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Abstract

Currently, text classification studies mainly focus on training
classifiers by using textual input only, or enhancing semantic
features by introducing external knowledge (e.g., hand-craft
lexicons and domain knowledge). In contrast, some intrinsic
statistical features of the corpus, like word frequency and dis-
tribution over labels, are not well exploited. Compared with
external knowledge, the statistical features are deterministic
and naturally compatible with corresponding tasks. In this pa-
per, we propose an Adaptive Gate Network (AGN) to consol-
idate semantic representation with statistical features selec-
tively. In particular, AGN encodes statistical features through
a variational component and merges information via a well-
designed valve mechanism. The valve adapts the information
flow into the classifier according to the confidence of seman-
tic features in decision making, which can facilitate training
a robust classifier and can address the overfitting caused by
using statistical features. Extensive experiments on datasets
of various scales show that, by incorporating statistical infor-
mation, AGN can improve the classification performance of
CNN, RNN, Transformer, and Bert based models effectively.
The experiments also indicate the robustness of AGN against
adversarial attacks of manipulating statistical information.

1 Introduction
Text classification is playing an essential role in Natu-
ral Language Processing (NLP) as one of the fundamen-
tal tasks with broad applications. In recent years, CNN-
based (Kim 2014; Lai et al. 2015; Conneau et al. 2017;
Johnson and Zhang 2017), RNN-based (Socher et al. 2013;
Graves, Jaitly, and Mohamed 2013; Tang, Qin, and Liu
2015), Transformer-based (Vaswani et al. 2017), and Bert-
based (Devlin et al. 2019; Lan et al. 2020) deep learning
models have become mainstream approaches which outper-
form traditional classification methods. To enrich semantic
features, researchers turn to some external knowledge, such
as character, sentiment lexicon, and entity knowledge base,
as complementary information (Post and Bergsma 2013;
Teng, Vo, and Zhang 2016; Chen et al. 2019). These studies
show that introducing proper external knowledge is helpful
to the classification task. However, we notice that the current
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deep learning paradigm has overlooked such primitive fea-
tures as word frequency and distribution, which are fixed,
intrinsic, and easy-to-retrieve features of a corpus (Yang
and Pedersen 1997; Aizawa 2003). The most representa-
tive algorithm utilizing statistical features is still the term
frequency-inverse document frequency (TFIDF), a straight-
forward information retrieval technique for document mod-
elling. However, because of the bag-of-word nature, TFIDF
is unable to utilize positional information and capture the
fine-grained semantics (Ramos et al. 2003), which makes
it less favourable compared with other representation learn-
ing methods in the deep architecture. From our pilot study,
we find that using statistical features (such as term-count-
of-label to be defined in Section 3.1) as an additional feature
brings forth substantial improvements to various baselines,
in which the word frequency adapts weights of terms via an
attention layer. Unfortunately, earlier research may have un-
derestimated the real power of corpus-level statistic features
in deep learning, and new fusion mechanism is necessary
to incorporate such information. In particular, when design-
ing the fusion mechanism, we must consider two major con-
cerns:

1. The semantic feature and statistical feature are not com-
patible in scale and dimension;

2. The new information may not be necessary for all seman-
tic features.

In this paper, we advocate a new framework, Adaptive
Gate Network (AGN)1, to enhance neural classification by
fusing statistical features elegantly via a gate mechanism.
More concretely, the AGN consists of three components,
a variational encoding network referred to as the V-Net, a
semantic representation projection network referred to as
the S-Net, and an adaptive gate mechanism denoted as the
valve. The V-Net exploits unsupervised autoencoder to learn
a global representation for each statistical feature vector,
where we notice that employing a variational inference can
further improve the model performance compared with a
vanilla autoencoder. The S-Net extracts latent semantic rep-
resentation from textual input by using one of the most com-
monly used extractors, i.e., CNN, RNN, Transformer, or
Bert. Furthermore, the S-Net projects semantic features into

