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Abstract

Automatic evaluation for open-ended natural language gener-
ation tasks remains a challenge. We propose a learned evalu-
ation metric: Perception Score. It utilizes a pre-trained model
and considers context information for conditional generation.
Perception Score assigns a holistic score along with uncer-
tainty measurement. We conduct experiments on three open-
ended conditional generation tasks and two open-ended un-
conditional generation tasks. Perception Score achieves state-
of-the-art results on all the tasks consistently in terms of cor-
relation with human evaluation scores.

Introduction
With the recent advances in natural language generation
(NLG) (Radford et al. 2019; Vaswani et al. 2017), automatic
evaluation has drawn more attention from the research com-
munity. However, current automatic evaluation metrics often
have limitations in measuring the actual generation quality.
In contrast, human evaluation is considered more reliable
than the automatic evaluation metrics, but it is expensive and
time-consuming, especially for the generation tasks that re-
quire extensive domain expertise (Celikyilmaz, Clark, and
Gao 2020). Therefore, it is important to have an evaluation
metric that provides an acceptable proxy for quality and is
relatively affordable.

N-gram overlapping such as BLEU (Papineni et al. 2002)
and ROUGE (Lin 2004) are the most widely used metrics
across NLG tasks. However, these metrics only consider
word-form variation and often fail to capture the deeper se-
mantic meaning. Thus, these metrics usually have a low cor-
relation with human judgment on open-ended NLG tasks
(Lowe et al. 2017; Zhou and Xu 2020; Cui et al. 2018; Cha-
ganty, Mussmann, and Liang 2018).

Recently, various metrics have also been proposed to mea-
sure the similarity between the references and the genera-
tions beyond the lexical level. BERTScore (Zhang* et al.
2020) and MoverScore (Zhao et al. 2019) are proposed to
use the contextual embedding from a large pre-trained neu-
ral model to measure the semantic similarity. BLEURT (Sel-
lam, Das, and Parikh 2020) mixes various existing metrics to
improve the robustness. While these metrics obtain a good
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Context of Conversation
Speaker A: I usually drink soda or milk in the morning.
Speaker B: Cool, what do you want today?
Model Response
I prefer the latter this morning.
Reference Response
I would like some milk today.
Context of Story
I tried going to the park the other day. The weather
seemed nice enough for a walk. Within minutes of
getting there I started sneezing. My eyes were watery
and it was hard to breathe.
Model Generated Ending
My allergies were too bad and I had to go back home.
Reference Ending
I took my allergy pill and felt better afterwards.

Figure 1: Demonstrations of the importance of incorporat-
ing context into sentence quality evaluation process. First
example: similar semantics but different surface forms. Sec-
ond example: different semantics but both reasonable.

result on machine translation tasks, they may have a less sat-
isfactory performance in open-ended natural language gen-
eration tasks because a sentence could be of high quality but
different from the given reference in semantic level.

Another problem in current metrics is that they usually do
not incorporate context information into the evaluation pro-
cess (Celikyilmaz, Clark, and Gao 2020). The context may
be important when evaluating a generation model’s quality
in open-ended natural language generation tasks, as exem-
plified in Figure 1. First, the semantic meaning of a sentence
could be context-dependent. Taking context into considera-
tion would lead to a more accurate similarity measurement
between the generated sentence and the reference one. Sec-
ondly, there can exist multiple valid target sentences in open-
ended generation tasks given the same context. Therefore
previous metrics with only one reference sentence may lead
to misjudgment of other reasonable endings.

We propose Perception Score, an automatic evaluation
metric for open-ended text generation tasks. Perception
Score is a learned metric that measures the overall quality
of a generative model via assigning a single holistic score
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based on the distribution difference between the generations
and the references. The overall evaluation process contains
three steps. First, we incorporate context into the generated
sentence and the reference one to get a more comprehensive
textual representation. Then it utilizes a pre-trained neural
language model to distinguish between each generated sen-
tence and its corresponding reference sentence. Secondly, it
calculates the data uncertainty and model uncertainty sep-
arately and presents a total uncertainty estimation for each
sample. Finally, each sample is weighted with its uncertainty
to compute the overall score. Thus, Perception Score pro-
vides direct observation of the generation model quality by
comparing the generated sentences and the reference ones.

