures into neural sentence summariza-
tion to help the model identify summary-worthy content and
avoid content deviation. Song et al. (2019) incorporated ab-
stract meaning representation into machine translation mod-
els. But few attempts have been made for the task of sen-
tence simplification yet.

In this study, we aim to investigate the use of semantic in-
formation in neural text simplification systems and we focus
on the semantic dependency graph of the source sentence.
Semantic dependency graph contains predicate-argument re-
lations between content words in a sentence. There are var-
ious semantic dependency representation schemes based on
different annotation systems (Oepen et al. 2016). We lever-
age DM (DELPH-IN MRS Bi-Lexical Dependencies) graph
as an additional input to TS system because of its high con-
sistency and accuracys. In DM graph, nodes represent words
in the sentence and edges represent semantic relationships
between words. Non-content words, such as punctuation, are
left out of the analysis.

Our model consists of three parts: sentence encoder, graph
encoder and sentence decoder. We leverage Transformer
(Vaswani et al. 2017) encoder as sentence encoder. We pro-
pose a new graph encoder by leveraging graph attention
(Velickovic et al. 2018), which encodes bi-directional graphs
separately. sentence decoder is based on Transformer de-
coder to aggregate sentence information and graph informa-
tion. We evaluate our model on three benchmark datasets
and it has made a significant improvement over the SARI
and FKGL metrics on all the datasets. The results of human
evaluation also show our model can produce simplified sen-
tences with better quality. We empirically show that seman-
tic information can significantly improve the performance
of TS systems. As shown in Table 1, our proposed model
(i.e., SDISS) can produce a simplified sentence with better
fluency and semantic relevance.

The contributions of our work are summarized as below:
1) To the best of our knowledge, we are the first to explore

semantic dependency information for neural sentence sim-
plification and introduce semantic dependency graph into
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Source To prevent overfishing , the agreement would , among other things , make it much easier to establish marine
protected areas -LRB- MPAs -RRB- in the high seas .

Reference An agreement would make it easier to create marine protected areas .
Transformer To prevent lionfish , the agreement would among other things , make much easier to protected areas -LRB-

MPAs -RRB- in the high seas .
SDISS (ours) The agreement would make it much easier to establish marine protected areas .

Table 1: An example for sentence simplification using different models.

neural TS system.
2) We propose a new model to extract semantic informa-

tion from semantic dependency graph by splitting the graph
into forward and reverse ones according to the edge’s di-
rection and encode them with graph attention network sep-
arately. Our code is publicly available at https://github.com/
L-Zhe/SDISS.

3) Automatic and human evaluations demonstrate that our
model can simplify sentences better and achieve new state-
of-the-art performances on three benchmark datasets.

Related Work
There are two major categories of models for sentence
simplification: statistical machine translation (SMT) based
models and neural machine learning (NMT) based mod-
els. SMT based models, including tree-based MT (TBMT)
(Zhu, Bernhard, and Gurevych 2010; Woodsend and Lap-
ata 2011), phrase-based MT (PBMT) (Coster and Kauchak
2011; Wubben, van den Bosch, and Krahmer 2012; Štajner,
Béchara, and Saggion 2015) and syntax-based MT (SBMT)
(Xu et al. 2016), applied traditional statistical models to sen-
tence simplification.

With the success of NMT, researchers started to de-
velop sentence simplification models based on NMT. Ni-
sioi et al. (2017) implemented a neural sentence simplifi-
cation model by using Long Short-Term Memory (LSTM),
and got better performance than PBMT. Zhang and Lap-
ata (2017) proposed to train encoder-decoder model with
deep reinforcement learning and the reward has three com-
ponents to capture key aspects of the target output: sim-
plicity, relevance, and fluency. Vu et al. (2018) employed
a pointer-generator network with neural semantic encoder.
Dong et al. (2019) came up with EditNTS, leveraged neu-
ral programmer-interpreter to produce a series of edit oper-
ations to operate on the original sentence. Recently, Zhao
et al. (2020) proposed BTTS and BTTSRL based on un-
supervised and semi-supervised learning methods. Martin
et al. (2020) leveraged multilingual unsupervised method to
train TS system in languages except English.

