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Abstract

Semantic parsing has long been a fundamental problem in
natural language processing. Recently, cross-domain context-
dependent semantic parsing has become a new focus of re-
search. Central to the problem is the challenge of leverag-
ing contextual information of both natural language utterance
and database schemas in the interaction history. In this pa-
per, we present a dynamic graph framework that is capable of
effectively modelling contextual utterances, tokens, database
schemas, and their complicated interaction as the conversa-
tion proceeds. The framework employs a dynamic memory
decay mechanism that incorporates inductive bias to integrate
enriched contextual relation representation, which is further
enhanced with a powerful reranking model. At the time of
writing, we demonstrate that the proposed framework outper-
forms all existing models by large margins, achieving new
state-of-the-art performance on two large-scale benchmarks,
the SParC and CoSQL datasets. Specifically, the model at-
tains a 55.8% question-match and 30.8% interaction-match
accuracy on SParC, and a 46.8% question-match and 17.0%
interaction-match accuracy on CoSQL.

Introduction
Mapping a nature language sentence into a logical form,
known as semantic parsing, is a fundamental problem in nat-
ural language processing (Zelle and Mooney 1996; Zettle-
moyer and Collins 2005; Wong and Mooney 2007; Zettle-
moyer and Collins 2007; Li and Jagadish 2014; Yagh-
mazadeh et al. 2017; Iyer et al. 2017). Notably, the re-
cent Text-to-SQL tasks have attracted considerable atten-
tion, which aims to convert nature language sentences into
SQL queries. Large-scale datasets such as SParC (Yu et al.
2019b) and CoSQL (Yu et al. 2019a) have been made
available to train more powerful models. Since relational
databases store a great amount of structured data, improv-
ing the performance of Text-to-SQL conversion is important
for many real-life applications.
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SELECT count ( Museum_ID ) FROM museum
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some museums more than once , please .

Can you list their IDs and ages too ?

SELECT t1.name FROM visitor AS t1 
JOIN visit AS t2 ON t1.id = t2.visitor_id 
GROUP BY t1.id HAVING count ( * ) > 1

SELECT t1.name, t1.id, t1.age FROM 
visitor AS t1 JOIN visit AS t2 ON t1.id 
= t2.visitor_id GROUP BY t1.id 
HAVING count ( * ) > 1

…
…
…
…

Figure 1: An example of cross-domain context-dependent
Text-to-SQL interaction in the CoSQL dataset (Yu et al.
2019a).

Most existing work has focused on precisely convert-
ing individual utterances to SQL queries, with a strong as-
sumption on context independence among queries. How-
ever, in real applications as shown in Figure 1, users interact
with cross-domain databases through consecutively commu-
nication to exchange information with the databases. Un-
fortunately, the state-of-the-art approaches do not perform
well on the newly released, cross-domain context-dependent
Text-to-SQL benchmarks, SparC and CoSQL.

Central to the problem of context-dependent semantic
parsing is leveraging interactive contextual information of
both natural language utterance and database schemas avail-
able in the interaction history. Existing work (Suhr, Iyer, and
Artzi 2018; Zhang et al. 2019; Liu et al. 2020) has mainly
focused on integrating context information into the utterance
encoding phase.

In this paper, we present a dynamic graph framework that
is capable of effectively modelling contextual utterances,
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tokens, database schemas, and their complicated interac-
tion when a conversation proceeds. In our evolving dynamic
schema-linking graph network, the representation for nodes,
edges, and relation weights adapt in the interactive context.
The graph is built at both the utterance and word token level,
rendering a flexible framework to model different levels of
context in the multi-turn scenario. We propose different dy-
namic memory decay mechanisms to incorporate inductive
bias that encourages forgetting the part of dynamic graphs
of a longer history, with which dynamic context representa-
tion is constructed to leverage both implicit and explicit re-
lations. The framework can effectively leverage features that
are powerful in context-independent parsing such as explicit
relations (Wang et al. 2020). We show that such information
is also effective for the context-dependent parsing.

We further design a feature enhanced reranker that inte-
grates external knowledge and task-related representation.
The model can identify the correct queries by filtering out
those that do not conform to the grammar of SQL and fur-
ther improve the performance of Text-to-SQL models.

