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Abstract

Lexical cohesion is a fundamental mechanism for text which
requires a pair of words to be interpreted as a certain type
of lexical relation (e.g., similarity) to understand a coherent
context; we refer to such relations as the contextual lexical
relation. However, work on lexical cohesion has not modeled
context comprehensively in considering lexical relations due
to the lack of linguistic resources. In this paper, we take initial
steps to address contextual lexical relations by focusing on
the contrast relation, as it is a well-known relation though it
is more subtle and relatively less resourced. We present a cor-
pus named Cont2Lex to make Contextual Lexical Contrast
Recognition a computationally feasible task. We benchmark
this task with widely-adopted semantic representations; we
discover that contextual embeddings (e.g. BERT) generally
outperform static embeddings (e.g. Glove), but barely go be-
yond 70% in accuracy performance. In addition, we find
that all embeddings perform better when CLC occurs within
the same sentence, suggesting possible limitations of current
computational coherence models. Another intriguing discov-
ery is the improvement of BERT in CLC is largely attributed
to its modeling of CLC word pairs co-occurring with other
word repetitions. Such observations imply that the progress
made in lexical coherence modeling remains relatively prim-
itive even for semantic representations such as BERT that
have been empowering numerous standard NLP tasks to ap-
proach human benchmarks. Through presenting our corpus
and benchmark, we attempt to seed initial discussions and en-
deavors in advancing semantic representations from model-
ing syntactic and semantic levels to coherence and discourse
levels1.

1 Introduction
Coherence is what distinguishes well-written text from dis-
organized text and well-planned dialogue from random sen-
tences and utterances (Halliday and Hasan 2014). It is a fun-
damental phenomenon in natural languages as long as the
texts are consisting of multiple sentences and hence being
imperative to downstream tasks such as text quality assess-
ment (Li and Hovy 2014), discourse structure understand-
ing (Somasundaran, Burstein, and Chodorow 2014) and di-
alogue systems (Lin, Wang, and Lee 1999).

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Corpus and codes are available at: https://cont2lex.github.io/

Context 1 (Pos.): A positive attitude helps you relax and
ace the exams, and a negative mental status will however
make you nervous and sleepless.
Context 2 (Neg.): The reviewers are rather positive about
this paper. They are nominating it for the Best Paper for
its discovery of a negative finding that dispels conven-
tional wisdom.

Table 1: We illustrate lexical coherence instantiated by lexi-
cal contrast relation. We can see the word pair positive and
negative. The Pos means this pair establishes a contextual
lexical contrast while the Neg means not.

Therefore, extensive research is focused on coherence
modeling. However, efforts have focused on tasks like co-
reference resolution (Harabagiu and Maiorano 1999) and
entity-based solution (cf Section 2.1). By contrast, lexical-
based approaches are under-explored. According to (Halli-
day and Hasan 2014), lexical coherence is achieved by a pair
of words of certain relations like similar and contrast, being
interpreted in a certain context. For example, in Context 1,
a reader needs to understand the contrast between “positive”
and “negative” so as to interpret the contrasting manners of
taking exams – “relax and ace the exam” and “nervous and
sleepless”, i.e., discourse-level coherence.

Unfortunately, the few existing studies on lexical coher-
ence mostly ignore context. They either directly use lexicons
to map the context (Somasundaran, Burstein, and Chodorow
2014) or use word embeddings to model coherence regard-
less of the context (Mesgar and Strube 2016), which could
lead to false positive cases. For example, although the word
pair “positive–negative” is recorded as a contrast word pair
by ConceptNet (Liu and Singh 2004), it only functions to
achieve lexical cohesion in context 1. In fact, in context 2,
the two words co-occur just by chance. The words “nega-
tive” and “positive” are not interpreted as contrast to under-
stand the coherence of the sentence. Specifically, the “posi-
tive” review for the paper is due to an important discovery in
the paper, it does not matter whether the result is positive or
negative. Hence “negative” is not co-interpreted with “posi-
tive” to contribute to the text cohesion of the two sentences
in this example.
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To facilitate our discussion, in this paper we refer to the
lexical relation that is interpreted to function for text cohe-
sion as contextual lexical relation. For example, the “posi-
tive – negative” pair in context 1 forms a contextual lexical
contrast (CLC) relation while it does not in context 2.

Although stated to be an important problem grounded in
linguistic theory (Halliday and Hasan 2014), few studies di-
rectly address contextual lexical relation in a data-driven
manner due to the lack of resources. To address this gap,
we take the first step by focusing on lexical contrast. We
choose contrast because it is one of the most broadly existing
types of lexical relation but is reported to be more subtle and
less resourced than other lexical relation (e.g. synonymy)
(Mohammad, Dorr, and Hirst 2008). We contribute a care-
fully annotated corpus Cont2Lex of Contextual Lexical
Contrast (CLC) to make the studies on CLC computation-
ally feasible.