There are also some models to introduce semantic infor-
mation to simplification tasks (Narayan and Gardent 2016;
Sulem, Abend, and Rappoport 2018b), but all of them
were based on traditional methods. Differently, we intro-
duce semantic dependency graph into neural simplifica-
tion models. Graph structure can be encoded by leveraging
graph neural network (GNN) (Scarselli et al. 2008). Kipf
and Welling (2017) proposed graph convolutional network
(GCN) to introduce convolutional operation on graph neu-
ral network. Velickovic et al. (2018) combined GCN with

attention mechanism to put forward graph attention network
(GAT) and made significant improvement in many tasks. In-
spired by GAT, we leverage an attention mechanism to ag-
gregate the neighbor relationships within semantic depen-
dency graphs.

Our SDISS Model
In this section, we introduce the components of our model
in detail. First, we define the sentence simplification task
and introduce the notations. Then, we describe the sentence
encoder, graph encoder and sentence decoder, respectively.
Finally, we introduce the loss with copy penalty to prevent
over-replication and length token for length control. Figure
1 shows the overview of our model.
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Figure 1: An overview of SDISS, which consists of sentence
encoder, graph encoder and sentence decoder.

Notations
Our model regards simplification as monolingual transla-
tion task. Given an input sentence X = (x1, x2, · · · , xN ),
where N is the sentence length. The corresponding sim-
plified sentence is Y = (y1, y2, · · · , yM ), where M is
the length of simplified sentence. In addition, we parse X
into its semantic dependency graph G = (V,E) by us-
ing neural factorization-based SDP parser (Chen, Ye, and
Sun 2019), where V denotes the set of nodes in the graph,
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Figure 2: Example forward and reverse graphs for the sen-
tence ’Mohammed Baghdadi is 32.’

and E denotes the set of edges. Each edge represents a se-
mantic relation, denoted as a triple (head, type, tail), where
head, tail ∈ V represent the head node and the tail node
of edge, and type ∈ Rf = {Self,BV,ARG1, · · · } repre-
sents the type of edge. Among them, Self represents self
to self relationship and other edge types represent the dif-
ferent semantic relationships in semantic dependency graph.
In order to improve the information propagation process in
the graph, we add reverse edge to represent the relationship
from tail node to head node, e.g. (tail, rtype, head), where
rtype ∈ Rr = {rSelf, rBV, rARG1, · · · }. Rr represents
the set of reverse edge relationships corresponding with Rf .
Then, we split the directed graph into a forward graph which
the edge type in Rf and a reverse graph which the edge type
in Rr. Figure 2 show an example of forward graph and re-
verse graph. We denote the input sentence’s word embed-
ding matrix with positional encoding as hp.

Sentence Encoder
Sentence encoder aims to obtain the input sentence’s con-
textual representations. We choose Transformer encoder
(Vaswani et al. 2017) as our sentence encoder because of
its excellent performance in many tasks.

The Transformer encoder is a stack of Ls identical lay-
ers, and each layer includes a multi-head self-attention and a
fully connected feed-forward network. The input to sentence
encoder is hp. We take the output of Transformer encoder as
the final output of sentence encoder, which is denoted as s.

Graph Encoder
Most graph models consider directed graph as undirected
graph. These models ignore the direction information in the
graph. Instead, we split the semantic dependency graph into
a forward graph and a reverse graph, and send them to dif-
ferent encoders to capture semantic relationships in differ-
ent directions. Finally, we combine information in both di-
rections as the output of graph encoder. Figure 3 shows the
structure of the graph encoder.

Our graph encoder consists of a forward graph encoder
and a reverse graph encoder. Both graph encoders are a stack
of Lg identical layers. Each layer include a multi-head graph
attention block and a fully connected feed-forward network

Mul�-Head
Graph-A�en�on

Feed Forward Network

Mul�-Head
Graph-A�en�on

Feed Forward Network

Forward Graph Reverse Graph

gL×

Figure 3: The structure of our graph encoder. The whole
graph encoder consists of two component graph encoders,
one for forward graph and another for reverse graph. Each
component graph encoder is a stack of Lg identical layers,
with a multi-head graph-attention block and a feed forward
network. Finally, we combine the outputs of two encoders as
the output of graph encoder.

block. For convenience, we only describe one of them. The
input to the graph encoder is hp. We denote the output of
l-th layer as gl = {gl1, gl2, · · · , glN}, where gli ∈ Rdmodel is
the representation of the i-th node in the graph.