We evaluate our proposed model on two large-scale cross-
domain context-dependent benchmarks, SParC (Yu et al.
2019b) and CoSQL (Yu et al. 2019a). At the time of
writing this paper, the proposed model achieve new state-
of-the-art performance on both datasets, substantially out-
performing all existing models by large margins. Specifi-
cally, our model attains a 55.8% question-match and 30.8%
interaction-match accuracy on SParC, and a 46.8% question-
match and 17.0% interaction-match accuracy on CoSQL.
We provide detailed analysis and visualization to further
investigate how each component contributes to the entire
framework.

Related Work
Context-independent Semantic Parsing. Semantic pars-
ing (Zelle and Mooney 1996; Zettlemoyer and Collins 2005;
Wong and Mooney 2007; Zettlemoyer and Collins 2007)
maps natural language utterances into logical forms. Re-
cently, Text-to-SQL is a major focus of semantic pars-
ing in which natural language sentence questioning tables
are parsed into SQL queries. Deep learning has shown to
achieve impressive results on context-independent Text-to-
SQL datasets such as WikiSQL (Zhong, Xiong, and Socher
2017) and Spider (Yu et al. 2018b). For WikiSQL, Dong
and Lapata (2018) propose the Coarse2Fine model which
generates meaning sketches abstracted away from low-level
information such as arguments and variable names and pre-
dicts missing details in order to obtain full meaning repre-
sentations. McCann et al. (2018) propose MQAN, a model
for general question answering that uses a multi-pointer-
generator decoder to capitalize on questions as natural lan-
guage descriptions of tasks. Furthermore, Hwang et al.
(2019) introduce the large pretrained language model and
demonstrate the effectiveness of a carefully designed archi-
tecture that combines previous approaches. Compared with
Spider, WikiSQL does not involve the complexity of multi-
ple tables. On Spider, most of work focuses on establishing
schema linking, which dynamically obtains the relationships
between natural language sentences and database schemas

through attention mechanism. Guo et al. (2019) perform
schema linking over a question and database schema us-
ing customized type vectors for alignment and adopts a
grammar-based model (Yin and Neubig 2017) to synthesize
an intermediate representation. Bogin, Berant, and Gardner
(2019) provide a new perspective on schema linking, which
converts the schema to a graph. Wang et al. (2020) propose
the RAT-SQL framework, providing a unified way to en-
code arbitrary relational information among inputs. Unlike
this work, we study context-dependent parsing.

Context-dependent Semantic Parsing. Miller et al.
(1996) maps utterances to semantic frames, which are then
mapped to SQL queries on the ATIS dataset (Hemphill,
Godfrey, and Doddington 1990) that has only one database.
Similar to ATIS, SCONE (Long, Pasupat, and Liang 2016;
Guu et al. 2017; Fried, Andreas, and Klein 2018; Suhr and
Artzi 2018; Huang, Choi, and Yih 2019) and SequentialQA
(Iyyer, Yih, and Chang 2017) contain no logical form an-
notations and only denotation (Berant and Liang 2014) in-
stead. Zettlemoyer and Collins (2009) propose a context-
independent CCG parser and then applied it to do context-
dependent substitution. Furthermore, Suhr, Iyer, and Artzi
(2018) generate ATIS SQL queries from interactions by in-
corporating history with an interaction-level encoder and
copy segments of previously generated queries. More re-
cently, Yu et al. (2019a,b) construct two large-scale cross-
domain context-dependent benchmarks for semantic pars-
ing. Beyond that, Zhang et al. (2019) present an edit-based
method that reuses the SQL query generated in the previous
time step through editing, which achieves promising results.
Liu et al. (2020) conduct a further exploratory study on se-
mantic parsing in context and perform a fine-grained anal-
ysis to explore the sensitivity of input utterance and decod-
ing to context. As discussed above, we present a dynamic
graph framework that is capable of more effectively mod-
elling contextual utterances, tokens, database schemas, and
their complicated interaction.