Based on this corpus, we carry out a suite of bench-
mark for the CLC recognition task inclusive of popular static
embeddings like GloVe (Pennington, Socher, and Manning
2014) and contextual embeddings like BERT (Devlin et al.
2019) and analyze their behaviors. Our experiments shows
that lexical coherence is indeed challenging to model, with
the best performing model, BERT, only achieving 70% accu-
racy on CLC recognition. We further set out to find the char-
acteristics of models. We discover that all models are better
at modeling CLC pairs that occur in the same sentence, and
the performance is worse when words in the pair are found
in different sentences. We also find that the improvement
of the strongest model, BERT, can be largely attributed to
its modeling of a typical co-occurrence pattern with a pair
of repetitive words (Halliday and Hasan 2014) (cf Section
5.3). This result suggests contextual modeling still remains
at a surface level. These analyses provide a unique angle to
get insight of the advancement of semantic representations
on lexical coherence modeling, contributing to meaningful
discussions and to the recent reflection on the massive suc-
cess and limitations of these methods (e.g. BERT) (Shwartz
and Dagan 2019; Tenney et al. 2019; Manning et al. 2020).

In summary, this paper makes the following contributions:

• We identify a fundamental NLP research problem — con-
textual lexical contrast (CLC). We contribute a large-scale
corpus, Cont2Lex, to make CLC recognition a computa-
tional feasible task.

• Our comprehensive benchmark shows that CLC is a chal-
lenging task. Further analysis shows that recent advance-
ment is limited to modeling surface textual feature, push-
ing the development of semantic representations from
syntactical and semantic level to coherence and discourse
level.

2 Related Work
Being a fundamental phenomena in natural languages, CLC
is closely related to three topics in the development of Nat-
ural Language Processing. First, it bridges a gap for lexical
coherence to consider the context, second it pushes lexical
relation into contextual style, and third it provides a unique

testbed for existing semantic representations. Therefore, we
review those three parts of related works in this section.

2.1 Cohesion Modeling
Text cohesion can be achieved by multiple ways like coref-
erence (Harabagiu and Maiorano 1999), continuity in dia-
logue(Lei et al. 2018a), discourse connectives (Webber et al.
2019; Lei et al. 2017, 2018b), entity continuities (Barzilay
and Lapata 2008) and lexical items (Halliday and Hasan
2014) etc. Among all of them, lexical cohesion is one of
the less resourced hence being less studied. In a nutshell,
lexical-based cohesion approaches capture two words, each
from one clause, that forms certain relation as the signal
to glue the two clauses together (Somasundaran, Burstein,
and Chodorow 2014; Klebanov and Flor 2013; Mesgar and
Strube 2016; Morris and Hirst 2004). A classic piece of work
is conducted by Somasundaran, Burstein, and Chodorow
(2014) who proposed to model coherence based on lexical
chain (Barzilay and Elhadad 1999). However, from early
works like (Barzilay and Elhadad 1999), there has been a
long standing problem that solutions for lexical cohesion de-
termine the relatedness of words only through the distance
between two words and their paths in lexicons (e.g. Word-
Net) without modeling the context. As discussed in Section
1, the lexical relation here is intrinsically contextually li-
censed to function for text coherence. One recent work by
Mesgar and Strube (2016) is aware of the importance of con-
textual modeling, but it simply consider sentence as “bag of
words”. This is partially because there are no annotated re-
sources to distill this problem into a well-defined task to sup-
port sophisticated methods. The release of Cont2Lex cor-
pus addresses this gap, enabling the contextual property to
be thoroughly investigated for lexical cohesion.