First, we define a graph attention operation. Graph atten-
tion (Velickovic et al. 2018) is used to aggregate the informa-
tion from neighbor nodes. For each edge (head, type, tail),
considering that different relations might have different in-
fluences on the tail node, we concatenate the representations
of the tail node and the edge type, and further employ a GLU
(Dauphin et al. 2017) for transformation. For one edge with
the head node’s representation as u1, we denote the repre-
sentation of the tail node as vtail and the representation of
the edge type as etype, where u, vtail, etype ∈ Rdu . The ag-
gregate operation is as follows:

vagg = [vtail‖etype]Wagg + bagg
gate = σ([vtail‖etype]Wgate + bgate)

v = gate⊗ vagg
(1)

where ⊗ is the element-wise product between matrices. ‖
is concatenation operation. Learnable parameter matrices
include Wagg,Wgate ∈ R2du×du , bagg,bgate ∈ Rdu .
v ∈ Rdu is the representation vector by aggregating infor-
mation of the tail node and the edge type.

Graph attention is used to induce a new representation of
u by aggregating the representations of its neighbor relations
v, which can be computed as follows:

GAT(u) =
∑
v∈Nu

αuvv (2)

where Nu denotes all neighbor relation representations of
node u. αuv is the attention coefficient computed as follows:

1Note that we also use u to denote the head node interchange-
ably.
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αuv =
exp

(
φ
(
a> [Wau‖Wav]

))∑
vk∈Nu

exp (φ (a> [Wau‖Wavk]))
(3)

where φ is LeakyReLU activation function, Wa ∈
Rdu×du ,a ∈ R2du×1.

Then, we introduce a multi-head operation in graph atten-
tion. For simplicity and clarity, we omit the layer index l for
nodes.

ĝji = GAT(giW
j
h)

Headj = (ĝj1, ĝ
j
2, · · · , ĝ

j
N )

MultiHeadGAT(g) =

 Hn

j=1

Headj

Wo

(4)

where H is the head number, Wj
h ∈ Rdmodel×du , Wo ∈

RH∗du×dmodel .
Finally, a feed-forward connection block follows multi-

head GAT. The complete graph encoder is as follows:

g̃l = LN(gl−1 +MultiHeadGAT(gl−1))

gl = LN(g̃l + FFN(g̃l))
(5)

where FFN(x) is a fully connected feed-forward network
(Vaswani et al. 2017) and LN(x) is a layer normalization
(Ba, Kiros, and Hinton 2016).

For each graph encoder, we take the output of the last
layer as its final output. We send forward graph and reverse
graph into different encoders, and get the forward graph en-
coder’s output

→
g and the reverse graph encoder’s output

←
g .

Finally, we combine the outputs in two directions as the final
output of our whole graph encoder.

g =
→
g +

←
g (6)

Sentence Decoder
We leverage Transformer decoder as sentence decoder. We
denote the output of the l-th decoder layer as dl and the total
number of decoder layers as Ld. In order to utilize semantic
graph information, we add graph attention block into each
layer, which will be describe as follows.

The first block of each layer is a multi-head self-attention.
Then, the output of self-attention is fed into two cross-
attention blocks, one with sentence encoder’s output and
another with graph encoder’s output. The output of cross-
attention block is fed into a feed-forward network. The final
output of the layer is as follows:

d̃l = LN(dl−1 +MultiHeadAtt(dl−1, dl−1, dl−1))

d̃ls = LN(d̃l +MultiHeadAtt(d̃l, s, s))

d̃lg = LN(d̃ls +MultiHeadAtt(d̃ls, g, g))

dl = LN(d̃lg + FFN(d̃lg))

(7)

where MultiHeadAtt(Q,K, V ) is a multi-head self-
attention (Vaswani et al. 2017).

Finally, we map the output of the decoder to the target vo-
cabulary size by linear transformation, and then use a soft-
max layer to calculate the probability.

Pg = softmax(dLdWout + bout) (8)

where Wout ∈ Rdmodel×dvocab ,bout ∈ Rdvocab and dvocab
is the size of target vocabulary.