Task Formulation and Notations
The context-dependent semantic parsing task consists of in-
teractive dialogues in different domains, and its goal is to
map nature language utterance in the interaction to the cor-
responding SQL queries. Let I be the set of all interactions,
an interaction I ∈ I is a series of utterances 〈x1, . . . , xn〉,
and their corresponding SQL queries 〈y1, . . . , yn〉, where
n is the length of the interaction. In the cross-domain set-
ting, each SQL query is grounded to a multi-table schema
and each interaction uses different datasets. The schema
involved in each interaction can be expressed as S =
〈s1, . . . , sm〉, where m is the number of column headers. In
order to describe the relationships between columns and ta-
bles more effectively, for each schema header s, the column
and table name are formatted as [Table.Column] and [Ta-
ble.*], respectively. Given the current utterance xi, the in-
volved schema S, and the interaction history of length i− 1,
formatted as I[: i − 1] = 〈(x1, y1) , . . . , (xi−1, yi−1)〉, the
goal is to generate SQL query yi.
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Figure 2: Illustration of the proposed model architecture.

Model
The overall architecture of our proposed model is depicted
in Figure 2. In the following sections, we will discuss the
components in detail.

Encoder
BERT Embedding Input The pretrained language mod-
els have shown superior performance in many tasks. We uti-
lize BERT (Devlin et al. 2019) to encode both utterances and
schema-related input simultaneously. Same as in (Hwang
et al. 2019), we concatenate all utterances in one conver-
sation and all the schema-related input using [SEP] as the
delimiter:

[CLS], [x1, . . . , xi], [SEP], s1, [SEP], . . . , sm, [SEP]. (1)

As such, we obtain BERT’s utterance and schema represen-
tation by feeding the sequence to a pretrained BERT.

Multi-turn Utterance Encoder To encode the current ut-
terance and effectively integrate information from conver-
sation history, at each turn i, we employ an utterance-level
Bi-LSTM (Hochreiter and Schmidhuber 1997) to produce
embedding from a contextual hidden state:

hU
i,k = Bi-LSTMU

(
xi,k,h

U
i,k−1

)
, (2)

We use the concatenation of the first and last hidden vec-
tor as the utterance encoding. To take advantage of the utter-
ances in the history, we employ the popular interaction-level
encoder (Suhr, Iyer, and Artzi 2018). For i-th utterance, the
interaction-level encoder merges the current utterance em-
bedding hU

i with the preceding interaction-level encoding
hI
i−1:

hI
i = LSTMI

(
hU
i ,h

I
i−1
)
. (3)

This state is maintained and updated over the entire inter-
action. Moreover, we use interaction-level embedding hI

i to
further enrich utterance encoding:

hU
i,k = LSTMU

(
[xi,k,h

I
i ],h

U
i,k−1

)
. (4)

Schema Encoder To make the model capable of mod-
elling cross-domain information, in addition to utterance en-
coding, we encode the schema involved in the current inter-
action. For each schema input s, which consists of table and
column names, the schema embedding hS

i are processed by
a Bi-LSTM layer:

hS
i,k = Bi-LSTMS

(
si,k,h

S
i,k−1

)
. (5)

Dynamic Contextualized Schema Graph
For each conversation that contains multiple turns, we de-
sign dynamic contextualized schema graphs, inspired by the
recent studies on dynamically evolving structures (Pareja
et al. 2020). Unlike the original model that was not used for
natural language, we construct our dynamic contextualized
schema linking graphs, which will change as the conversa-
tion proceeds. This graph will be used with dynamic weight
decay modules we discuss below to learn enriched contex-
tual representation.

We would like to jointly learn our representation for ut-
terance X and schema S in context C, in particular consider-
ing modeling the alignment between them. At the i-th turn,
given the interaction X = {x0...k1

1 , x0...k2
2 , . . . , x0...ki

i } and
the related set of schemas S = {s1, . . . , sm}, we define the
dynamic contextualized schema graph to be GC = 〈VC , EC〉,
where VC = X∪S, and EC are schema linking edges among
the context words and schema members such as table and
column names. Especially, the relationships can be divided
into two categories:
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• Internal relations: relations within a database schema,
such as a foreign key.

• Interactive relations: relations that align entity references
in utterances to the schema columns or tables.