2.2 Lexical Contrast and Lexical Relations
Computing lexical contrast is a core NLP task which has
been studied over years. One traditional way to detect lexi-
cal contrast is by fusing various lexical resources (Schwab,
Lafourcade, and Prince 2002; Santus et al. 2014; Moham-
mad et al. 2013). Another type of traditional solution is
based on the co-occurrence patterns of word pairs (Juste-
son and Katz 1991; Fellbaum 1995; Lucerto, Pinto, and
Jiménez-Salazar 2002; Roth and Schulte im Walde 2014;
Lin et al. 2003). Recently deep learning has empowered us to
distinguish multiple lexical relation simultaneously (Glavaš
and Vulić 2018; Nguyen and Joty 2017). One limitation of
the aforementioned works is that they only focus on build-
ing “off-the-shelf” lexicon for the downstream applications
without considering the context. Recent works gradually no-
ticed the importance of context modeling for lexical rela-
tions. Wang, He, and Zhou (2019) argue that incorporating
context is the bottleneck to detect lexical relations. At the
same time, a few datasets are also introduced to study lex-
ical semantic such as Stanford Contextual Word Similarity
Dataset (SCWS) (Huang et al. 2012) and Word-in-Context
(WiC) (Pilehvar and Camacho-Collados 2018) and CoSim-
Lex (Armendariz et al. 2019). They focus on word sense
disambiguation problem, hypothesizing different meanings
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of a word manifested in different context affect lexical re-
lations. However, our Cont2Lex focus on the text cohesion
problem, which is from a totally different perspective. For
example, even though the meaning of “positive” and “nega-
tive” remains the same in both Context 1 and Context 2 (cf
Section 1), they can behave differently in lexical cohesion.

2.3 Interpretations of Semantic Representations
Semantic representation has been studied for a wide range
of tasks, like dialogue (Zhang et al. 2019) and music (Liang
et al. 2020). The representation for word is the most fun-
damental one. From static word embeddings like word2Vec
(Mikolov et al. 2013) to contextual word embeddings like
BERT (Devlin et al. 2019), more powerful semantic rep-
resentations have been pushing forward the performance
of NLP models with their deeper architectures and bigger
model sizes. Despite the good performances, more and more
works have calmed down and started to reflect the charac-
teristics of the those representations. Manning et al. (2020)
discover that much syntactic information can be captured
by self attention pattern of BERT. Tenney et al. (2019) de-
signed a set of “edge-probing” tasks to evaluate BERT’s
performance on various fundamental semantic and syntactic
tasks, and conclude that semantic information is harder for
BERT to obtain. Shwartz and Dagan (2019) transform a set
of lexical composition tasks into contextual style, and found
limited improvement gained by contextual embeddings. Fol-
lowing this line of research, our analyses contributed mean-
ingful discussions on the capability of semantic representa-
tion in discourse and coherence modeling. Our corpus can
serve as a test bed for further studies on such problems.

3 Corpus
To enable computational approaches to the contextual lexi-
cal contrast, we first create an annotated corpus, Cont2Lex,
comprising 6,316 instances, with each instance a tuple of
(w+, w−, c, tag), where w+ and w− is a pair of contrast
words from existing lexicons. c is the context where w+ and
w− co-occur, being a sentence or two adjacent sentences.
Finally, tag is a binary annotated label, indicating whether
contextual lexical contrast holds between w+ and w− in c.

3.1 Instance Preparation
To generate candidate instances, we match the contrast word
pairs from lexicons with a large number of contexts. To en-
sure the coherence effect has a higher chance to hold be-
tween w+ and w−, we constrain our context c to satisfy the
minimal spans for text cohesion: (1) w+ and w− appear in
adjacent sentences; (2) w+ and w− appear in the same sen-
tence but different clauses. Note that, to avoid introducing
more variables, we control w+ and w− to have the same
Part-of-speech (POS) tags as recognized by spaCy.

Inspired by the annotation practice in Shwartz and Dagan
(2019) and Armendariz et al. (2019), we use the Wikipedia
corpus as one source of context to leverage on its broad cov-
erage. We also use the Wall Street Journal Corpus since it is
used as a basis to develop many linguistic resources such as
PTB (Marcus et al. 1994) and PDTB (Webber et al. 2019),

making it easier to extend and expand our work to other NLP
tasks. As for the contrast lexicon, we first attempted to ap-
ply the lexicon proposed by Mohammad et al. (2013), but
unfortunately it turned out to be infeasible to use since more
than 90% of the instances do not manifest contextual con-
trast according to our pilot study. The reason is that the lexi-
con generated by Mohammad et al. (2013) focuses on cover-
age, where most of the pairs are only interpreted as contrast
in very specific contexts. This high rate (90%) also indicates
importance of contextual interpretation: only relying on the
lexical relation recorded in lexicons might suffer from high
false positive rates in real applications.

After pilot studies, we eventually chose ConceptNet as
our lexicon, as it makes a better balance on both precision
and coverage. In addition, it also gives a degree score from 0
to 1 for the each contrast pair which we can use to facilitate
later annotation. For example, happy and sad have a score of
1, and fly and walk have a score of 0.29. We empirically con-
strained the scores to be above 0.25, since instances below
this threshold tend to have much noise as in Mohammad’s
lexicon. To avoid our corpus being biased to a few frequent
word pairs, we limit the maximum appearance of a word pair
to 3.