Copy mechanism (See, Liu, and Manning 2017) has been
proposed to tackle the out-of-vocabulary problem. We com-
bine the outputs of graph encoder and sentence encoder to
calculate the probability of copying from the original sen-
tence. Finally, we replace UNK tokens with the word of the
highest copy probability in the original sentence.

hcomb = ReLU([g‖s]Wcomb + bcomb)

Pcopy = softmax(dLdhTcomb + bε)
(9)

where Wcomb ∈ R2dmodel×dmodel , bcomb,bε ∈ Rds , ds is
the length of the original sentence.

The final output is a mixture of Pg and Pcopy with a gen-
eration probability η ∈ [0, 1], which is calculated by a linear
transformation on dLd .

η = σ(dLdWeta + beta)

P = ηPg + (1− η)Pcopy
(10)

where Wout ∈ Rdmodel×dmodel ,beta ∈ Rdmodel , and σ is
the sigmoid activation function.

Objective Function
We leverage cross entropy with label smoothing as our loss
function. We find that copy mechanism tends to copy orig-
inal sentence completely without restriction. So we raise
copy loss to penalize over-replication. Intuitively, adding the
probability of copying from the original sentence into the
loss can make copy mechanism avoid over-replication. So
our loss function is as follows:

lossc =

ds∑
i=1

(1− η)pic(wt)

loss(wt) = − log P (wt) + λ× lossc

(11)

where pic(wt) denotes the probability of copying the word
wt from the i-th position of the original sentence, and λ is a
hyper-parameter.

Length Token
Lakew, Gangi, and Federico (2019) introduced length token
(LenTok) to control output length of neural machine transla-
tion, which can improve the fluency and readability of out-
puts.

In our model, we employ LenTok to compress outputs.
We add < SHORT >, < MIDDLE > and < LONG > to-
kens to the original sentence according to its target sen-
tence’s length in the training set. If the target sentence’s
length is less than tmin, we add < SHORT > to the be-
ginning of the original sentence, and < LONG > will be
added if the target sentence’s length is greater than tmax.
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The other sentences with target sentence’s length during
[tmin, tmax] are added with < MIDDLE >. During testing,
we add < MIDDLE > to all original sentences. This can
help to improve sentence quality.

Experiments
Datasets
We evaluate our SDISS model on three benchmark
datasets: Newsela, WikiSmall and WikiLarge. Newsela (Xu,
Callison-Burch, and Napoles 2015) consists of 1130 news
articles which were rewritten four times by professional ed-
itors for children at different grade levels (0-4 from com-
plex to simple). Zhang and Lapata (2017) provide standard
splits and the train/dev/test sets contain 94,208/1,129/1,076
sentence pairs, respectively. WikiLarge (Zhang and Lap-
ata 2017) is the largest TS corpus with 296,402/2,000/359
complex-simple sentence pairs for train/dev/test sets, con-
structed by merging previously created simplification cor-
pora (Zhu, Bernhard, and Gurevych 2010; Woodsend and
Lapata 2011; Kauchak 2013). The test set was created
by employing Amazon Mechanical Turk workers to pair
each complex sentence with 8 reference simplifications
(Xu et al. 2016). WikiSmall was built by Zhu, Bernhard,
and Gurevych (2010), and we use the standard splits with
88,837/205/100 pairs provided by Zhang and Lapata (2017)
as train/dev/test sets. Table 2 provides statistics of the three
benchmark training sets.

Dataset Vocab Size token/sent
src tgt src tgt

Newsela 41,066 30,193 25.94 15.89
WikiSmall 113,368 93,835 24.26 20.33
WikiLarge 201,841 168,962 25.17 18.51

Table 2: Statistic for training sets: the vocabulary size (Vo-
cab Size) and the average token number per sentence (to-
ken/sent) for source (src) and target (tgt).

Evaluation
We use two widely-used metrics to evaluate sentence sim-
plification as in (Zhang and Lapata 2017)2: SARI (Xu et al.
2016) and FKGL (Kincaid et al. 1975) at the corpus-level.
SARI evaluates the system’s outputs by comparing them
against the origin and reference sentences. FKGL measures
the readability of the system’s output (lower FKGL means
simpler sentence). In addition, Dong et al. (2019) indicated
that the MT-based models tend to learn a safe but undesir-
able strategy of copying the source sentences directly. So we
test the percentage of unchanged output sentences compared
with original sentences.

