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Abstract

As an interesting and challenging task, story ending gener-
ation aims at generating a reasonable and coherent ending
for a given story context. The key challenge of the task is
to comprehend the context sufficiently and capture the hid-
den logic information effectively, which has not been well
explored by most existing generative models. To tackle this
issue, we propose a context-aware Multi-level Graph Convo-
lutional Networks over Dependency Parse (MGCN-DP) trees
to capture dependency relations and context clues more effec-
tively. We utilize dependency parse trees to facilitate captur-
ing relations and events in the context implicitly, and Multi-
level Graph Convolutional Networks to update and deliver
the representation crossing levels to obtain richer contextual
information. Both automatic and manual evaluations show
that our MGCN-DP can achieve comparable performance
with state-of-the-art models. Our source code is available at
https://github.com/VISLANG-Lab/MLGCN-DP.

Introduction
Story ending generation (SEG) is an interesting and chal-
lenging task in machine comprehension and natural lan-
guage generation, which aims at completing the plot and
concluding a story ending given a context. A recently
proposed stories corpus named ROCStories (Mostafazadeh
et al. 2016a) provides a suitable dataset for SEG. The orig-
inal task is to select a correct story ending from two candi-
dates, while the variational task SEG is to generate a reason-
able ending. The latter is more challenging, because models
must “understand” the story context, and then generate rea-
sonable, coherent, and diverse endings according to the logic
relation and causality information.

Previous works (Li, Ding, and Liu 2018; Gupta
et al. 2019) are mainly based on Sequence-to-Sequence
(Seq2Seq) model (Luong, Pham, and Manning 2015). Be-
cause of generating a sentence at a stroke in a left-to-right
manner and training with Maximum Likelihood Estimate,
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they suffer from a well known issue of generating non-
coherent and generic plots. Very recently, Guan et al. pro-
pose a model that uses an incremental encoding approach
and conducts one hop reasoning over the ConceptNet graph
to augment the representation of words in the context (Guan,
Wang, and Huang 2019). Owing to incorporating external
commonsense knowledge, the content of generated endings
appears more abundant. In terms of coherence and reason-
ability, however, there is still a big gap between machines
and human. One reason is that the proposed incremental en-
coding approach can build relationship of words in adjacent
sentences incrementally, however, it cannot directly capture
information from non-adjacent sentences, especially long-
range sentences. The other possible reason is that an over
reliance on exteral commonsense knowledge beyond con-
text could lead to deviating from the main theme.

We consider clues hidden in the whole context are vi-
tal to high-quality ending generation, therefore it is neces-
sary to seek an approach to better grasp the long-range de-
pendency relations. Actually, there are many useful entities
(e.g., Tom, phone, biggest screen) and events (refer to a verb
or action here, e.g., bought, change) in the sentences (cf.
Figure 1), which are beneficial to reveal the logical relation-
ship hidden in the story context. Besides, we can find that
the key word phone has some relations with other sentences,
while the phrase biggest screen has a causal relationship
with the fourth sentence (biggest screen → pain to carry).
Furthermore, some sentences have causal relationships with
others, from which the context clue (bought phone →
got biggest screen→ be great look→ be pain carry→
change smaller one) can be inferred . To understand story
context adequately, models should try to capture relations
and events hidden in the input sentences.

Dependency trees have been proven to be effective in
extracting relations (Zhang, Qi, and Manning 2018; Guo,
Zhang, and Lu 2019) and events (McClosky, Surdeanu, and
Manning 2011) in text for the ability of capturing long-range
syntactic relations. In Figure 1, we obtain the dependency
relations of each sentence by the Stanford Syntactic Pars-
ing tool (De Marneffe et al. 2014), and select the words
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Figure 1: An example of SEG. The arcs with arrows represent the dependency relations between words. The abbreviations (e.g.,
dobj) are dependency relations. The numbers in red represent the degrees of the relations of corresponding words. We select
the top-2-degree words in each dependency parse tree to form a top dependency relation chain. The chain in blue denotes the
context clues analyzed by human. They look similar with each other.

of top-2-degree in each dependency tree to form a chain
by chronological order (bought phone → screen find
→ great look → pain carry → decided change one).
We observe that it is similar to the chain of the
context clue summarized by human (bought phone →
got biggest screen→ be great look→ be pain carry→
change smaller one). Intuitively, we consider that depen-
dency relations will facilitate the capture of context clues
and eventually benefit for reasonable story plot generating.