We should note that there might be some collocation pairs
that manifest contrast in context, but which are not covered
by ConceptNet (e.g., in “Don’t try to get fancy, the Wall
Street likes modest people.”, fancy and modest are not cov-
ered in ConceptNet). For this reason, such pairs are absent
from our Cont2Lex corpus. We leave such pairs for future
studies as the annotation is much harder to control.

3.2 Annotation
We recruited five senior undergraduate students majoring
in English literature as our on-site annotators In order to
guarantee the annotators fully understand our task, we first
gave them a tutorial where we elaborate the definition of
contextual lexical contrast. We then administered a quiz on
representative cases, and only allowed annotators to con-
tinue if they pass the quiz with 100% correctness. We later
asked them to do 50 instances of contextual lexical con-
trast recognition tasks after which we rigorously checked
their answers discuss the incorrect cases with the individ-
ual annotator. After three such iterations, all the annotators
have an at least 90% agreement with us when formal annota-
tions start. During the formal annotation, we insert 5% over-
lapped instances for monitoring the inter-annotator agree-
ments. The disagreed instances are discussed and used to
refine the annotation guidelines. The average speed of anno-
tations is roughly 70 instances per hour.

For each instance, the annotators are given the context c
where w+ and w− occur, and they are asked to give a bi-
nary judgement whether contextual lexical contrast holds
between w+ and w−. To ensure the annotators paid suf-
ficient attention to the context, we first showed them the
whole context but only w+, then we asked them to find one
word in the context that has the most potential to be con-
trasting with w+. This enforced the annotators to read the
whole context and answer attentively. After they have made
a choice, we showed them the real w− and asked the annota-
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tor to conduct real annotation: determining whether w+ and
w− manifest contrast in c.

Given the intrinsic difficulty of the annotations, we took
more steps to ensure the quality of the corpus. Apart from
the binary answer options, the annotator can optionally indi-
cate this question is hard to decide (HTD), we then examine
all the HTD questions and correct their answers when nec-
essary. Our initial inter-annotator agreement(IAA) is 70.6%
(this percentage of questions reach full consensus among all
5 annotators). However, as all these HTD questions are fur-
ther processed by us, our final IAA is calculated by remov-
ing those HTD questions, reaching 75.3%. HTD not only
helps improve IAA, it relieves the annotators from wasting
their time on over-hesitation and accelerates the annotation.
Finally our Cont2Lex Corpus contains 6,316 instances, and
35.7% of them are positive instances that CLC holds2.

4 Benchmark Method
Our benchmark was chosen to show a model with limited
modeling ability on its own, in order to demonstrate the in-
trinsic power of the embedding methods. We also wanted to
investigate if embedding methods (e.g. BERT) have already
stored necessary knowledge to recognize CLC, instead of
designing fancy model to address CLC.

The benchmark is inspired by recent frameworks includ-
ing Shwartz and Dagan (2019); Tenney et al. (2019), which
systematically incorporate representative embeddings pro-
posed so far, inclusive of both contextual and static word
embeddings. In particular, we first convert both the target
words and the corresponding context into vector representa-
tion and then we encode the input into latent representations,
which will be used to conduct the classification task.

4.1 Problem Definition
Given a pair of words w+ and w−, we denote their corre-
sponding context as c = w1, w2, ..., wn (note that w+ and
w− are included in c and we do not specially mark their po-
sition). A model needs to predict if contextual contrast holds
between w+ and w− in the context c. Hence, we define con-
textual lexical contrast recognition as a binary classification.

4.2 Embedding Methods
We first obtain the word embeddings of each word wi in
context c, resulting in w1,w2, ...wn. For static embeddings,
we only need to do a simple embedding look-ups for each
individual word. For the contextual embeddings, we need
to take the whole sentences as inputs to a model to obtain
the embeddings. We follow (Shwartz and Dagan 2019) and
select the following methods to compare and fix them during
training.
Static Word Embeddings:

1. Glove: Glove (Pennington, Socher, and Manning 2014)
is trained on Wikipedia and Gigawords for word co-
occurance preidiction. It has the dimension of 300

2Details about our corpus including corpus statistics and sample
instances will be uploaded as supplementary material to CMT.

2. Word2Vec: Word2Vec (Mikolov et al. 2013) is trained on
Google News to predict surrounding words given a central
word. It also has the dimension of 300.

3. FastText: FastText (Joulin et al. 2016) is proposed to
refine the above two embeddings methods as it intro-
duces subword embeddings and is suitable for more
morphologically-dependent tasks. It was trained for sur-
rounding words predictions on Wikipedia, UMBC and
statmt.org, consisting of 300 dimensions.