Context-Aware Memory Decay

As the conversation proceeds and more queries are asked
by users, the contextualized schema graph grows. Note that
users’ concerns and intention may change frequently. We
would like the model to forget unrelated turns that are
far away. We propose to integrate memory decay mecha-
nism to introduce the desired inductive bias. Specifically,
we construct both token-level and utterance-level weight de-
cay framework to model the influence of context at different
granularities. For each of the granularities, we provide two
approaches: gate-based and schedule-based decay.

Token-level Decay We first propose a gate-based decay
mechanism to automatically compute the importance of each
word token. The decay weight is computed by:

mT = Sigmoid(VgateReLU(Ugateh
U
i,k)), (6)

where Vgate and Ugate are learned parameters and hU
i,k are

k-th token embeddings of the utterance of the i-th turn. In
addition, for schedule-based decay, we investigate three ex-
plicit scheduling functions to compute decay weights, bor-
rowed from schedule sampling (Bengio et al. 2015):

• Linear decay: mT
t = k − c ∗ t, where k is the base decay

weight, t is the position where the decay happens, and c
is a constant controlling the slope of decay;

• Exponential decay: mT
t = kt, where k < 1;

• Inverse sigmoid decay: mT
t = k/(k + expt/k), where

k ≥ 1;

We use word tokens’ positions in the concatenated se-
quences (Eq. 1) to compute their distances t.

Utterance-level Decay We further propose the utterance-
level decay to model the influence of history at the utterance
level. Specifically, the gate-decay weight is computed by:

mU = Sigmoid(V U
gateReLU(UU

gateh
I
i )), (7)

where V U
gate and UU

gate are learned parameters and hIi is
the utterance embedding of the i-th utterance. Similarly, the
scheduling function could be used at the utterance-level de-
cay. The final memory decay can be empirically selected or
by a hyper-parametric weighted combination.

Dynamic Context Representation

We represent the interaction context based on the dynamic
contextualized schema graph GC and memory decay m.

Dynamic Context Representation over Implicit Relations
(DCRI) We propose a decayed attention mechanism to
model implicit relations in the schema graph, which is for-
mulated as DAttn(hQ,hK ,ma):

α = softmax(hQWatt h
K �ma)

DAttn(hQ,hK ,ma) =
∑
l

αl × hK
l ,

(8)

where hQ and hK are query and key embeddings, respec-
tively; Watt are learnable parameters and l is the index of
key; ma is the memory decay values used for the current
procedure. We splitm into [mIU ,mS ] to represent the utter-
ance and schema decay values. First, we utilize the attention
mechanism among all headers to explore internal relations
in schema, called Schema-Inner Attention module, to update
the schema hS

i :

hS = DAttn(hS ,hS ,mS). (9)

It worth noting that the decay value in mS positions are all
set to 1, since there is no series definition in schema parts.

We then build a decayed attention structure to model the
implicit interaction relationships between context utterances
and table schemas. We use hS to obtain the most relevant
columns or tables:

rIU = DAttn(hU ,hS ,mIU )

rIS = DAttn(hS ,hU ,mS)
(10)

where rIU and rIS are implicit exploration representation
for utterances and schemas, respectively.

Dynamic Context Representation over Explicit Relations
(DCRE) Here we further introduce dynamic context rep-
resentation over the schema graphs with explicit relations,
where the relation weights are influenced by the memory
decay mechanism discussed above. First, we concatenate
the node embedding of context with that of schema: hR =
Concat

(
hU
1 ; ...;h

U
t ;h

S
)

as the input. Then we perform a
relation decayed graph transformer to obtain the structured
representations:

e
(h)
ij =

hR
i W

(h)
Q (hR

j W
(h)
K + gij �mi)

>√
dz/H

. (11)

where Wh
Q,W

h
K ∈ RdR

h×(d
R
h /H) are learnable parameters,

the H is the number of head, gij is the explicit relationship
embedding between the two element hR

i and hR
j from EC in

GC , and mi is the memory decay value in the i-th position.
Inspired by Wang et al. (2020), we use the following in-

ternal relations: (1) whether columns in the database belong
to the same table; (2) whether they are foreign keys. For
the interactive relations, we determine (1) whether utterance
exactly matches the name of column/table; (2) whether the
n-gram is subsequence of the name of a column/table. We
will show that our model can effectively incorporate these
features that have been shown to be useful in static graphs
in context-independent parsing, and demonstrate they can
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further improve the performance of our context-independent
parsing.