For the strong ability of aggregate associated informa-
tion from neighbor nodes, Graph Convolutional Networks
(GCN) (Kipf and Welling 2017) and its variants, e.g.,
attention-based GCN (Yang et al. 2018) have been widely
used for variety graph-based applications (Zhang, Qi, and
Manning 2018; Huang et al. 2020; Guo, Zhang, and Lu
2019). Motivated by aforementioned observations, we put
forward Multi-level Graph Convolutional Networks over de-
pendency parse (MGCN-DP) trees to construct the depen-
dency relations of input sentences. The key idea of our
model is to encode the dependency structures over the input
sentences with efficient graph convolution operations, then
extract relations and events implicitly to obtain relation- and
event-centric representations of the whole story context.

Our contributions can be summarized as follows:

• To grasp context information (including intra- and inter-
sentence information) sufficiently, we propose Multi-level
Graph Convolutional Networks to deliver representations
by crossing levels. Our model can get an enhanced con-
text representation which is conducive to the generation
of more logical and reasonable story endings.

• To the best of our knowledge, this is the first endeavor to
introduce dependency trees to the SEG task. By implic-
itly extracting relations and events, our model can cap-
ture logic relations and causality information hidden in
the story context to some extent.

• Experiments show that our model can generate reasonable
and coherent story endings, and achieve comparable per-
formance on both automatic and manual evaluations with

the state-of-the-art models. It also shows that injecting ex-
ternal symbolic representations could be helpful for SEG.

Related Work
Story Cloze Test (SCT) Mostafazadeh et al. define the
SCT task to select a correct ending from two candidates for
a given story (Mostafazadeh et al. 2016b). Previous methods
can be roughly categorized into two lines: Feature-based ap-
proaches (Schwartz et al. 2017; Chaturvedi, Peng, and Roth
2017) measure the coherence between candidates and the
given story context from aspects of topic and sentiment,
while neural models (Mostafazadeh et al. 2016b; Cai, Tu,
and Gimpel 2017; Peng, Chaturvedi, and Roth 2017; Chen,
Chen, and Yu 2019; Cui et al. 2020) learn embeddings for
the context and candidate endings, and select the right end-
ing by computing the embeddings’ similarity.

Story Generation Different from SCT, story generation
(SG) is more challenging to generate a reasonable and log-
ical self-consistent story plot. It can be classified into two
groups: the restricted SG and the open-ended SG. The for-
mer is to generate a content-related story conditioning on
various given contents, such as images(Huang et al. 2016),
news (Liu et al. 2020a), and short descriptions (Jain et al.
2017). The latter attempts to generate an open-ended story
with very limited leading information, such as a title (Yao
et al. 2019; Li et al. 2019) and a sentence (Xu et al. 2018;
Guan et al. 2020). A typical generation formulation is to
firstly generate intermediate representations, e.g., key words
(Yao et al. 2019), skeleton (Xu et al. 2018), events (Martin
et al. 2018), prompts (Fan, Lewis, and Dauphin 2018), and
characters (Liu et al. 2020b), then rewrite and enrich them
to generate complete stories.