We also report BLEU score as reference. But recent stud-
ies have found that BLEU can not reflect simplification
(Xu et al. 2016) and it is in fact negatively correlated with

2corpus-SARI script and FKGL tool are provided at https:
//github.com/XingxingZhang/dress.

simplicity (Sulem, Abend, and Rappoport 2018a). Table 3
also shows that models with higher BLEU may cause lower
SARI. Recently, more and more papers have not reported
BLEU(Zhao et al. 2018; Dong et al. 2019). So we do not em-
ploy BLEU to evaluate our model. The subsequent human
evaluation also shows that our model can produce sentences
with good fluency although our BLEU is not the highest.

Baseline

We compare our model with a variety of SMT-based TS
models and NMT-based TS models. SMT-based TS mod-
els include phrase-based MT based model with re-ranking
(PBMT-R) 3 (Wubben, van den Bosch, and Krahmer 2012)
and Hybrid model 3 (Narayan and Gardent 2014) which
leverages syntactic transformation. NMT-based TS mod-
els include DRESS and DRESS-Ls 3 (Zhang and Lapata
2017) based on deep reinforcement learning, NSELSTM-B
and NSELSTM-S 4 Vu et al. (2018) based on neural se-
mantic encoder, and EditNTS 5 (Dong et al. 2019) based
on neural programmer-interpreter. For WikiLarge, we also
compare with other two models with using external hu-
man knowledge: SBMT-SARI 3 (Xu et al. 2016), a SBMT-
based system with external simplification component, and
DMASS+DCSS 6 (Zhao et al. 2018), a Transformer-based
model with external simplification rules. In addition, we
compare our model against Transformer 7.

Training Details

We set the dimensions of word embedding and hidden units
dmodel to 256. For multi-head attention, we set the number
of heads to 4. The number of layers for graph encoder, sen-
tence encoder and decoder are all set to 6. We set λ to 5 for
Newsela, and 10 for WikiSmall and WikiLarge. We set tmax
to 15 for Newsela and 20 for WikiSmall, and tmin is 0 for
both datasets. For WikiLarge, because of its complexity, we
set tmin to 5 and tmax to 50.

In order to reduce the vocabulary size, we refer to Zhang
and Lapata (2017) to tag words with their named entities us-
ing the Stanford CoreNLP tool (Manning et al. 2014), and
anonymize with a NE@N token, where NE ∈ {PER, LOC,
ORG, MISC, · · · }. N indicates NE@N is the N-th distinct
NE typed entity. We replace the word with frequency no
more than 2 as UNK token. During testing, we replace UNK
with the original word with the highest copy probability.

3The outputs of PBMT-R, Hybrid, DRESS, DRESS-Ls and
SBMT-SARI are provided by Zhang and Lapata (2017) via https:
//github.com/XingxingZhang/dress.

4As the full outputs of NSELSTM are not available, we cannot
compute the FKGL and human evaluation for this system.

5The outputs of EditNTS is provided by Dong et al. (2019) via
https://github.com/yuedongP/EditNTS.

6The outputs of DMASS+DCSS is provided by Zhao et al.
(2018) via https://github.com/Sanqiang/text simplification.

7Transformer is implemented by ourselves.
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Results
Automatic Evaluation
Table 3 shows the result of automatic evaluation. On the
three datasets, our model significantly improves FKGL and
SARI scores, and generally gets the sate-of-the-art perfor-
mance.

WikiLarge BLEU SARI ↑ FKGL ↓ % unc.
Reference - - 8.88 15.88
PBMT-R 81.81 38.56 8.33 10.58
Hybrid 48.97 31.40 4.57 36.21
Transformer 84.27 35.34 7.92 23.08
DRESS 77.18 37.08 6.59 22.28
DRESS-Ls 80.12 37.27 6.62 27.02
NSELSTM-S 80.43 36.88 - -
NSELSTM-B 92.02 33.43 - -
EditNTS 86.68 38.22 7.30 10.86
SDISS(ours) 77.36 38.66 7.07 13.37
Models with external human knowledge
SBMT-SARI 73.08 39.96 7.29 9.47
DMASS+DCSS 80.53 40.45 7.79 6.69

WikiSmall BLEU SARI ↑ FKGL ↓ % unc.
Reference - - 8.86 3.00
PBMT-R 46.31 15.97 11.42 14.00
Hybrid 53.94 30.46 9.20 4.00
Transformer 49.85 27.92 8.00 15.03
DRESS 34.53 27.48 7.48 11.00
DRESS-Ls 36.32 27.24 7.55 13.00
NSELSTM-S 29.72 29.75 - -
NSELSTM-B 53.42 17.47 - -
EditNTS 23.87 32.35 5.47 0.00
SDISS(ours) 24.25 34.06 4.58 0.00