In addition, the attention aggregation operation also needs
the decay weights:

α
(h)
ij = softmax

(
e
(h)
ij

)
z
(h)
i =

n∑
j=1

α
(h)
ij

(
hR
j W

(h)
V + gij �mi

)
.

(12)

Then we can accumulate the final explicit exploration rep-
resentation followed by an FFN operation (Vaswani et al.
2017):

zi = Concat
(
z
(1)
i , · · · , z(H)

i

)
rEi = FFN(LayerNorm (xi + zi)).

(13)

Finally, we aggregate the embedding from encoder as well as
the DCRI and DCRE into new representation for utterance
and schema:

(rEU , rES) = Split(rE)

hU = Bi-LSTM([hU , rIU , rEU ])

hS = Bi-LSTM([hS , rIS , rES ]).

(14)

Here, we consider that DCRE and DCRI establish the
schema linking from different perspectives: DCRE pays
more attention to the provided prior relationships via exact
or n-gram matching. Compared to that, DCRI focuses more
on semantic relations between utterance and schemas that
are not directly captured in surface-form matching.

Decoder
We use an LSTM decoder with attention to generate SQL
queries at time step k:

hD
k = LSTMD

(
[qk; ck] ,h

D
k−1
)
, (15)

where hD is the hidden state of the decoder and ck is the
context vector with the utterance and schema attention:

cU = Attn(hD,hU )

cS = Attn(hD,hS)

c = Concat(cU , cS)

(16)

We apply separate layers to score SQL keywords and col-
umn headers and finally use softmax to generate the output
probability distribution:

ok = tanh
([
hD
k ; ck

]
Wo

)
mSQL = okWSQL + bSQL

mcolumn = okWcolumnh
S

P (yk) = softmax
([
mSQL;mcolumn

]) (17)

In addition, we use query editing mechanism (Zhang et al.
2019) in the decoder progress to edit the previously gener-
ated query while incorporating the context of user utterances
and schemas.

Feature Enhanced Reranker During decoding, we use
beam search to generate the N-best list of SQL candidates.
The generated candidate set often contain the correct SQL,
but it is not the one with the highest probability. Specifically
we generate an N-best list using vanilla beam search and
rerank the generated responses, which has been validated in
other semantic parsing tasks (Yin and Neubig 2019). Fur-
thermore, we design a novel neural reranker module, which
integrates the knowledge of the external pretraining mod-
els and the task related hidden representation from Eq 14.
Suppose that the current expectation is x, the corresponding
prediction SQL of the model output is y′, and the current
task hidden vector is represented as

h′ = MaxPooling([hU ,hS ]). (18)

We take the last layer’s hidden state for the first token [CLS]
as the deep knowledge k by feeding the current utterance xi
together with history and prediction y′ to the BERT module:

[CLS], x1, [SEP], ..., [SEP], xi, [SEP], y
′. (19)

Based on that, we combine the task related representation
and deep knowledge for joint training:

P (B = 1 | x1,...,i, y′) = σ (Wtaskh
′ +Wknowledgek)

(20)
where B is the binary class label; σ(·) is the sigmoid func-
tion; Wtask and Wknowledge are learnable weights. In this
way, we can use the reranker module to reorder the gener-
ated candidate sets to improve the probability that the pre-
diction is ground truth but not at the top.

Experiment
Setup
Dataset. We evaluate the performance of the proposed
model on two large-scale benchmark datasets, i.e. , SParC
(Yu et al. 2019b) and CoSQL (Yu et al. 2019a). Table. 1 sum-
marizes the statistics of SParC and CoSQL. Both contain
200 complex databases in 138 different domains. Compared
with SParC, CoSQL has a larger vocabulary and signifi-
cantly more turns with frequently semantic changes, making
it a more challenging dataset.