Story Ending Generation SEG (Zhao et al. 2018) is a
specialization of SG. Specifically, a SEG model needs to
deeply understand context information firstly, then generates
a reasonable ending which accords with the logic thread of
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Figure 2: Illustration of the proposed multi-level graph convolutional networks over dependency parse trees for the SEG task.
The model is equipped with four interrelated GCNs to capture intra- and inter-sentence information. The dependency parsing is
used to construct the dependency relations between words. We use attention mechanism to weight each nodes and sum together
as a new node (e.g., h(1)

a , h(2)
a , h(3)

a ) for the first three level GCNs. The model delivers representations of the preceding sentences
to the last GCN. The final output HL is obtained and served as the input of the decoder.

given context. Li et al. introduce a Seq2Seq model with ad-
versarial training to generate reasonable and diversified end-
ings (Li, Ding, and Liu 2018). Guan et al. propose a model
using incremental encoding scheme and external structured
commonsense knowledge to generate story endings (Guan,
Wang, and Huang 2019). Wang et al. adopt a modified
Transformer to capture the contextual clues and a condi-
tioned variational autoencoder to improve the diversity and
coherence (Wang and Wan 2019). Other works attempt to
control sentiment (Peng et al. 2018; Luo et al. 2019) and
attributes (Tu et al. 2019) to obtain diversified endings.

We endeavor to solve the issue of SEG from a perspective
of neuro-symbolic. Specifically, we introduce dependency
trees to implicitly extract relations and events, which has
been proven effective in relation extraction (Zhang, Qi, and
Manning 2018; Guo, Zhang, and Lu 2019) and event ex-
traction (McClosky, Surdeanu, and Manning 2011; Björne
and Salakoski 2018) tasks. Meanwhile, we propose Multi-
level Graph Convolutional Networks to deliver relation- and
event-centric representations crossing sentences.

Model
Overview
The SEG task can be formulated as follows: given a
story context consisting of a sentence sequence X =

{X1, X2, · · · , Xµ}, where Xs = x
(s)
1 x

(s)
2 · · ·x

(s)
n contains

n words in the s-th sentence, the goal of SEG is to generate
a story ending Y related to the given context X .

Our MGCN-DP model is based on an encoder-decoder
architecture (cf. Figure 2). We first use Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) to
encode each input sentence and obtain representations of
words to construct fully connected graphs. We apply the
Standford Dependencies tool to parse dependency relations,
then remove some unrelated edges and obtain the sparse
graphs. We leverage an attention-based GCN (Yang et al.
2018) to update each node by aggregating information of
its neighbor nodes, e.g., the node “phone” at Leve1 1 in
Figure 2. Aiming at handling the four input sentences to
get enhanced inter-sentence representations, we devise a de-
livery mechanism to adjust GCNs of latter sentences self-
adaptively. Specifically, we apply an attention mechanism to
weight each node in the GCN of a sentence and sum them
together as a new node h(L)

a for the GCN of the next level. In
this way, the representation of the preceding sentences can
be delivered to the last GCN. By this multi-level GCN en-
coding over dependency trees, we can get more information
from the whole story context, which contains relation- and
event-centric representations, thus help to generate a more
reasonable and coherent ending.
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Representation of Intra-Sentence Information
Word Representation Given a s-th input sentence Xs =

x
(s)
1 x

(s)
2 · · ·x

(s)
n with n words, we represent the k-th word

x
(s)
k in s-th sentence by Glove embedding (Pennington,

Socher, and Manning 2014), following LSTM to obtain the
word representation h(s)

wk :

e
(s)
k = ew (x

(s)
k ), (1)

h
(s)
wk = LSTM(e

(s)
k ), (2)

where ew denotes a word embedding lookup table and e(s)
k is

the embedding vector of k-th word x(s)
k in the s-th sentence.

Fully-connected Graph Construction For s-th sentence
Xs = x

(s)
1 x

(s)
2 · · ·x

(s)
n , each word x(s)

k is a node and its node
feature is the corresponding word representation h(s)

wk. Each
edge represents a certain relation between two words. As
shown in Figure 3(a), by treating each word in a sentence
as a vertex, an intra-sentence graph Gs is constructed as fol-
lows:

Gs = (Vs, ξs), (3)

where Vs is the set of nodes and ξs is the set of edges con-
nected with these nodes.