1Code available at https://github.com/4AI/AGN
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an information space via sigmoid activation, where the value
of each neuron indicates the confidence of corresponding se-
mantic feature in decision-making. Intuitively, a feature is
high-confident and decisive if its value is either near 0 or
1 after activation, and a feature is low-confident if its ac-
tivated value is around 0.5. The valve component aligns in-
formation from two sources and adapts the information flow.
To address the first concern listed above, we employ a non-
linear projection to map statistical features into the shared
information space, making both latent representations com-
patible with each other. The second concern raises a new
perspective on the method of using additional information2.
Our standpoint is that not all semantic features need to be
enhanced since some may introduce noise to the classifier.
Therefore, instead of an element-wise operation, the valve
module adds auxiliary information to the less-confident se-
mantic features while the high-confident semantic features
remain unchanged. By doing this, the proposed AGN model
can achieve better decision making by balancing between
the original semantic features and the additional features.

Besides, considering that utilizing statistical features tend
to have undesired bias information due to limited data size,
we exploit statistics from a large dataset to a small dataset
to explore how the statistical bias is affected by the data
amount and how such a deviation compromises the model
performance. Furthermore, to address the issue that statis-
tical features are easy to be attacked, we conduct adver-
sarial attacks by manipulating the statistical information to
demonstrate the robustness of our proposed AGN, which
aims to validate that the valve component can effectively fil-
ter out corrupted information. The main contributions of this
paper are summarized as follows:

• To the best of our knowledge, we are the first to leverage
corpus-level statistics explicitly in deep architecture for
text classification and prove it as an effective approach.

• To fuse statistics feature into semantic features with low
confidence, we propose a novel Adaptive Gate Network
to retrieve necessary and useful global information.

• We conduct extensive experiments on seven datasets of
different scales and topics. The results show that our pro-
posed model produces significant improvements on base-
line models. Furthermore, we conduct additional experi-
ments to demonstrate the robustness of the proposed AGN
against biased statistics and adversarial attacks.

2 Related Work
2.1 Text Classification
Existing approaches employing deep architecture for su-
pervised classification have achieved much remarkable
progress. Kim (2014) proposed a classic TextCNN model to
extract local and position-invariant features. Zhang, Zhao,
and LeCun (2015) applied CNN to model character-level
features and achieve competitive performance. Hochreiter

2For concise expression, we use additional information to de-
note both statistical feature and external knowledge, which are ad-
ditional to the semantic features, in the remaining part of this paper

and Schmidhuber (1997) and Socher et al. (2013) used re-
cursive networks explicitly exploiting time-series features,
based on which several variants of the recurrent model are
proposed, including BiLSTM (Graves, Jaitly, and Mohamed
2013) and GRU (Chung et al. 2014) with more complex
gate mechanisms. However, these methods may not give
enough weights to some discriminative words. To address
this problem, Bahdanau, Cho, and Bengio (2015) introduced
and applied attention mechanism to machine translation. Af-
terwards, the attention mechanism has been widely applied
in various NLP tasks. Yang et al. (2016) proposed the Hier-
archical Attention Network to imitate the hierarchical struc-
ture of sentences and capture both word-level and sentence-
level features. Vaswani et al. (2017) stacked multiple blocks
of self-attention to produce a more robust sentence-level
representation by learning global dependency. Devlin et al.
(2019) combined Transformer-based architecture and a large
corpus to maximize Transformer’s ability. Tang et al. (2020)
combined a graph-based model with Transformer blocks to
enhance sentiment classification. These works mainly focus
on architecture design for feature extraction. In contrast, we
propose to merge additional information through an adaptive
fusion mechanism.

2.2 Classifier with Additional Knowledge
There have been numerous works on exploiting external
knowledge in NLP. Researchers have created and exploited
many active features incorporating information from various
domains, including but not limited to linguistics, psychol-
ogy and knowledge base. Post and Bergsma (2013) utilized
syntactic structure features such as POS tagging and depen-
dency parsing to improve classification performance. Teng,
Vo, and Zhang (2016), Liang et al. (2018), and Rojas et al.
(2020) fused emotional lexicon into the model framework
for sentiment analysis. Wang et al. (2017) conceptualized
sentence as a set of concepts using the taxonomy knowledge
base, and obtained the embeddings by merging concepts on
top of pretrained word vectors, so as to capture ampler con-
textual information facilitated by deep models. Chen et al.
(2019) introduced conceptual information and entity links
from knowledge base into the model pipeline via attention
mechanism. These works, however, pay little attention to the
necessity and compatibility of the added information, thus
cannot avoid bringing noise to the classifier.