We validate Perception Score on five tasks, including
three conditional generation tasks, i.e., DailyDialog, ROC-
Stories and Large Movie Review Conditional, and two un-
conditional tasks, i.e., Large Movie Review Unconditional
and COCO Image Captions. The experiments demonstrate
that our method has a higher correlation than the previous
automatic evaluation metrics such as BLEU, BERTScore,
and BLEURT. Moreover, Perception Score shows strong ro-
bustness when evaluating the quality of human-written end-
ings on the ROCStories dataset.

Related Work
Text evaluation is an essential topic in natural language gen-
eration (NLG). Researchers have proposed different types of
automatic evaluation metrics to facilitate the evaluation and
the development of NLG models.
N -gram matching is the most used evaluation method in

the NLG task. BLEU is a commonly used metric via mea-
suring the weighted geometric mean of n-gram precision in
various conditional generation tasks, such as machine trans-
lation. In unconditional generation tasks such as in COCO
Image Captions task, where a generated sentence does not
have a fixed reference sentence, BLEU utilizes all samples
in the dataset as references for each generated sentence. ME-
TEOR measures sentence quality based on the harmonic
mean of the unigram precision and recall. Some variants of
METEOR also consider surface forms, stemmed forms, and
meanings. ROUGE (Lin 2004) calculates n-gram recall in
text summarization task. However, these n-gram matching
metrics only consider local consistency and do not consider
the sentence’s overall grammaticality or sentence meaning.

Perplexity is another commonly used metric in open-
ended generation tasks such as chit-chat. It measures the
probability distribution in which a generative model pre-
dicts the reference sentence. However, it does not directly
reflect the generation sentence quality (Celikyilmaz, Clark,
and Gao 2020).

Text embedding based metrics are proposed in recent
researches. FED (de Masson d'Autume et al. 2019) com-
putes the Frechet distance (Semeniuta, Severyn, and Gelly
2018) via utilizing the embeddings trained from a Univer-
sal Sentence Encoder (Cer et al. 2018). However, it can not
accurately evaluate a generative model with a large temper-
ature (Cai et al. 2020). BERTScore (Zhang* et al. 2020)
utilizes contextual embeddings in a large pre-trained neu-
ral model for each token, then applies greedy matching to

maximize the cosine similarity between references and can-
didates. MoverScore (Zhao et al. 2019) combines the con-
textual embeddings from a pre-trained model with Word
Mover’s Distance to evaluate text generation. These met-
ric utilizes large pre-trained models to evaluate the semantic
similarity between the references and candidates. However,
a generated sentence could be different from the reference
while still have high-quality.

Learned metrics are also proposed to evaluate sentence
quality beyond word surface level. Blend (Ma et al. 2017)
uses an SVM model to combine different existing evalu-
ation metrics. RUSE (Shimanaka, Kajiwara, and Komachi
2018) evaluates machine translation by training sentence
embeddings on data obtained in other tasks. Cui et al. (2018)
trains a neural network conditioning on image to distinguish
between human and machine-generated captions. In more
recent works, BLEURT utilizes a BERT model fine-tuned
on various automatic metrics to evaluate the generated sen-
tence’s quality. Zhou and Xu (2020) proposes to compare a
pair of generated sentences by fine-tuning BERT.

Another popular research trend is to train an automatic
metric to calibrate automatic evaluation metrics and human
judgments. HUSE (Hashimoto, Zhang, and Liang 2019)
connects statistical evaluation with the human evaluation to
evaluate summarization and chit-chat dialogue. Building a
user simulator (Shi et al. 2019) could also be a potential di-
rection. Lowe et al. (2017) trains an evaluation model based
on large human judgment to score dialog response. How-
ever, these methods require massive human annotation as
supervision and risk poor generalization to new domains.