Pruned Graph with Dependency Tree
Pruned Graph with Dependency Relations Irrelevant
relations between two words may bring noises. Therefore,
we need to remove some unrelated relations to reduce the
noises. By parsing the sentence, we obtain the dependency
relations between words (cf. Figure 1). According to depen-
dency relations, we remove some unrelated edges and obtain
a sparse graphGP , cf. Figure 3(b), which can be denoted as:

GP = (VP , ξP ), (4)

where VP is the set of nodes of the pruned graph and ξP is
the set of edges connected with these nodes of the pruned
graph. Then we perform the GCNs’ node aggregation and
updating on the sparse graph.

Aggregation and Updating of Nodes Following previous
studies (Yang et al. 2018; Huang et al. 2020), we use an
attention-based GCN to update the representations of inputs.

Given a graph with n nodes, each word in the sentence
Xs is a node. We represent the graph structure with a n ×
n adjacency matrix, where the relations between nodes are
reflected by a fully connected layer. For a target node i and
its neighbor nodes set N (i), the representations of node i
and node j ∈ N (i) are hwi and hwj , respectively. To obtain
the correlation scorewij between node i and node j, we learn
a fully connected layer over concatenated node features hwi
and hwj :

wij = wT0 σ (W0[hwi;hwj ] + b0) , (5)

a

Tom bought

phone

new

(a)

a

Tom bought

phone

new

(b)

(root)

(nsubj)

(dobj)

(det)(am
od) a

Tom bought

phone

new

(c)

(root)

(nsubj)

(det)(am
od)

Figure 3: (a) A fully-connected graph. (b) Remove the un-
related edges to get a sparse graph. (c) Ablation study: The
dependency relation dobj between bought and phone is re-
moved. (Will be analyzed in the ablation study section.)

where w0,W0, and b0 are trainable parameters, σ is the non-
linear activation function, and [hwi;hwj ] denotes the con-
catenation operation. We apply a softmax function over the
correlation score wij to obtain the weight αij :

αij =
exp(wij)∑

j∈N (i) exp(wij)
. (6)

The l-th representations of neighboring nodes h(l)
wj are

first transformed via a learned linear transformation layer
W1. Those transformed representations are gathered with
the weight αij followed by a non-linear function σ (e.g.,
ReLU). This propagation is denoted as:

h
(l+1)
wi = σ(h

(l)
wi +

∑
j∈N i

αij(W1h
(l)
wj + b1)), (7)

where W1 and b1 are trainable parameters. Following the
stacked l layer GCN, the output Hw of GCN is denoted as:

Hw = h
(l+1)
wi . (8)

Multi-level GCN and Information Delivery
Multi-level Representation We adopt a multi-level GCN
on sparse graphs to represent four sentences context. The
sparse graph GL can be denoted as:

GL = (VL, ξL), (9)

where GL is the L-th level GCN graph, VL is the set of the
L-th level GCN nodes and ξL is the set of the L-th level
GCN edges.

Information Delivery For the s-th sentence Xs with n
words, the representations of all words in s-th sentence are
[h(s)
w1 · · ·h

(s)
wn]. The node set VL in L-th level GCN is:

VL = [h
(s)
w1 · · ·h(s)

wn]. (10)

To set up information delivery between different level
GCN, we use attention mechanism to weight each node in
VL and sum them together as a new node h(L)

a :

β = softmax(W2VL + b2), (11)

h(L)
a =

n∑
L=1

βVL, (12)
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where W2 and b2 are trainable parameters.
For the (s+ 1)-th sentence Xs+1 consisting of m words,

the representations of all words in (s + 1)-th sentence are
[h(s+1)
w1 · · ·h(s+1)

wm ]. Then we combine [h(s+1)
w1 · · ·h(s+1)

wm ]
with h(L)

a as the nodes set V(L+1) of the (L + 1)-th level
GCN:

V(L+1) = [h
(s+1)
w1 · · ·h(s+1)

wm ;h(1)
a , · · · , h(L)

a ]. (13)
Given a graph with (m+ L) nodes, the (m+ L) ×

(m+ L) adjacency matrix is used to represent the graph
structureG(L+1). For a target node i and a neighboring node
j ∈ Ψ(i) in the (L + 1)-th level graph G(L+1), Ψ(i) is the
set of nodes neighboring with node i. The representations
of node i and node j are hLi and hLj , respectively. To ob-
tain the correlation score λij between node i and node j, we
use a connected layer to learn the correlation between node
features hLi and hLj :

λij = wT3 σ(W3[hLi;hLj ] + b3), (14)
where w3,W3, and b3 are trainable parameters, σ is the non-
linear activation function, and [hLi;hLj ] denotes the con-
catenation operation. We apply a softmax function over the
correlation score λij to obtain the weight φij :

φij =
exp(λij)∑

j∈Ψ(i) exp(λij)
. (15)

The l-th representations of neighboring nodes h(l)
Lj are first

transformed via a linear transformation layer W4. Those
transformed representations are gathered with the weight
φij , followed by a non-linear function σ. This propagation
process is denoted as:

h
(l+1)
Li = σ(h

(l)
Li +

∑
j∈ψ(i)

φij(W4h
(l)
Lj + b4)), (16)

where W4 and b4 are trainable parameters.
Following the stacked l layer GCN, the output of the en-

coder HL is denoted as:

HL = h
(l+1)
Li . (17)

Decoder
We utilize the decoder of Transformer (Vaswani et al. 2017)
to decoding. The inputs of Multi-Head Attention are Din,
HL, and HL. This process is denoted as:

D̃in = MultiHead(Din, HL, HL), (18)

Do = FFN(D̃in), (19)
where Din is input of decoder, FFN is two linear transfor-
mations with a ReLU activation in between, and Do is the
middle output of decoder.

To predict word probabilities and generate words, we use
a linear transformation layer and softmax function to con-
vert the output of decoder. At each time step t, the decoding
process is represented as :

P (yt|y < t,X) = softmax(W5Do + b5), (20)
whereW5 and b5 are trainable parameters, P (yt) is the prob-
ability distribution over vocabulary.

Experiments
Dataset
We evaluate our model on the ROCStories corpus
(Mostafazadeh et al. 2016a). The dataset contains 98,162
stories. We follow the work (Guan, Wang, and Huang 2019)
to divide the dataset into the training, validation, and test
set with 90,000 stories, 4,081 stories and 4,081 stories, re-
spectively. All methods are evaluated on the test set, and the
validation set could only be used for training purpose.

Baselines
We compare our model with the following models:
• Seq2Seq: A simple encoder-decoder model which con-

catenates four sentences to a long sentence with an atten-
tion mechanism (Luong, Pham, and Manning 2015).

• Transformer: The vanilla Transformer (Vaswani et al.
2017) is compared, which is an encoder-decoder model
with multi-head attention and feed forward networks.

• IE+MSA: A model which uses the incremental encoding
scheme and incorporate external knowledge for generat-
ing endings (Guan, Wang, and Huang 2019).

• T-CVAE: A Transformer-based conditional variational
autoencoder model (Wang and Wan 2019) for the story
completion task. We compare it with our model on SEG.

• GCN: To test our MGCN-DP, we also apply an attention-
based GCN (Yang et al. 2018) to SEG for a baseline. We
concatenate four sentences to a long sequence as the in-
put of GCN. By treating each word in the sequence as a
vertex, a fully-connected undirected graph is constructed.

• KE-GPT2: A knowledge-enhanced pre-training model
for SG based on GPT-2 (Guan et al. 2020). It is fine-tuned
with multi-task learning by distinguishing true or fake sto-
ries to capture causal and temporal dependencies between
sentences. To adapt it to the SEG task and generate story
endings, we give the first four sentences as inputs.