Contextual Word Embeddings:

1. ELMo: ELMo (Peters et al. 2018) is trained on 1B Word
Benchmark for a character level language model with
deep LSTMs, it has a dimension of 1024.

2. GPT: GPT (Radford et al. 2018) is trained on BooksCor-
pus to obtain a rich language model. It uses transformers
instead of LSTM, and encodes BPE’s subword instead of
word.
GPT.Lex: We follow Tenney et al. (2019) to set a base-
line as “lexical prior” abbreviated as GPT.Lex. It uses the
context-independent word representation of GPT without
any access to surrounding words. We directly take the
learned word embedding from GPT model. By doing so,
we can evaluate to which extent can GPT utilizes contex-
tual information to aid the prediction of CLC.

3. BERT: BERT (Devlin et al. 2019) is also based on trans-
formers, but it is bidirectional as opposed to GPT’s sin-
gle directional architecture. It is trained on two objec-
tives: one is the Masked Language Model, which predicts
a masked word given the context, another is the Next Sen-
tence Prediction. GPT and BERT both have a dimension
of 768.
BERT.Lex: The motivation and operation is identical to
the GPT.Lex model.

4.3 Encoders and Classification
After we have obtained the word embeddings w1,w2, ...wn,
we need to represent them as hidden representations
u1, u2, ...un through encoders for final classification. For
encoders, we also follow Shwartz and Dagan (2019):

• BiLSTM: BiLSTM has the state-of-the-art performance
on many NLP tasks before BERT was introduced. The
rationality is that we hope BiLSTM captures additional
contextual information for static embeddings. Formally,
u1, u2, ...un = BiLSTM (w1,w2, ...wn).

• Self Attention: We concatenate each word’s embedding
with a weighted sum of other word’s embeddings in the
context. Formally, ui = wi ⊕

∑n
j=1 mi,jwj , where the

weight factor mi is calculated by Softmax(wi ·w), which
is a inner product with every other word w followed a
softmax. This method does not introduce extra param-
eters, we hope our complex contextual embeddings can
benefit from it.

• None: We directly use the embeddings as encoded results.
Formally ui = wi. The intention behind this is to test if
contextual embeddings (e.g. BERT) can achieve superior
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results as advocated in recent literature in a simplist man-
ner. It is worth noting that encoding non-contextual em-
beddings in this way will totally miss the context informa-
tion, and we did additional experiment on non-contextual
situations.

After we have the encoded representations, we concate-
nate the u+ and u− and use a simple 2-layer MLP for final
representation.

5 Experiment
We are driven to find the performance of current seman-
tic representations in CLC and discover their characteris-
tics. Therefore, we direct our experiments with following
research questions.

• RQ1: How do models perform on the CLC recognition?

• RQ2: Are models able to recognize lexical contrast out-
of-context?

• RQ3: What are the capabilities and limitations of current
models?

Dataset: We used the entire Cont2Lex corpus to conduct
experiments, total number of instances is 6,316. We used
5-ply cross validation and randomly split the corpus to par-
titions of 70%, 15%, and 15% for training, validation and
testing.

Implementation details: We used PyTorch to implement
our models. All hyper parameters are tuned on the validation
set. We used Adam optimizer with the learning rate of 1e-4
and an L2 regularization strength of 1e-5 to prevent over-
fitting. We used the default hyperparameters for contextual
embeddings. We set the hidden size of the BiLSTM as 256
and the hidden size of MLP to 256. Early stopping criteria
is performed on the validation set. For each configuration,
we conduct experiments for 5-cross validation, and for each
validation we run for 5 times with different random seeds
and report the average score.

5.1 Main Experiment: CLC Benchmark (RQ1)
We first compare the overall performance of embedding
methods regarding different encoders. We also set a major-
ity baseline by having all models always predict the major-
ity label, i.e., negative. The results in Table 2 leads to fol-
lowing discoveries:
(1) Though all models outperform the Majority Baseline, the
best performing model, BERT only exceeds 70.0 accuracy
score, revealing the intrinsic difficulty of detecting contex-
tual lexical contrast.
(2) GPT and BERT significantly outperform their lexical
baseline (i.e. GPT.Lex and BERT.Lex) and outperform all
static embeddings (i.e. Glove, Word2Vec, FastText), validat-
ing their capability of contextual modeling. However, ELMo
does not significantly outperform static embeddings, sug-
gesting a possible limitation of its architecture; we leave
deeper discussion on this for future work.