Method
The evaluation process of Perception Score contains three
steps. First, a Perception Model will learn to assign a
sample-level Perception Score based on a generated sen-
tence’s overall quality. Then we calculate the uncertainty
for the sample-level Perception Score. Finally, we aggregate
each sample with its corresponding uncertainty and get the
system-level Perception Score for the generation model.

Sample-Level Perception Score
For a generation system, denote its generations on the
dataset as G = 〈x̂1, . . . , x̂n〉, where x̂i is the generation for
i-th sample in the dataset, and denote the corresponding ref-
erence as R = 〈x1, . . . , xn〉. An automatic metric evaluates
a generation system by comparing G with R.

The perception of realness usually includes various crite-
ria, and one perspective does not guarantee the overall qual-
ity. However, previous metrics usually focus on the simi-
larity on a specific aspect between the generated sentence
and the reference ones. For example, BLEU focuses on word
surface overlapping, and BERTScore focuses on token-level
semantic similarity. We define Perception Score as a func-
tion δ that perceives the realness of the generation. Since
standard of realness changes across NLG tasks, in contrast
to the static evaluation metrics, Perception Score should be
learned to fit various NLG tasks.

We define this realness by aggregating the inter-distances
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Figure 2: The main structure of Perception Score. We enhance the representation by incorporating context. A Perception Model
with strong understanding ability learns the difference between a generated sentence and the corresponding reference sentence.
Then we calculate data uncertainty and Perception Model uncertainty.

Figure 3: Common evaluation metrics (left) do not consider
context information, Perception Score (right) takes context
into consideration and therefore the semantic meaning is
more comprehensive.

between every pair of samples. In mathematics terms, such
realness measurement is defined as:

δθ = argmax
θ

Ex̂∼PG,x∼PR
[δθ(x̂, x)] (1)

As exemplified in Figure 1, the semantic meaning of
the generation is often context-dependent, we incorporate
context information into G and R to get a more com-
prehensive semantic representation, as in Figure 3. We
now have G+ as 〈{c1, x̂1}, . . . , {cn, x̂n}〉, and have R+ as
〈{c1, x1}, . . . , {cn, xn}〉, where ci is the context of i-th sam-
ple in the dataset.

Note that Eq 1 can be viewed as one form of Earth
Mover’s Distance (EMD). The goal of Perception Score is to
compute a reasonable and efficient approximation of EMD.
For Earth-Movers’ Distance, we have

W (PG+ ,PR+) = inf
γ∈

∏
(PG+ ,PR+ )

E(x,x̂)∼γ [||x− x̂||] (2)

where
∏
(PG+ ,PR+) denotes the set of all joints distribu-

tions. γ indicates how much “mass” must be transported

from x̂ to x in order to transform the distribution PG+ to the
distribution PR+ . The EM distance is the optimal transport
plan.

Equation 2 is intractable due to the infinite possibility
of the joint distribution. Following Arjovsky, Chintala, and
Bottou (2017), we convert the formula by using the supre-
mum over the 1-Lipschitz functions.

W (PG+ ,PR+) = sup
|f |L≤1

Ex∼PR+ [f(x)]− Ex̂∼PG+ [f(x̂)]

(3)
Eq. 3 is equivalent to optimize the following problem:

W (PG+ ,PR+) = max
θ

Ex̂∼PG+ ,x∼PR+ [fθ(x)−fθ(x̂)] (4)

with a gradient penalty loss to fulfill the Lipschitz con-
strain:

LGP = E
x̂∼PG+ ,x∼PR+

[(||∇x̂,xD(x̂, x)||2 − 1)2] (5)

However, directly optimizing Eq. 4 is problematic in text
space. Unlike in images where the resolution is fixed at the
beginning, In natural language processing, the inputs are dis-
crete and of varied lengths. Then there exists a much larger
space for the possible generated sequences than the actual
valid sequences. To avoid divergence , we bound the maxi-
mum earth-mover distance to be 1 by normalizing the out-
put. We denote the output of the Perception model of refer-
ence sample and generation sample as T (x) and T (x̂), l1 as
linear forward layers, then we have fθ(x) as Pgenerated and
fθ(x̂) as Preference,