3 Methodology
The overall framework of our proposed approach is shown
in Figure 1, and in this section, we introduce our framework
in terms of its components.

3.1 Global Information
We first give a formal definition of term-count-of-labels as
statistics of terms towards labels.
Definition 1 Given a word w and a set of labels of c classes,
the term-count-of-labels (TCoL) vector of w is

ζw = [ζ1, . . . , ζc], (1)
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Figure 1: The generic framework of the proposed AGN. The subj. and obj. are labels of the Subj dataset.

where ζi is the count of word w on label i. Given a sentence
s = {wi}mi=1, the TCoL matrix of sentence s is

ζs = [ζw1 , . . . , ζwm ]. (2)

The notion of TCoL is to capture the global distribution
of labels as features of a word. Such features are primitive
but highly informative for feature selection and information
retrieval by determining word relevance (Salton and Buckley
1988; Ramos et al. 2003). Intuitively, if a word w has very
high or very low frequency on all labels, then we can assume
that w has a limited contribution to the classification task. In
contrast, if a word appears more frequently in specific label
class, we assume this word is discriminative. Note that the
TCoL dictionary V is obtained from the training set only.
An extensive discussion on the effect of TCoL on the model
performance is given in Section 5.2.

3.2 V-Net: Variational Encoding Network
The goal of V-Net (of Figure 1) is to transform statistical fea-
tures into effective representations. TCoL consists of integer
counts of terms, which is initially not compatible with se-
mantic features in both dimension and scale. V-Net employs
an autoencoder to map the discrete TCoL vectors into a la-
tent continuous space to obtain the global representation of
statistical information. Moreover, we notice that the repre-
sentation encoded by bounding the latent space with a mul-
tivariate Gaussian distribution can produce substantial im-
provements to the classifier compared with that encoded by
a vanilla autoencoder. Therefore, in this work, we adopt the
Variational Autoencoder (VAE) (Kingma and Welling 2014)
to encode the TCoL.

We generate TCoL for all sentences in a dataset and ob-
tain Z = {ζs(i)}Ni=1, which consists ofN i.i.d. discrete TCoL
variable ζ. We assume all TCoL vectors are generated by a
random process pθ(ζ|z), involving a latent variable z which
is sampled from a prior distribution pθ(z). Since the poste-
rior pθ(z|ζ) is intractable, we cannot directly learn the gen-
erative model parameters θ. Thus, we adopt the variational
approximation qφ(z|ζ) to learn the variational parameters φ
and θ jointly. Consequently, we can optimize the model by

maximizing the marginal likelihood that is composed of a
sum over the marginal likelihoods of individual ζ:

log pθ(ζ) = DKL(qφ(z|ζ)‖pθ(z|ζ)) + L(θ,φ; ζ). (3)

Since the KL divergence term is non-negative, we can derive
the likelihood termL(θ,φ; ζ) to obtain the variational lower
bound on the marginal likelihood, i.e.,:

L(θ,φ; ζ) = −DKL(qφ(z|ζ)‖pθ(z))
+ Eqφ(z|ζ) [log pθ(ζ|z)] , (4)

where the KL term has a closed-form solution, and the ex-
pectation term is the reconstruction error. We adopt the repa-
rameterization trick to fit the variational framework into
an autoencoder. We employ two encoders to generate two
sets of µ and σ as the values of prior distribution’s mean
and standard deviation, respectively. Since our approximate
prior is a multivariate Gaussian, we denote the variational
posterior with a diagonal covariance structure:

log qφ(z|ζ) = logN (z;µ, σ2I). (5)

By training the unsupervised VAE model, we can obtain
the latent variables ζz via the probabilistic encoder, which
will be the global representation of TCoL. The training of
V-Net is independent of the main classifier, and the repre-
sentation ζz is generated during the preprocessing stage and
will be fed into the classifier via the valve component.