• Plan&Write: Yao et al. explore an open-domain SG task
given a title (topic) as input (Yao et al. 2019). We use the
static schema, which first plans a sequence of keywords,
then generates a story based on them. We adapt it to gen-
erate a story ending by leveraging the first four sentences
and the corresponding keywords which extracted by the
RAKE algorithm (Rose et al. 2010).

Experimental Settings
We conduct experiments of baselines on their released codes
without changing the best parameter settings. For the Trans-
former model, the head h of attention is 8, the level of the
Transformer blocks is 6. The dropout rate is 0.1, the batch
size is 64, and the learning rate is 0.005. The dimension of
word embedding is 300. For our model, the level of stacked
layer in GCN is 5, the learning rate is 0.005, the batch size
is 64, the head h of attention in decoder is 6, dk and dv are
64, the level of stacked layer of decoder is 2, the dropout
rate is 0.1. The GloVe.6B (Pennington, Socher, and Man-
ning 2014) is used as word embedding and the dimension is
300. We train the model for 20 epochs.
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Model B1% B2% Gram Logic
Seq2Seq 18.5 5.9 2.57 1.41

Transformer 17.4 6.0 2.54 1.62
GCN 17.6 6.2 2.62 1.70

IE+MSA 24.4 7.8 2.64 1.80
T-CVAE 24.3 7.7 2.58 1.71

Plan&Write 24.4 8.4 2.65 1.73
KE-GPT2* 26.5 9.4 2.65 1.92

MGCN-DP(ours) 24.6 8.6 2.67 1.86

Table 1: Automatic evaluation and human evaluation. In
each column, we bold / underline the best and the second
performance, respectively. The model with * is pretrained
on a large-scale corpus, along with greater demands on re-
sources and time.

Evaluation Metrics
Automatic Evaluation Metric We use BLEU (Papineni
et al. 2002) for our automatic evaluation. BLEU evaluates
n-gram overlap between a generated ending and a reference.
Following the work (Guan, Wang, and Huang 2019), we re-
port BLEUs with n = 1, 2 (i.e., B1, B2).

Human Evaluation Metric Grammaticality (Gram) and
logicality (Logic) are used for manual evaluation. Gram is
used to evaluate whether the generated story is fluent and
natural, while Logic to evaluate whether the generated story
is reasonable and coherent with the context. As a factor
closely related to the story plot, compared with Gram, Logic
is more important to evaluate the quality of the generated
ending sentence. For fair comparison, score 1/2/3 is applied
during annotation following (Wang and Wan 2019). 1 means
bad, 2 means okay and 3 means good. We randomly pick 100
story endings generated by the baselines and our model on
the test set, respectively, then distribute them to five well-
educated annotators and obtain the averaged scores.

Results and Analysis
Automatic Evaluation The results of the automatic eval-
uation are shown in Table 1. It can be seen that our MGCN-
DP model outperforms other non-pretrained baselines on
B1 and B2. More specifically, our model achieves an im-
provement of 6.1% / 7.2% / 7% / 0.2% / 0.3% / 0.2% over
the Seq2Seq / Transformer / GCN / IE+MSA / T-CVAE
/ Plan&Write model, respectively. As for B2, our model
outperforms the Seq2Seq / Transformer / GCN / IE+MSA
/ T-CVAE / Plan&Write model by 2.7% / 2.6% / 2.4% /
0.8% / 0.9% / 0.2%, respectively, and ranks second only to
KE-GPT2 (0.8% below). Owing to large-scale corpora and
large-scale knowledge bases used in the pretrained process,
the KE-GPT2 model indeed lead other models on B1 and B2
metrics by a big margin. Even so our model achieves good
scores by sufficiently capturing story contextual information
without external resources. In general, the results show that
the story ending generated by our model has comparatively
high overlaps with the reference ending.