BiLSTM Attention None
Glove 65.3 64.9 65.3

Word2Vec 65 65.7 64.7
FastText 66.2 65.5 66.3
ELMo 65.6 65.6 65.7

GPT.Lex 65.8 64.8 64.8
GPT 66.8 67.0 66.9

BERT.Lex 66.4 66.2 66.4
BERT 70.0 69.2 69.1

Majority 64.3

Table 2: Main Experiment: We report the accuracy score of
contextual lexical contrast recognition by different embed-
ding methods and encoders (RQ1).

(3) The encoders (i.e. BiLSTM, Attention) do not necessar-
ily improve performance. As for the static embedding sub-
group (e.g. Glove), it may suggest that CLC is too challeng-
ing for BiLSTM and Attention to model. As for the contex-
tual embedding subgroup (e.g. GPT), contextual information
is already obtained by the contextual embeddings itself, and
BiLSTM encoder might not provide additional help. Similar
discoveries are also reported in (Shwartz and Dagan 2019),
which evaluates lexical composition in context.

5.2 Out-of-context Lexical Contrast Recognition
(RQ2)

The experiments above demonstrate the inability of existing
semantic representation methods to characterize contextual
lexical contrast. However, it is still unclear whether this is
due to their insensitivity to out-of-context lexical contrast
(i.e., the lexical contrast whose interpretation is not based
on context) or due to the difficulty introduced by context. In
this section, we design a binary classification experiment to
study whether existing semantic representation methods can
detect lexical contrast out-of-context.

In our corpus, the word w+ and w− in each instance (w+,
w−, c, tag) is recorded as a pair of out-of-context lexical
contrast by ConceptNet regardless of whether they mani-
fest contextual contrast in c. Hence there are naturally posi-
tive samples (w+, w−) of out-of-context lexical contrast. To
conduct a binary classification experiment, we also need to
synthesize negative samples of (w+, w

′
). To make it more

comparable with our CLC main experiment, we restrict the
negative sampling from the same context c where w+ and
w− occurs. We further constrain the sampled word w

′
from

c to obtain the same POS as those of w+ and w−. We as-
sume that lexical contrast mostly does not hold between w

′

and w+ or w−. Therefore, we choose either (w+, w
′
) or

(w−, w
′
) as the corresponding negative instances.

We then conduct experiments to ask various models to
classify such two classes. Specifically, we use the ”None”
encoder for all embeddings, meaning we simply concate-
nate the embedding and feed them directly to classifiers. In
order to make the two sets of experiments as comparable as
possible, in our out-of-context lexical contrast recognition
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Embedding Glove Word2Vec FastText
Acc. 79.7 82.6 84.1

Embedding ELMo GPT BERT
Acc. 83.5 81.2 79.5

Table 3: Accuracy score of out-of-context lexical contrast
recognition (RQ2).

experiment, we treat tuples (w+, w−) as positive instances
for out-of-context lexical contrast and choose (w+, w

′
) and

(w−, w
′
) as the corresponding negative instances. We also

sample the same ratio of positive instances as contextual lex-
ical contrast experiment. We use the same model design and
similar hyper-parameter settings to conduct experiments.

From Table 3 we see that all embedding methods achieve
a much higher score than the best performance in Table 2. It
is worth noting that since we use ”None” encoding, the static
embedding subgroup receives no contextual information, but
still obtain substantially higher performance. Therefore we
conclude that all embedding methods are able to model lexi-
cal contrast to some extent reasonably well when no context
is considered. Note that the contextual embedding subgroup
(especially GPT, BERT) are slightly inferior to Glove and
Word2Vec in this out-of-context contrast recognition task
while significantly outperforming the CLC benchmark (as
discussed in RQ1). This result is in line with their model
design principle that leverage contexts to enhance semantic
representation.

5.3 Model Characteristics (RQ3)
In order to gain deeper insight into the model characteristics
on contextual lexical contrast, we analyze two typical pat-
terns: (1) whether two words appear in the same sentence
but different clauses or from two adjacent sentences; (2) co-
occurrence of word repetitions.

CLC Word Pairs Occurring in the Same Sentence: We
investigated two types of the contexts: (1) w+ and w− ap-
pear in the same sentence but different clauses (denoted by
S). (2) w+ and w− appear in adjacent sentences (as ¬S).

Table 4 shows that contextual modeling is easier for S.
First, modeling ¬S is challenging, since a number of meth-
ods cannot outperform the majority baseline in ¬S. By com-
paring the improvement from BERT.Lex to the full BERT
model, we find significant improvement in S (e.g. 60.7 →
67.4) and very limited in ¬S (e.g. 69.8→ 71.4), suggesting
that the contextual modeling capability of BERT mainly lies
in the S subcategory.