3.3 S-Net: Semantic Representation Projection
Network

The function of S-Net (of Figure 1) is to extract semantic
features from textual input and project semantic features into
the information space for confidence evaluation. The input
of S-Net is the sentence s with a fixed length m. For non-
Bert models, we first map each word into a k-dimensional
continuous space and obtain the word embedding vector
xi ∈ Rk. Then we concatenate all word vectors to form a
k×m matrix as the model input: x = [x1,x2, . . . ,xm]. We
pad the sentences to maintain a uniform length for all sen-
tences. Then we apply semantic feature extractor (i.e., CNN,
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LSTM, and Transformer) on the embedding matrix to pro-
duce latent semantic feature map C:

C = FeatureExtractor(x). (6)

As for Bert model, we extract feature map via the pretrained
Bert base over text input:

C = Bert(s). (7)

Then we map the semantic feature map C into an informa-
tion space through a dense layer:

HC = WC ·C+ bC , (8)

The values in the sigmoid-activated representation, H′C =
σ(HC), where σ(·) is the sigmoid function, are exploited to
evaluate the confidence of corresponding semantic features
in the decision-making process.

3.4 Valve Component
As stated in Section 3.2, the representation ζz of TCoL is
obtained offline. In order to exploit statistical features flexi-
bly, we apply a dense layer to project ζz into the information
space that is shared with semantic features:

Hζ = Wζ · (ζz) + bζ . (9)

The valve component fuses HC and Hζ to output a statisti-
cal information-enhanced semantic feature map HO through
the AdaGate function,

HO = AdaGate(HC ,H′
C
,Hζ , ε)

= ReLU(HC) +Valve(H′
C
, ε)�Hζ ,

(10)

where ReLU(·) is the activation function, and � stands for
an element-wise product. The values in H′

C are in probabil-
ity form, and the Valve function is designed to restore less-
confident entries (with probability near 0.5) for matching
with elements in Hζ . Concretely, for every unit a ∈ H′

C ,

Valve(a, ε) =

{
a, if 0.5− ε ≤ a ≤ 0.5 + ε

0, otherwise
(11)

where ε is a leaky hyper-parameter tuning the threshold of
confidence. Specifically, we dump all statistical information
if ε = 0, and accept all statistical information if ε = 0.5.
Therefore, the element-wise production exploits Valve(·, ε)
as a filter to extract necessary information only.

3.5 Classifier
We employ attention to combine the consolidated semantic
representation HO with the original feature map C:

Attention(HO,C) = softmax(HOCᵀ)C. (12)

Note that if we reject all statistical information (i.e., ε = 0),
Eqn. (12) will become self-attention (Vaswani et al. 2017)
as HO = C.

After passing through fully-connected layers and a soft-
max layer, feature vectors are mapped to the label space for
label prediction and loss calculation. To maximize the prob-
ability of the correct label YTrue, we deploy an optimizer to
minimize cross-entropy loss L,

L = CrossEntropy(YTrue, YPred.). (13)

4 Experiment
4.1 Datasets
We test the proposed model on the following datasets (with
summary statistics in Table 2).

Subj3 (Pang and Lee 2004) is a dataset of subjectivity.
Each sentence is annotated as subjective or objective.

SST-14 (Socher et al. 2013) is the Stanford Sentiment
Treebank dataset of reviews with five fine-grained sentiment
labels (very positive/negative, positive/negative, neutral).

SST-2 (Socher et al. 2013) is the Stanford Sentiment Tree-
bank with binary sentiment labels.

TREC5 (Li and Roth 2002) is a question dataset with
questions about the person, location, numbers, etc.

AG’s News6 (Zhang, Zhao, and LeCun 2015) consists of
news articles from the AG’s corpus of news articles on the
web pertaining to the four largest classes.

Yelp Review Full (Yelp F.)7 is the Yelp Open Dataset con-
sists of reviews with polarity labels ranging from 1 to 5.

Yelp Review Polarity (Yelp P.) is the reviews subset of
Yelp Open Dataset. Compared with Yelp F., Yelp P. only has
binary labels (negative and positive).

We deploy 10-fold cross-validation on the dataset without
standard train/test split (i.e., Subj). For datasets with stan-
dard split, we run ten trials and report the average results.

4.2 Baselines
Since our goal is to demonstrate that the consolidated se-
mantic representation is more conducive for classification,
we compare the models with and without additional knowl-
edge using the following popular feature extractors:

TextCNN (Kim 2014): a popular CNN-based classifier
exploiting one-dimensional convolution operation and max-
over-time pooling.