Evaluation Metrics. Following (Yu et al. 2019b), we de-
compose the predicted SQL into clauses such SELECT,
WHERE, GROUP BY, and ORDER BY and compute scores
for each clause using set matching separately to avoid order-
ing issues. On both SParC and CoSQL, we use the two met-
rics for evaluation: Question match and Interaction match.
When all predicted SQL clauses are correct, the exact set
matching score is one for question match, and interaction
match requires that each predicted SQL in the interaction is
correct.

Implementation Details. We utilize PyTorch (Paszke
et al. 2019) to implement our proposed model. For the model
without BERT, we initialize word embedding using GloVe
(Pennington, Socher, and Manning 2014) and model param-
eters from a uniform distribution and set the hidden size as
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Dataset # sequence # user questions # databases # domain # tables Avg. len Vocab Avg. turns

SParC 4,298 12,726 200 138 1,020 8.1 3,794 3.0
CoSQL 3,007 15,498 200 138 1,020 11.2 9,585 5.2

Table 1: Comparison of the statistics of cross-domain context-dependent Text-to-SQL datasets.

Model
SParC CoSQL

Question Match. Interaction Match. Question Match. Interaction Match.
Dev Test Dev Test Dev Test Dev Test

SyntaxSQL-con 18.5 20.2 4.3 5.2 15.1 14.1 2.7 2.2
CD-Seq2Seq 21.9 23.2 8.1 7.5 13.8 13.9 2.1 2.6

EditSQL 33.0 - 16.4 - 22.2 - 5.8 -
RichContext 41.8 - 20.6 - 33.5 - 9.6 -

Ours 42.4 - 21.9 - 34.5 - 11.0 -

EditSQL + BERT 47.2 47.9 29.5 25.3 39.9 40.8 12.3 13.7
RichContext + BERT 52.6 - 29.9 - 41.0 - 14.0 -

Ours + BERT 54.1 55.8 (↑ 7.9) 35.2 30.8 (↑ 5.5) 45.7 46.8 (↑ 6.0) 19.5 17.0 (↑ 3.3)

Table 2: Performance of various methods over questions (question match) and interactions (interaction match) in SParC and
CoSQL.

300 for each LSTM layer. For the model with BERT, we use
Adam (Kingma and Ba 2015) to minimize the token level
cross-entropy loss and set the learning rate as 1e-3 on all
modules except for the BERT fine-turn stage, for which a
learning rate of 1e-5 is used instead. In particular, we use the
pretrained small uncased BERT model with the 768 hidden
size. For the reranker module, we first extract negative sam-
ples from the incorrect queries in the training set, and utilize
the downsampling strategy to deal with label imbalance to
make positive and negative samples balanced.

Reranker Details. As the generated SQL queries may not
conform to the SQL grammar, the reranker model input is
the utterance and generated SQL prediction, the aim is to
classificate the current SQL whether matches the current ut-
terance. The reranker leverage training data that extract from
the intermediate results during downstream model training
by BERT model. More specifically, after training the model
for a period of time, when the performance on the entire
training set is similar to that on the validation set, we extract
negative samples from the incorrect queries in each small
batch of beam in the training set, which ensure the distribu-
tion of candidates in the training set is similar to that in the
validation set. We found this helped us get the best rerank-
ing performance. For reranker training, we utilize the down
sampling strategy to deal with label imbalance by remov-
ing some negative examples to make positive and negative
samples balanced. By training the reranker in the training
set, the reranker module can decrease the matching scores of
inconsistent SQL queries, and increase the consistent ones,
improving the final results further in case that the correct
query is generated in the beam search. The reranking mod-
ule is trained after the main training model finishes, and is
used to post-process the output generated in the beam during

inference.

Compared Methods. We compare the proposed method
against the following state-of-the-art models:
• SyntaxSQL-con is modified from the original context-

independent SyntaxSQLNet (Yu et al. 2018a), which en-
codes the utterance and the associated SQL in interaction
history. It employs a column attention mechanism to com-
pute representations for the previous question and SQL.