Model B1% B2% Gram Logic
MGCN-DP 24.6 8.6 2.67 1.86

w/o DP 22.0 7.8 2.65 1.79
w/o ML 21.7 7.6 2.64 1.77

w/o DP, ML 17.6 6.2 2.62 1.70

Table 2: Ablation studies. DP denotes the dependency pars-
ing module and ML denotes the multi-level information de-
livery module. w/o means removing corresponding module
from the whole MGCN-DP model.

Relation Description B1% B2%
MGCN-DP full model 24.6 8.6
w/o nsubj nominal subject 23.7 7.5
w/o dobj direct object 23.7 7.5
w/o acl claussal modifier 23.7 7.5
w/o iobj indirect object 23.8 7.6
w/o dep dependent 23.8 7.6

w/o amod adjective modifier 23.8 7.7
w/o case pre/post-positions 23.9 7.8

w/o advmod adverbial modifier 23.9 7.9
w/o det determiner 24.0 8.0
w/o cop copula 24.0 8.1

w/o mark marker 24.1 8.1
w/o xcomp open clausal 24.2 8.2

Table 3: Ablation studies on dependency relations which ap-
pear frequently in the dataset.

Manual Evaluation The results of the human evaluation
are also shown in Table 1. We discover that all the models
have fairly good grammar scores. It shows that models can
learn grammar well. Our model exceeds Seq2Seq, Trans-
former, GCN, IE+MSA, T-CVAE, Plan&Write, KE-GPT2
on grammar by 5% / 6.5% / 2.5% / 1.5 %/ 4.5% / 1% / 1%,
respectively (Significance Test, all p-values < 0.001). Un-
like grammar scores, logicality scores differ with each other
remarkably, and the average score of them is far from full
mark of 3. This phenomenon also illustrates the challenge
of generating consistent story endings. Nevertheless our
model has higher scores than other non-pretrained baselines.
Specifically, our MGCN-DP model is significantly better
than Seq2Seq, Transformer, GCN, IE+MSA, T-CVAE, and
Plan&Write on logicality by 22.5% / 12% / 8% / 3% / 7.5%
/ 6.5%, respectively (all p-values < 0.001). On the Logic
metric, our model is closest to the KE-GPT2 which bene-
fits from the large-scale corpus. It indicates that dependency
parsing and MGCN-DP on context are really beneficial to
grasp the logic relations and causal clues. We will show
some cases and detailed analysis in case study section.

Ablation study To investigate the effects of the multi-
level information delivery module (ML) and the dependency
parsing module (DP) in the MGCN-DP model, we perform
ablation studies. The results are shown in Table 2. When re-
moving the DP module, the performance of our model drops
by 2.6% on B1, 0.8% on B2, 1% on Gram, and 3.5% on
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Case 1

Context

Denise was at a friend’s wedding. Her daughter
had come along with her. Denise’s daughter
wasn’t feeling well. Her daughter began to
feel worse after she ate at the reception.

Seq2Seq Denise was happy with her purchase.
Transformer Denise had to go to the hospital.
IE+MSA Denise was glad she had made her daughter

to the wedding.
T-CVAE Denise decided to never go to the wedding.
GCN Denise had to go to the hospital.
Plan&Write Denise’s daughter was very sad.
KE-GPT2 Denise was worried for her daughter.
MGCN-DP Denise had to go to the hospital with her daughter.
Gold EndingDenise took her daughter home before she could

get sick in party.
Case 2

Context

Tom bought a bag of chips. When he opened them
they were already stale. Tom called the number on
the bag. He complained and told them what
happened.

Seq2Seq Tom had to clean it up.
Transformer Tom had to throw them out.
IE+MSA Tom got a new one.
T-CVAE He had to go to the store to get a new batch.
GCN Tom had to throw them away.
Plan&Write Tom was furious.
KE-GPT2 They told him to buy another bag.
MGCN-DP They gave him a refund.
Gold EndingThey mailed him coupons to make up for it.

Table 4: Generated endings from different models. Bold
words denote the key entities, events, or key words in the
story. Improper words in ending are italic.