Pgenerated = fθ(x̂) =
el1(T (x̂))

el1(T (x̂)) + el1(T (x))
(6)

and
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Preference = fθ(x) =
el1(T (x))

el1(T (x̂)) + el1(T (x))
(7)

Optimizing Preference is equivalent to optimizing EMD dis-
tance in Eq. 4. The Perception Model learns the difference
of a generated sentence and its corresponding reference sen-
tence in the training set, and evaluate the generation model
quality on the test set. While in a general classification task
where a more powerful model usually leads to higher accu-
racy, in our evaluation process, a powerful model leads to
a more accurate approximation of the EMD between gener-
ated sentences and reference sentences. Please refer to ap-
pendix for more details.

Sample-Level Perception Score Uncertainty
To reflect different samples’ influence on the final system-
level Perception score, we also calculate each sample’s un-
certainty and use them as weights during score aggregation.
We utilize both data uncertainty and model uncertainty in
Perception Score evaluation process.

Following Gal and Ghahramani (2016), we use the vari-
ance of the prediction under different dropout settings to
measure model uncertainty of the Perception Model. We use
the variance of these results as the measure of the model un-
certainty. Whenm→ 1, Perception Score is confident about
its prediction.

m = 1−Var(Preference) (8)

As for data uncertainty, following DeVries and Taylor
(2018), we use additional fully-connected layers l2 to get
the confidence degree for the Perception Score and use a
sigmoid function to constrain uncertainty between 0–1.

c = sigmoid(l2(T (x̂)+T (x))). x̂ ∈ PG+ , x ∈ PR+ (9)

Then the optimization objective is adjusted by interpolat-
ing between the original Perception Score and the data un-
certainty:

p′ = c · Preference + (1− c)y. (10)

where the y is the target distribution.
Instead of optimizing Preference in 7, we optimize p′:

Lt = −
M∑
i=1

log(p′i). (11)

As suggested by DeVries and Taylor (2018), we utilize an
extra regularizer to prevent the network from minimizing the
loss by always choosing data uncertainty c as 0.

Lc = − log(c). (12)

We simply add data uncertainty and model uncertainty to
form the final uncertainty for each sample.

The final loss is the weighted sum of the losses we men-
tioned:

L = Lt + λLc + βLGP . (13)
The tuning of λ and β is identical in Arjovsky, Chintala, and
Bottou (2017) and DeVries and Taylor (2018). Please check
appendix for the hyper-parameter tuning details.

System-Level Perception Score
During the test time, as introduced before, we weight each
generated sample with its corresponding data uncertainty
and model uncertainty. Then the Perception Score for G is:

Psys =
n∑
i=1

wi ∗ P igenerated (14)

where w is calculated by model uncertainty m and data un-
certainty c.

wi =
ci +mi∑n
k=1 ck +mk

(15)

Higher Psys means higher generation system quality.
When Psys is around 0.5, meaning the Perception Model
considers the generated sentences and the references ones
have the similar quality.

Experiment Setting
We evaluate Perception Score in three open-ended condi-
tional generation and two open-ended unconditional gener-
ation tasks. We use RoBERTabase and RoBERTalarge as the
Perception Model in all the experiments. We choose the
various transformer-based generative models with different
training hyper-parameter choices to be evaluated by Per-
ception Score. For baseline metrics, we consider classical
metrics including BLEU (Papineni et al. 2002) and perplex-
ity, and recently proposed state-of-the-art metrics includ-
ing Comparator Evaluator (Zhou and Xu 2020), BERTScore
(Zhang* et al. 2020), MoverScore (Zhao et al. 2019), and
BLEURT (Sellam, Das, and Parikh 2020).