We also compare BERT and FastText, which are the best
performing methods in the contextual and static subgroups.
We notice a larger improvement in S (e.g. 60.4 → 67.4)
than in ¬S (e.g. 69.8→ 71.4), suggesting the improvement
of BERT over static models still lies in the S subcategory.
These discoveries also point to possible limitations of BERT
in characterizing contextual lexical contrast in different sen-
tences. This finding could be related to the training objec-
tive of BERT: it is good at next sentence prediction which

S ¬S
Glove+None 61.3 (+4.2) 67.9 (-2.0)

W2V+Attention 60.3 (+3.2) 68.8 (-1.1)
FastText+None 60.4 (+3.3) 69.8 (-0.1)
ELMo+None 63.6 (+6.5) 68 (-1.9)

GPT.Lex+BiLSTM 61.5 (+4.4) 68.3 (-1.6)
GPT+Attention 64 (+6.9) 68.7 (-1.2)

BERT.Lex+BiLSTM 60.7 (+3.6) 69.8 (-0.1)
BERT+BiLSTM 67.4 (+10.3) 71.4 (+1.5)

Majority 57.1 69.9

Table 4: Model performance on subcategories in S and ¬S.
To save space, we only report accuracy scores of the best
encoder (i.e. BERT+BiLSTM according to Table 2). (RQ3)

(Ex. 1 Repetition) ...is considered spurious by Hefele
questionable by Haddan and Stubbs, and genuine by
JaffA Regest.
(Ex. 2 Repetition) They had many children who lived in
the darkness between them. The children wished to live
in the light and so separated their unwilling parents.

Table 5: Corpus study for word repetitions co-occurring with
CLC pairs. Repeated parts are bolded.

R ¬R
Glove+None 60.9 (+7.2) 67.3 (-3.1)

W2V+Attention 60.4 (+6.7) 68.1 (-2.3)
FastText+None 61.1 (+7.4) 68.8 (-1.6)
ELMo+None 63 (+9.4) 68 (-2.5)

GPT.Lex+BiLSTM 60.8 (+7.1) 68.1 (-2.3)
GPT+Attention 65.5 (+11.8) 67.8 (-2.6)

BERT.Lex+BiLSTM 58.7 (+5.0) 69.9 (-0.4)
BERT+BiLSTM 68.7 (+14.9) 70.7 (+0.3)

Majority 53.7 70.4

Table 6: Model performance on subcategories within R and
without R. We only report accuracy scores of the best en-
coder to save space. (RQ3)

focuses on higher level semantic information, but it could
gloss over information related to lexical coherence.
Word Repetitions Co-Occurring with CLC Pairs: We
find that a pair of repetitive word(s) tend to co-occur with
w+ and w− when w+ and w− manifest CLC. As Ex. 1 in
Table 5, the recognition of positive CLC between “spurious”
and “genuine” can be aided by the reoccurring preposition
“by”. Similarly, the reoccurring words “live in the” might
have made detecting CLC an easier task in Ex. 2.

To investigate this observation, we split the entire test
set to two: one consists of instances with repetitive words
near w1 and w2 in a window size of 33 (denoted as R);

3We have experimented with multiple window sizes but only
show results where window size is 3, as the results are relatively
insensitive to window size.
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the other set consists the remaining examples (denoted as
¬R). As we can see in Table 6, Without the repetition pat-
terns (¬R), the performance of all models can barely out-
perform the majority baseline, implying the intrinsic dif-
ficulty of contextual modeling without such explicit pat-
terns of word repetitions. By comparing inter-model per-
formance in ¬R, we find very limited improvement brought
by BERT (the strongest model). Specifically, the improve-
ment from BERT.Lex+BiLSTM to BERT+BiLSTM is 69.9
→ 70.7, and that from FastText+None to BERT+BiLSTM is
68.8→ 70.7. However, the improvement for R subcategory
is much larger: 58.7 → 68.7 from BERT.Lex+BiLSTM to
BERT+BiLSTM and 61.1 → 68.7 from FastText+None to
BERT+BiLSTM. These intriguing discoveries suggest the
improvements from static embeddings to BERT are largely
attributed to modeling simple repetitions.

5.4 Discussion on Other Typical Cohesive Ties
In addition to a pair of repetitive words, there are siblings
of this pattern in linguistic coherence theory (Collins 2012;
Halliday and Hasan 2014), called cohesive ties4. Typical co-
hesive ties that appear in a pair include repetition, coref-
erence, substitution, ellipsis and collocation (Halliday and
Hasan 2014). We discover that the co-occurrence pattern dis-
cussed before not only applies to word repetition, but also
to other typical cohesive ties. For examples in Table 7, in
Ex. 3 although “way” and “path” are not repeated words,
they are semantically similar, which could still aid the CLC
recognition task. In Ex. 4, “one” is used instead of repeating
“countries”, it may aid the modeling of CLC. Finally, under-
standing “it” is referred to “ Party Control” in Ex. 5 could
also help the recognition task.