BiLSTM (Graves, Jaitly, and Mohamed 2013): a bi-
directional LSTM model extracting both forward and re-
verse sequential features.

Transformer (Vaswani et al. 2017) employs stacked self-
attention blocks to learn semantic dependency. We use the
encoder part of the Transformer followed by a classifier.

Bert (Devlin et al. 2019): the state-of-the-art framework
in many NLP tasks. We fine-tuned the pretrained Bert base
with classifier.

Since we adopt attention mechanism over extracted se-
mantic feature representation, we compare our proposed
AGN model against TextCNN+Self-Attn, BiLSTM+Self-
Attn, Transformer+Self-Attn, and Bert+Self-Attn, where
self-attention blocks are employed on the latent semantic
feature map C obtained by Eqn. 6 and Eqn. 7.

4.3 Word Embedding and Parameter Settings
To focus on the effect of statistical features and AGN
model, we randomly initialize word embedding vectors (ex-
cept Bert) to eliminate the influence of different pretrained

3http://www.cs.cornell.edu/people/pabo/movie-review-data/
4http://nlp.stanford.edu/sentiment/
5https://trec.nist.gov/data.html
6http://groups.di.unipi.it/∼gulli/AG corpus of news articles
7https://www.yelp.com/dataset/
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Model Accu. (%)

Subj SST-1 SST-2 TREC AGNews Yelp F. Yelp P.

CNN 92.61 ±0.23 43.88 ±1.09 80.13 ±0.70 90.00 ±0.59 92.10 ±0.07 94.53 ±0.26 66.98 ±0.17
CNN+S/A 92.81 ±0.62 44.08 ±0.81 80.79 ±0.60 89.84 ±0.65 92.09 ±0.39 94.84 ±0.07 66.97 ±0.23
CNN+AGN 93.75§±0.68 45.91§±1.00 82.24§±0.60 92.11§±0.62 92.76‡±0.33 95.15‡±0.13 67.93§±0.13

LSTM 92.50 ±0.25 44.22 ±1.08 81.18 ±0.52 88.04 ±1.03 92.14 ±0.12 94.80 ±0.13 66.91 ±0.26
LSTM+S/A 92.57 ±0.65 44.38 ±0.74 81.13 ±0.54 88.09 ±0.98 92.24 ±0.13 94.86 ±0.21 66.96 ±0.16
LSTM+AGN 93.39§±0.42 45.91§±0.65 82.14§±0.57 89.91‡±0.74 92.51†±0.18 95.05†±0.18 67.19†±0.16

Trans. 87.57 ±0.46 35.62 ±0.84 67.80 ±2.62 86.70 ±0.68 89.10 ±0.14 91.89 ±0.11 63.08 ±0.12
Trans.+S/A 87.70 ±0.97 36.01 ±0.65 68.10 ±2.24 85.16 ±2.00 89.44 ±0.16 92.10 ±0.08 63.12 ±0.30
Trans.+AGN 88.39†±0.58 36.78‡±0.44 70.32§±1.10 87.58‡±1.27 90.00‡±0.13 92.34†±0.10 63.90‡±0.27

Bert 96.98 ±0.73 53.70 ±3.10 90.41 ±0.14 95.57 ±0.25 93.29 ±0.52 94.53 ±0.39 68.17 ±0.09
Bert+S/A 97.03 ±0.71 53.78 ±3.12 91.07 ±0.21 96.48 ±0.23 93.30 ±0.50 95.73 ±0.36 68.46 ±0.09
Bert+AGN 97.89§±0.71 55.72§±3.12 93.27§±0.20 97.65§±0.22 93.82†±0.47 96.79§±0.32 70.74§±0.09
†p < .05, ‡p < .01, §p < .001.

Table 1: Results of Accuracy on all datasets. Indicated p-value means our method has significant improvement.

Data c l Train Test
Subj 2 23 10, 000 CV
SST-1 5 18 11, 855 2, 210
SST-2 2 19 9, 613 1, 821
TREC 6 10 5, 952 9, 125
AG’s News 4 45 120, 000 7, 600
Yelp F. 5 159 650, 000 50, 000
Yelp P. 2 153 560, 000 38, 000

Table 2: Summary statistics for the datasets. c: Number of
classes. l: Average sentence length. Train: Dataset size. Test:
Size of test set (CV means no standard train/test split).

language model. The preprocessing of textual data on all
datasets follows that of Kim (2014).