Conditional Generation
We use DailyDialog(Li et al. 2017) dataset, ROCStories-
dataset (Mostafazadeh et al. 2016) and IMDB review con-
ditional dataset. Large Movie Review Conditional dataset
comes from Large Movie Review Dataset v1.0 (Maas et al.
2011). For each review in the Large Movie Review Dataset,
we set the last sentence as the review ending and the remain-
ing text as context. The purpose of ROCStories is to gen-
erate an open-ended story ending for a four-sentence short
context. The purpose of Large Movie Review Unconditional
is to finish the review based on a movie review context.
The purpose of DailyDialog is to generate an appropriate
response based on dialog history. In these tasks, Perception
Score is expected to assign higher scores to high quality gen-
erations.

Unconditional Generation
For unconditional generation task, we use COCO Image
Captionsdataset (Chen et al. 2015) and IMDB review uncon-
ditional dataset. Large Movie Review Unconditional dataset
comes from Large Movie Review Dataset v1.0 (Chen et al.
2015). The purpose of Large Movie Review Conditional is
to generate an original and high-quality movie, and the pur-
pose of COCO Image Captions is to generate high-quality
image caption unconditionally. Unlike in conditional gen-
eration, there is no fixed reference for a system generation.
Other metrics such as BLEU need to set all text in the dataset
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Task Type Dataset Name Train Samples Dev Samples Test Samples

Conditional
DailyDialog 11118 1000 1000
ROCStories 98,161 1,871 1,871

Large Movie Review Conditional 21730 17366 4343

Unconditional COCO Image Captions 10,000 - 10,000
Large Movie Review Unconditional 22146 17696 4429

Table 1: Dataset statistics of five open-ended generation tasks.

as references. However, since Perception Score scores based
on how much the generation fits the task and is not limited to
word-surface or semantic level similarity, a few references
would be enough for Perception Score to measure a gen-
eration. In the experiment, we use four references for each
generation and present the average Perception Score. Please
refer to appendix for the details about the unconditional gen-
eration datasets.

Training Process
Unless specified otherwise, all experiments contain three
steps: text generating (unconditional or conditionally, de-
pending on the task), training two separate Perception Mod-
els for the two generation models to be compared, compar-
ing Psys of two generation model. We experiment with two
versions of Perception Model, RoBERTabase (12 layers, 768
hidden units, 12 heads) and RoBERTalarge (24 layers, 1024
hidden units, 16 heads). We use batch size 32, learning rate
between 1e-5–5e-5 with AdamW optimizer. We run the eval-
uation on the validation set and store the checkpoint that per-
forms best. The report results are based on the test set.

Human Evaluation Procedure
The performance of an evaluation metric is usually mea-
sured by its correlation with the human judgment (Ce-
likyilmaz, Clark, and Gao 2020). Following previous work
(Zhang* et al. 2020; Zhao et al. 2019), we use Turing
score M1 as the human judgment in our experiments. Tur-
ing score M1 is the percentage of a model’s generations that
are evaluated as better or equal to the references. We com-
pare with various evaluation metrics including: BLEU, per-
plexity, Comparator Evaluator, BERTScore, MoverScore,
BLEURT.

We calculate M1 scores for each generation model on
each open-ended generation task. For each sample, 10 Ama-
zon Mechanical Turk (also known as Turkers) with English
language proficiency will choose the better ending between
one generated ending and one ground truth reference, or they
answer “Can not decide”.

Results
We introduce the experimental results in this section.

Correlation with Human Judgment
A high-quality automatic metric should have a high corre-
lation with human judgment. We evaluate the correlation of
the tested evaluation metrics on generative models.

Conditional Generation Tasks. As shown in Table 2,
Perception Score has the highest correlation with human
judgment among all metrics across all three conditional gen-
eration tasks. The popular n-gram metric BLEU does not
even show a moderate correlation with human judgment,
which is consistent with the results in previous works (Lowe
et al. 2017; Zhang* et al. 2020). We find that BLEU score
suffers from a low word-level overlap in these open-ended
generation tasks. Besides, the overlap between candidates
and references constitutes a considerable ratio of less infor-
mative words such as pronouns and be verb. Therefore, the
word-level overlap can not guarantee high quality of a gen-
erated sentence. Although perplexity has a lower correlation
than Perception Score, it still achieves comparable results
with other neural model based metrics, especially in Daily-
Dialog. However, since perplexity calculates the probability
distribution of the reference sentence, it can not directly re-
flect the sentence quality under a specific decoding strategy.