Can existing representations leverage other cohesive ties
for CLC recognition? To gain more insights, we conduct a
case study by annotating 200 randomly sample CLC cases
in our test set and followed the same experiment steps (cf
Section 5.1). For each test instance we decide if one of the
five cohesive ties (T) co-occur with w+ and w−, resulting in
two subsets T and ¬T. To make the results comparable with
Table 6, we also set the context window to be 3. Note that
simple repetition (R) is a subset of cohesive tie (T), and thus
¬R is a superset of ¬T, with more instances from other co-
hesive ties as elaborated in Table 7. Therefore by comparing
the performance between ¬R and ¬T, we can estimate how
models are using other cohesive ties for CLC recognition.

Due to space constraints, we only illustrate the repre-
sentative result — the improvement of BERT, the strongest
model, over Glove, the weakest model. Table 8 shows that
though ¬R include cohesive ties that were not shown in ¬T,
its improvement is nearly the same as ¬T. This finding sug-
gests that BERT may not utilize cohesive ties (other than
simple repetition) for lexical coherence modeling. Together
with our discovery in last section, we find that our contextual
model’s improvement is mainly attributed to simple repeti-
tive patterns, thus not fully exploiting the modeling potential

4According to linguistic theories (Collins 2012; Halliday and
Hasan 2014), cohesive ties refer to words/phrases that link different
pieces of writing (usually two clauses or sentences) together.

(Ex. 3 Collocation) Theseus decided to go to Athens and
had the choice of going by sea, which was the safe way
or by land, following a dangerous path with thieves and
bandits all the way.
(Ex. 4 Substitution) Although accepted by many coun-
tries, his proposal was rejected by one in Africa.
(Ex. 5 Coreference) Party control is tightest in govern-
ment offices and in urban economic, industrial, and cul-
tural settings; it is considerably looser in the rural areas.

Table 7: Corpus study for other cohesive ties.

¬R ¬T
∆BERT+BiLSTM +4.1 +4.2
∆BERT+Attention +3.6 +3.5

∆BERT+None +3.7 +3.7

Table 8: The improvement of BERT over the weakest model,
Glove. BERT achieves +4.2 improvement in ¬T over Glove
(both with BiLSTM encoder). We follow the fashion in main
experiment to report accuracy averaged by random seeds.

of other cohesive ties. We hope that our case study and anal-
ysis in this work serves as a springboard to initiate dialogues
and endeavors at the interface of contextual lexical contrast
and neural coherence modeling.

6 Conclusion and Future Work

In this paper we study an intriguing phenomena as Contex-
tual Lexical Contrast (CLC). CLC holds between two words
if they are interpreted as contrast to understand the coher-
ence of the context. We contributed a well-annotated corpus,
Cont2Lex to make CLC recognition a computationally fea-
sible task. We found that model performance is generally
unsatisfactory, even for BERT, which was the best perform-
ing model. Analysis results reveal that detecting lexical con-
trast in out-of-context scenarios is feasible with the applied
models, suggesting that the difficulty of CLC likely stems
from contextual modeling. In particular, we found that per-
formance gains from BERT are largely attributed to cohe-
sion ties that are manifested in simple repetition form, while
other cohesive ties are under-exploited. This finding sug-
gests that even though contextualized language models such
as BERT that have been successful in enabling many NLP
tasks to reach human benchmarks, this is not the case for
contextual lexical contrast recognition. This probing analy-
sis implies that there is still much space for improvement
for language representation learning to model discourse and
coherence more effectively.

Future works include extending our work to other contex-
tual lexical relations such as synonymy and hypernymy, ex-
panding our scope from lexical items to multi-word expres-
sions, and quantifying how CLC might benefit downstream
tasks such as discourse relation recognition. It is also inter-
esting to investigate the possible synergy between modeling
lexical-level and sentence-level coherence.

13214



Acknowledgments
We thank Prof Min-Yen Kan and Dr Vered Shwartz for valu-
able discussions with them. We also thank the anonymous
reviewers for their valuable comments.

This research is partially supported by the National Re-
search Foundation, Singapore under its International Re-
search Centres in Singapore Funding Initiative. All content
represents the opinion of the authors, which is not necessar-
ily shared or endorsed by their respective employers and/or
sponsors.

References
Armendariz, C. S.; Purver, M.; Ulčar, M.; Pollak, S.;
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