• CD-Seq2Seq (Yu et al. 2019b) is based on sequence-to-
sequence modelling extended with the turn-level history
encoder proposed in (Suhr, Iyer, and Artzi 2018), which
modifies the database schema encoder, and takes the bag-
of-words representation for column headers as input to
perform SQL generation.

• EditSQL (Zhang et al. 2019) is an editing-based encoder-
decoder model, which utilizes the interaction history by
editing the previous predicted query to improve gener-
ation quality. Note that it also uses the implicit relation
exploration module based on general attention during the
encoding stage.

• RichContext (Liu et al. 2020) reports state-of-the-art per-
formance on the dev set of SParC and CoSQL and the
model is based on rich context modeling methods. We se-
lect their best performance to compare with ours.

Overall Performance
As shown in Table 2, we compare the performance of the
proposed model with other state-of-the-art models on the
SParC and CoSQL datasets. We observe that our method
outperforms all existing models on all evaluation metrics.
Our model achieves the performance of 54.1%/45.7% in
question match and 35.2%/19.5% in interaction match on
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Figure 3: Performance split by different difficulty levels (left) and different turns (right) on SParC.

Model
SParC CoSQL

Ques. Int. Que. Int.

DCRI 48.0 29.9 40.0 12.3
DCRE 48.3 30.2 40.6 13.0
DCRI + DCRE 51.1 31.3 41.5 14.0

+Gate-based Decay 51.6 31.9 42.7 15.4
+Schedule-based Decay 52.0 32.3 42.6 16.1

Reranker 53.7 34.6 45.0 18.6
Feature Enhanced Reranker 54.1 35.2 45.7 19.5

Table 3: Ablation study of proposed method over Ques.
(question match) and Int. (interaction match) in dev set.

the dev set, which is a strong model for the context-
independent cross-domain Text-to-SQL generation. We can
see that our proposed method outperforms the second pub-
lished best algorithm (EditSQL) on the SParC / CoSQL test
dataset by approximately 7.9%/5.5% in question match and
6.0%/3.3% in interaction match, presenting new state-of-
the-art results on benchmarks.

In order to distinguish the performance of models of dif-
ferent complexities, following (Yu et al. 2018b), we evalu-
ate the models on the dev dataset with four-levels of diffi-
culty: easy, medium, hard, extra hard. Table 3(left) shows
the comparison between our proposed model and EditSQL,
which demonstrates that our method is better than EditSQL.
In particular, in SparC extra hard type, we also achieve a sig-
nificant improvement. Furthermore, to understand how the
models perform as the interaction proceeds, Figure 3(right)
shows the performance split by turns on the SparC dev set.
As the conversation proceeds, it is becomes more difficult
to generate SQL using historical information, which leads
to a decrease on accuracy. It shows that although our model
is still affected by turns, in SParC, our accuracy rate at the
fourth turn is still 33%, which is close to that of the third
turn of the previous method.

Detailed Analysis
We investigate the impact of different components on the
performance. Specifically, we analyze the following three

components: First, when the relationship is established, two
methods are used, Dynamic Context Representation over
Implicit Relations (DCRI) and Dynamic Context Represen-
tation over Explicit Relations (DCRE). Here we perform
them without decay to understand the difference. Second,
two methods are used for memory decay: gate-based and
schedule-based. Third, two types of reranker models, with
or without task-related vectors, are further compared and we
show that the representation learned from the model is ben-
eficial to the discrimination of the reranker. As presented in
Table 3, we can conclude that each module in our proposed
method improve the performance of generation. It is worth
noting that the decay mechanism improves the interaction
match of CoSQL more obviously, we attribute this to the
more frequent switching of intentions in the CoSQL dataset.

Conclusions

This paper investigates context-dependent semantic parsing.
We present a dynamic graph framework that can effectively
model contextual utterances, tokens, database schemas, and
their complicated relations as the interaction with databases
proceeds. The framework employs dynamic memory de-
cay mechanisms to introduce inductive bias to construct
enriched contextual relation representation at both the ut-
terance and token level, rendering a flexible framework to
model different levels of context in the dynamic multi-turn
scenario. The proposed model achieves new state-of-the-art
performance on two large-scale benchmarks, the SParC and
CoSQL datasets.
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