Logic. When removing the ML module, the performance of
our model drops by 2.9% on B1, 1% on B2, 1.5% on Gram,
and 4.5% on Logic. When removing the DP and ML mod-
ule together, the performance of our model drops by 7% on
B1, 2.4% on B2, 2.5% on Gram, and 8% on Logic. All of
these show that the DP module and ML module can help to
generate more reasonable and coherent endings.

To further explore the contribution of every dependency
relation, we conduct the ablation studies for the dependency
relations on automatic evaluation. We remove the edges of
a certain dependency relation (e.g., dobj between bought
and phone in Figure 3(b)) from the pruned sparse graph to
get the representation without the dobj (direct object) rela-
tion (cf. Figure 3(c)). As shown in Table 3, we just list a
part of commonly-used dependency relations parsed by the
Stanford dependency parsing tool and their corresponding
results on B1 and B2. The results show that, among all the
relations, dobj, nsubj, acl, iobj and dep make the great-
est contribution to the performance. More specifically, when
removing the nsubj / dobj / acl / iobj / dep relation, the
performance of our model drops by 0.9% / 0.9% / 0.9% /
0.8% / 0.8% on B1 and 1.1% / 1.1% / 1.0% / 1.0% / 1.0%

on B2, respectively. It is evident that the dependency pars-
ing exerts a measure of influence over the B1 and B2 scores.
In Figure 1, We can find that the dependency relations of
the words consisting of the top-2-degree chain are dobj of
bought phone, acl of screen find, xcomp of great look,
acl of pain carry, dobj of decided change one, respec-
tively, and most of them have high scores in Table3. The
results show, with extracting relations and events implicitly,
dependency trees can facilitate the capture of context clues
and benefit eventually for generating reasonable story plots.

Case Study We present some examples of generated story
endings in Table 4.

In Case 1, we discover that all eight endings generated
with good grammar. The Seq2Seq model misses the story
context and gets a completely illogical result. The Trans-
former and GCN get the same generic output. It sounds
reasonable, but does not provide any information about her
daughter. The IE+MSA outputs the ending with the con-
tent about Denise and her daughter, but it misses the con-
text clue feel worse and leads to unreasonable sentiment. A
possible explanation may be that an over reliance on com-
monsense knowledge (e.g. Wedding is happy) beyond the
context could lead to unreasonable generations. Compared
with the phrase wasn’t feeling well and feel worse, the gen-
erated ending by Plan&Write makes the plot barely devel-
oping. The main entities and events in input sentences are
Denise, friend’s wedding, daughter and ate, feel worse, re-
spectively. Our MGCN-DP understands the context clues ef-
fectively and generates a more reasonable ending, which is
even better than the gold ending.

In Case 2, to generate a reasonable and coherent ending,
SEG models should understand the clue bought chips →
already stale → call number → complained. To some
extent, our model captures this clue and generates a reason-
able ending: They gave him a refund. It is most semantically
similar to the gold ending. However, some baselines have
not generated a contextual ending, they generate the unre-
lated or less relevant ending (e.g., Seq2Seq), generic end-
ing (e.g., IE+MSA), or safe ending (e.g., Plan&Write). The
generated endings of Transformer, GCN, and T-CVAE are
acceptable, but compared with ones generated by KE-GPT2
and our MGCN-DP, they seem insipid for without the sub-
ject transformation and role-interaction. Furthermore, our
generation more conforms to the actual situation in compar-
ison with the one generated by KE-GPT2.

Conclusion
To improve the coherence and rationality of generated end-
ings of SEG task, we devise a multi-layer GCN model over
dependency trees to enhance the ability of capturing logic
relations and causal clues hidden in the whole story context.
We parse dependency relations of the input sentences to aid
the GCNs for grasping implicitly context information and
relations of intra- and inter-sentence. Experiments show that
our model achieves the comparable performance with the
state-of-the-art models. We shall explore the explicit reason-
ing and interpretability on SEG in the future.
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