Newsela BLEU SARI ↑ FKGL ↓ % unc.
Reference - - 3.20 0.00
PBMT-R 18.19 15.77 7.59 5.85
Hybrid 14.46 30.00 4.01 3.34
Transformer 27.89 29.32 3.97 9.71
DRESS 23.21 27.37 4.11 11.98
DRESS-Ls 24.30 26.63 4.20 15.51
NSELSTM-S 22.62 29.58 - -
NSELSTM-B 26.31 27.42 - -
EditNTS 19.85 31.41 3.40 4.27
SDISS(ours) 18.81 32.30 2.38 5.01

Table 3: Automatic evaluation on Newsela, WikiSmall, and
WikiLarge test sets. We report BLEU, SARI and FKGL at
corpus-level, and unchanged sentence percentage (%unc.).

SARI has been the most important measurement for the
simplification task, and it explicitly measures the goodness
of words that are added, deleted and kept by the systems
(Xu et al. 2016). Xu et al. (2016) demonstrated that SARI
is highly correlated with human judgement. On SARI, our
result is higher than that of the latest neural-network-based
model EdiNTS by 0.89, 1.71 and 0.44 points on Newsela,
WikiSmall and WikiLarge respectively. This means that our
model can more accurately simplify sentence on the se-
mantic level. SBMT-SARI and DMASS+DCSS have higher

SARI scores than our model on WikiLarge, which is due to
the use of external human knowledge. However, our model
has better human evaluation results than them, as discussed
later.

In term of FKGL, it can measure the readability of sen-
tences. The lower value of FKGL means the sentences
are easier to understand. Our model has lowest FKGL on
Newsela and WikiSmall. This means that our model can
produce sentences for easier understanding than previous
works. On WikiLarge, although the FKGL scores of Hybrid
and DRESS are lower than that of our model, their SARI
scores are much lower than that of our model, which means
they tend to generate easy-to-understand sentences by sac-
rificing simplification accuracy. Because of the use of copy
loss, our model has significantly lower values of unchanged
sentence percentage than other MT-based models.

Ablation Study
We perform ablation study on Newsela to investigate the in-
fluence of different modules in our SDISS model. We com-
pare the full model with its variants. We remove copy loss,
LenTok, graph encoder and sentence encoder separately to
obtain four variant models. The results are shown in Table
4.

Newsela SARI ↑ FKGL ↓ %unc.
SDISS 32.30 2.38 5.01
w/o copy loss 31.89 3.32 13.35
w/o LenTok 31.30 4.20 8.57
w/o GEncoder 30.24 3.56 9.07
w/o SenEncoder 31.55 3.98 10.32

Table 4: Results of ablation study on Newsela. GEncoder
stands for graph encoder and SenEncoder stands for sen-
tence encoder.

We can see that each module in our model does contribute
to the overall performance. The use of graph encoder can
substantially improve the performance of TS system. Mean-
while, the traditional sentence encoder can complement the
graph encoder. In addition, copy loss is helpful to control
copying the whole sentence and LenTok is helpful to com-
press sentence to be easier to understand.

Human Evaluation
We perform human evaluation of system outputs with re-
spect to three aspects: fluency, adequacy and simplicity. Flu-
ency indicates if the output is syntactically correct; Ade-
quacy indicates if the meaning expressed in the original sen-
tence is preserved in the output; Simplicity indicates if the
output simplifies the original sentence. All ratings were ob-
tained using a five point Likert scale (the larger, the better).
We follow the approach of Zhang and Lapata (2017) to sam-
ple 100 instances, including 30 from Newsela, 30 from Wik-
iSmall and 40 from WikiLarge. We employ 6 graduate stu-
dents to rate each instance, and we ensure every instance is
rated by at least three judges. The results are shown in Table
5.
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Newsela WikiSmall WikiLarge
F A S avg. F A S avg. F A S avg.