The hyperparameters involved follow the settings as fol-
lows. The CNN-based models have a filter size of [3, 4, 5]
with 100 filters of each, and the RNN-based models have
hidden dimension of 128. For the Transformer, we use an en-
coder with 8 heads and 3 blocks. The employed Bert model
is the Bert-base Uncased, including 12 layers, 768 hidden
units, and 110M parameters. We adopt Adam optimizer with
a batch size of 64 for non-Bert models and 16 for Bert mod-
els. The dropout rate is set to 0.5. We conduct parameter
search to test model performance with different valve size ε.

4.4 Experiment Results
The results of our model against other methods are listed in
Table 1 (Accuracy) and Table 3 (F1 Score). The X+AGN
means that the AGN model uses X as a semantic feature ex-
tractor. The X+S/A means the model employs self-attention
on the feature map to extract dependency information.

In general, our proposed model consistently improves
the performance of the baseline models (i.e., CNN, LSTM,
Transformer, and Bert) on all datasets. The T-test in Tables 1
and 3 indicates that the improvements to the baseline mod-

els are significant. For example, the CNN+AGN model in-
creases the accuracy by 2.11% and improves the F1 score
by 2.16% on TREC compared with TextCNN. Remarkably,
AGN produces substantial improvements in the accuracy of
pretrained Bert model, i.e., 2.86% on SST-2, 2.26% on Yelp
F., and 2.57% on Yelp P, which verifies the effectiveness of
the proposed framework.

Moreover, we observe that adding self-attention mod-
ule leads to compromised results on several datasets, i.e.,
CNN+S/A on TREC and AGNews, LSTM+S/A on SST-2,
and Trans+S/A on TREC, and limited improvements on the
other datasets. In contrast, the proposed AGN model yields
significant improvements on all X+S/A models. This obser-
vation substantiates the effectiveness of incorporating statis-
tical information and the proposed merging mechanism.

5 Discussion
In this section, we provide in-depth discussions regarding
each component of AGN with additional experiments.

5.1 Effect of Valve
We note that the improvements brought forth by TCoL can
be affected by the leaky constant ε in the valve component,
which defines a confidence interval to trigger the informa-
tion fusion. To explore the effect of ε, we train the proposed
model with different values of ε on two datasets, SST-2 and
TREC. The results are reported in Figure 2. From the fig-
ure, we can see that the valve component is rather effec-
tive for combining knowledge from different sources. In par-
ticular, the models adaptively exploiting partial additional
knowledge outperform those without additional knowledge
(ε = 0) and those with full-use of additional knowledge
(ε = 0.5). This observation supports our initial argument
that the additional information is generally useful to the clas-
sifier, but not all statistical features are helpful since some
may introduce noise to the classifier. These results verify the
effectiveness of the valve component.
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Model F1 Score (%)

Subj SST-1 SST-2 TREC AGNews Yelp F. Yelp P.

CNN 92.60 ±0.22 41.79 ±0.96 80.13 ±0.70 88.59 ±1.07 92.10 ±0.06 92.96 ±0.30 58.22 ±0.35
CNN+S/A 92.80 ±0.62 41.50 ±1.01 80.78 ±0.60 89.19 ±0.65 92.06 ±0.39 93.00 ±0.10 58.63 ±0.78
CNN+AGN 93.75§±0.68 42.66§±0.87 82.26§±0.60 90.75§±0.80 92.77‡±0.33 93.76‡±0.22 59.39§±0.41

LSTM 92.50 ±0.25 42.51 ±0.59 81.17 ±0.53 86.21 ±0.72 92.13 ±0.12 93.59 ±0.15 57.71 ±0.13
LSTM+S/A 92.56 ±0.64 42.62 ±0.46 81.12 ±0.54 87.03 ±0.83 92.20 ±0.13 93.42 ±0.32 57.81 ±0.59
LSTM+AGN 93.21§±0.42 44.42§±0.95 82.09‡±0.59 88.07§±1.05 92.51†±0.18 93.68†±0.15 58.50‡±0.38