Reference 4.29 2.84 3.73 3.62 4.28 3.78 3.24 3.77 4.26 4.09 2.62 3.65
PBMT-R 3.68 3.64 2.12 3.15 4.10 4.04 2.20 3.45 4.09 3.92 2.43 3.48
SBMT-SARI - - - - - - - - 4.03 3.72 2.52 3.42
DMASS+DCSS - - - - - - - - 4.12 3.75 2.76 3.54
Hybrid 2.98 2.62 2.74 2.78 3.41 3.64 2.50 3.18 2.93 2.66 3.68 3.09
DRESS 3.93 2.95 3.01 3.30 4.29 3.42 3.54 3.75 4.30 3.65 3.32 3.76
Transformer 3.81 2.72 3.04 3.19 4.25 3.62 2.43 3.43 4.32 3.97 1.89 3.39
EditNTS 3.98 3.02 3.23 3.41 4.09 3.12 3.94 3.72 4.40 4.03 2.98 3.80
SDISS(ours) 3.82 3.23 3.32 3.46 4.12 3.67 3.85 3.88 4.62 4.13 3.23 3.99

Table 5: Human evaluation on Newsela, WikiSmall and WikiLarge test sets. Metrics include Fluency(F), Adequacy(A), Sim-
plicity(S), and Average score(avg.). We choose 100 sentences for human judgement, including 30 sentences from Newsela, 30
sentences from WikiSmall and 40 sentences from WikiLarge. The references are also manually evaluated for comparison.

Cases from Newsela
Source To prevent overfishing , the agreement would , among other things , make it much easier to establish

marine protected areas -LRB- MPAs -RRB- in the high seas .
Reference An agreement would make it easier to create marine protected areas .
PBMT-R To prevent overfishing , the agreement would , among other things , make it much easier to establish

marine protected areas -LRB- MPAs -RRB- in the high seas .
Hybrid Overfishing to prevent the agreement would make it to establish areas .
DRESS To prevent overfishing , the agreement would , among other things , make it much easier to establish

marine protected areas .
EditNTS The agreement would make it much easier to protected areas .
SDISS(ours) The agreement would make it much easier to establish marine protected areas .

Cases from WikiSmall
Source A naval mine is a self-contained explosive device placed in water to destroy ships or submarines .
Reference A naval mine is a bomb placed in water to destroy ships or submarines .
PBMT-R A naval mine is a separate explosive device placed in the water to destroy ships and submarines .
Hybrid A naval mine is a device explosive placed in water to destroy ships and submarines .
DRESS A naval mine is a self-contained explosive device placed in water to destroy ships or submarines .
EditNTS A naval mine is a explosive device can be .
SDISS (ours) A naval mine is a explosive device placed in water to destroy ships or submarines .

Table 6: System outputs for two sentences from Newsela and WikiSmall respectively.

From the table, we can see that the outputs of our model
have better adequacy than that of previous neural network
based models and also have high scores in fluency. Espe-
cially on complex datasets like WikiLarge, the outputs of our
model show very good adequacy and fluency. With respect
to simplicity, our model achieves relatively high scores and
it tends to generate more adequate sentences rather than sim-
pler sentences without adequacy. In all, our model achieves
the highest average scores on the three datasets.

Case Study
We perform case studies for better understanding the model
performance. In Table 6 we choose two samples from
Newela and WikiSmall, respectively, and compare our
model with previous strong TS systems including PBMT-
R, Hybrid, DRESS and EditNTS. Obviously, PBMT-R and
DRESS tend to copy the whole sentence without change,
and Hybrid and EditNTS prefer to generate short sentences
with big semantic deviation. In contrast, our SDISS model
can generate sentences as simple as possible but without se-
mantic deviation.

After analyzing the cases, we find MT-based models can-
not remove some redundant modifiers effectively like adjec-
tive and adverbs, because they only focus on the word order
of sentences. EditNTS usually deletes important information
of the original sentence and generates shorter sentences. By
introducing semantic information, SDISS can generate sim-
plified sentences by removing redundant parts from a se-
mantic perspective, and thus generate sentences with high
semantic relevance.

Conclusion
In this paper, we explore to incorporate semantic depen-
dency graph into neural sentence simplification model. We
propose a new model called SDISS, which can leverage the
semantic dependency graph of input sentence to guide the
simplification process. Our model generally achieves state-
of-the-art performance on three benchmark datasets. Both
automatic evaluation and human judgement indicate that our
model improves semantic relevance. In the future, we will
consider other semantic formalism like AMR and MRS to
simplify sentences.
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