Trans. 87.55 ±0.47 31.88 ±0.96 67.61 ±2.60 85.22 ±0.81 89.00 ±0.13 89.42 ±0.16 53.11 ±0.31
Trans.+S/A 87.69 ±0.99 31.99 ±0.81 67.69 ±2.20 85.25 ±2.12 89.51 ±0.19 89.65 ±0.14 53.09 ±0.41
Trans.+AGN 88.34‡±0.59 32.55‡±0.66 69.71§±1.04 86.10‡±1.10 89.97†±0.13 89.89†±0.14 53.97§±0.24

Bert 96.98 ±0.73 53.49 ±1.00 90.41 ±0.15 95.13 ±0.95 93.30 ±0.52 93.04 ±0.49 61.59 ±0.18
Bert+S/A 97.03 ±0.71 52.97 ±0.12 91.07 ±0.21 95.93 ±0.23 93.32 ±0.50 94.77 ±0.48 62.24 ±0.19
Bert+AGN 97.87‡±0.22 54.95§±0.90 93.27§±0.20 97.91§±0.89 93.79†±0.45 95.85§±0.45 63.01§±0.20
†p < .05, ‡p < .01, §p < .001.

Table 3: Results of Macro F1 Score on all datasets. Indicated p-value means our method has significant improvement.

(a) SST-2 (b) TREC (c) SST-2 + Yelp TCoL

Figure 2: (a) (b) Effect of ε to the model performance on datasets with different thresholds. (c) Results on SST-2 dataset using
original SST-2 TCoL together with TCoL of Yelp P.

5.2 Effect of Statistical Information
The contribution of statistical feature is distinctly evident
since models of X+AGN produce significant improvements
compared with models of X+S/A. In Figure 3, we visual-
ize the heatmaps of attention weights for four example sen-
tences from Subj dataset, which the models without statis-
tical features fail to classify but models with statistical fea-
tures classify correctly. The heatmaps indicate that incorpo-
rating statistics can effectively highlight the words that are
discriminative for classification by assigning higher weights.
More concretely, for sentences of label subj, words express-
ing personal feelings and perspective, like “dizzying” and “I
can believe”, gain more weights; meanwhile, for sentences
of label obj, words describing facts, like “something is” and
“it is”, are assigned with higher weights. The visualization
shows that statistical information is helpful to the decision-
making by properly adjusting the attention weights.

We further test the hypothesis that the deviation from real
distribution of TCoL on a small-size dataset compromises
the model performance. To measure the influence of devia-
tion, we need to define or have access to the real distribution
— an objective obviously impossible to achieve given the

nature of natural language. Nevertheless, the TCoL statis-
tics from a larger dataset annotated with the same labels can
be exploited as a perfect supplementary to modify the prior
knowledge of a small-scale dataset, which can approximate
the real distribution better. To test the hypothesis, we train
the model on a small dataset by combining original TCoL
and the TCoL from a large dataset (here, we adopted SST-2
and Yelp P. as they are the only pair of datasets satisfying the
settings). The results of CNN+AGN and Bert+AGN are de-
picted in Figure 2c, where the curves show that combining
TCoL from Yelp P. can produce substantial improvements
to both original models, i.e., around 2% on SST-2 dataset.
Meanwhile, we notice that the best results are achieved with
relatively larger values of εwhen exploiting TCoL from Yelp
P. (ε = 0.40 for Bert+AGN and ε = 0.35 for CNN+AGN)
than that for models using TCoL of SST-2 only (ε = 0.20
for Bert+AGN and ε = 0.10 for CNN+AGN, similar pat-
terns can also be found in Figure 2a and Figure 2b). A larger
ε means the classifier can depend more on TCoL because of
the improved trustworthiness of statistical feature, and vice
versa. We can conclude that, although the improvements can
be compromised due to the bias caused by data size, we can
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Figure 3: Heatmaps of attention weights for models w/o (up-
per) and w/ (lower) statistical information. “Subj” and “Obj”
represent the ground-truth label of each sentence.

still apply the TCoL from a large dataset to a smaller one as
compensation to boost the model performance.

5.3 Adversarial Attacks on TCoL
The previous section has discussed the bias of TCoL caused
by data amount due to the deviated prior distribution, where
the prior distribution is generally correct and can be compen-
sated by introducing more massive datasets. However, under
some extreme circumstances, prior knowledge from TCoL
can be partially correct or totally incorrect due to manual
manipulation. To verify the robustness of AGN against de-
liberately corrupted statistical information, we conduct ad-
versarial attacks on two datasets by shuffling the TCoL dic-
tionary. For each trial, we randomly shuffle 10%, 50%, and
100% of the whole TCoL dictionary. The results are shown
in Table 4. In general, AGN with adaptive valve (ε = 0.2)
can avoid severe performance deterioration compared with
model accepting all statistical information (ε = 0.5) when
the TCoL is thoroughly shuffled. Moreover, with 50% and
10% shuffled statistical information, CNN+AGN (ε = 0.5)
achieves lower results compared with CNN+S/A on SST-
2, while CNN+AGN (ε = 0.2) can outperform CNN+S/A.
This observation shows that the manipulation of statistical
information does cause noise to the classifier and compro-
mise the performance. Meanwhile, it also proves that the
proposed AGN is robust enough against such attacks.

5.4 VAE vs AE in the V-Net
Both VAE and AE are both powerful representation learn-
ing models. In this section, we compare the performance of
using TCoL encoded by variational autoencoder in the V-
Net and that encoded by vanilla autoencoder. We conduct
additional experiments on two small datasets and two large
datasets; the results are reported in Table 5. We notice that,
although the improvements brought by using variational in-
ference are sometimes marginal, the VAE-based AGN con-
sistently outperforms AE-based AGN in both metrics with a

Shuffle Rate 100% 50% 10%

SST-2 ε = 0.2 80.05 81.13 82.00
ε = 0.5 78.25 79.52 79.79

TREC ε = 0.2 89.64 90.43 90.88
ε = 0.5 87.69 88.89 89.00

Table 4: Adversarial attack on SST-2 and TREC datasets.
The results are accuracy (%) of experiments on CNN+AGN.

VAE AE
Accu. F1 Accu. F1

SST-2 82.24 82.26 81.98 82.20
TREC 92.11 90.75 92.02 90.64
Yelp F. 95.15 93.76 94.89 93.36
Yelp P. 67.93 59.39 67.11 59.01

Table 5: Comparison between using VAE and AE as TCoL
encoder on SST-2, TREC, and Yelp datasets. The results (%)
are of experiments on CNN+AGN.

more stable performance. Especially, we observe improve-
ments of 0.49% in F1 score on Yelp F. and 0.62% in ac-
curacy on Yelp P. These results show that bounding latent
space with a prior distribution is beneficial to the representa-
tion learning for statistical information, which is conducive
to enhance the classification performance.

5.5 Scalability of Implementation
The generation of TCoL is scalable since we only need to
traverse through the corpus once, which is of linear time
complexity O(n), where n denotes the total number of
words in the corpus. For the model training process, the V-
Net is a standard VAE/AE, and the number of parameters
in S-Net is not significantly increased compared with the
corresponding baseline model. For example, a CNN+AGN
only requires 3, 250 additional parameters and 0.13 second
more per epoch on training time, compared with a standard
TextCNN (on SST-2 with an RTX 2080 Ti GPU). Therefore,
the proposed AGN will neither require much higher com-
putational power nor much more computation time than the
widely adopted baseline models under practical settings.

6 Conclusion & Future Work
In this paper, we have proposed an Adaptive Gate Net-
work (AGN) to incorporate statistical features and con-
ducted extensive experiments with CNN-based, RNN-based,
Transformer-based, and Bert-based frameworks to demon-
strate the effectiveness and robustness of our proposed AGN
method. The well-designed valve mechanism enables AGN
to merge necessary information while preserving essential
semantic features. Given naturally biased statistical informa-
tion, AGN can produce impressive improvements to baseline
models. AGN has excellent flexibility in actual usage, es-
pecially when limited external information is available. For
future work, we plan to apply the AGN to other tasks explor-
ing various types of external knowledge, thereby providing a
more in-depth insight into the framework design with better
utilization of additional knowledge.
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