Perception Score outperforms other metrics that utilize
a pre-trained model by a large margin. We test Perception
Score, BERTScore, MoverScore and BLEURT for both of a
base size (12 layers) and of a large size (24 layers). Note that
Perception Score of a base version outperforms BERTScore
and MoverScore of a large version across all three condi-
tional generation tasks.

Unconditional Generation Tasks. Perception Score out-
performs all baseline metrics by a large margin. Since there
is no corresponding reference for each generation in uncon-
ditional generation tasks, we calculate BLEU by utilizing all
samples in the dataset as references following previous re-
searchers. However, BLEU only achieves a low correlation
with human judgments. Besides, BERTScore, MoverScore
and BLEURT are designed for conditional generation tasks
and require a fixed reference sentence for each generated
sentence, therefore they can not be applied to unconditional
generation tasks. Meanwhile, Perception Score can be ap-
plied to unconditional generation tasks because it only re-
quires one reference sentence for each generated sentence to
calculate the realness.

Besides, we notice that in Large Movie Review Uncondi-
tional, no metric produces a moderate correlation with hu-
man judgments. Generated reviews in the Large Movie Re-
view Unconditional are usually of longer length and con-
tain between 50–200 words. Furthermore, we found that
all metrics have a higher correlation with a review of less
text length. However, our method still outperforms all other
baseline metrics.
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Type Metrics DailyDialog RocStory LMRC CIC LMRU

Metrics that do not
utilizes a pre-trained model

BLEU-1 0.102 0.195 0.386 0.504 0.119
BLEU-2 -0.081 0.491 0.316 0.093 0.091
BLEU-3 -0.159 0.432 -0.485 0.116 0.152
BLEU-4 0.107 0.355 -0.390 0.052 0.173

perplexity 0.496 0.638 0.419 0.494 0.128

Metrics that utilize
a pre-trained model

Comparator Evaluator 0.364 0.331 0.387 0.251 0.176
BERTScore (base) 0.329 0.290 0.454 - -
BERTScore (large) 0.371 0.282 0.474 - -
MoverScore (base) 0.391 0.313 0.467 - -
MoverScore (large) 0.411 0.328 0.487 - -

BLEURT (base) 0.415 0.513 0.467 - -
BLEURT (large) 0.455 0.529 0.491 - -

Perception Score (base) 0.471 0.671 0.488 0.563 0.231
Perception Score (large) 0.559 0.692 0.494 0.578 0.249

Table 2: Correlation with human judgment. LMRC is short for Large Movie Review Conditional dataset; CIC is short COCO
Image Captions dataset; LMRU is short for Large Movie Review Unconditional dataset. Perception Score outperforms other
metrics by a large margin in all four tasks.

Ablation Study
We conduct an ablation study on ROCStories and COCO
Image Captions to study the influence of different compo-
nents. Table 4 presents the results. It shows that both data
uncertainty and model uncertainty improve the correlation.
Besides, data uncertainty contributes more to the evalua-
tion performance than the model uncertainty. Note Percep-
tion Score still outperforms other metrics without using un-
certainty to re-weight each generation sample. Besides, we
find that incorporating context is necessary when Perception
Score is used in conditional generation tasks.

Error Analysis
We describe the errors in DailyDialog dataset and Large
Movie Review Unconditional dataset. We notice the perfor-
mance on Large Movie Review Conditional is not compa-
rable with that on other tasks. We randomly sampled 30
generated movie reviews with a high Perception Score but
with low human scores, and 30 generated responses with a
low Perception Score but with high human scores. We find
these generated reviews have longer text lengths than other
generated reviews. We suspect that evaluating longer review
would require better understanding ability. In addition, some
reviews contain common-sense mistakes but are still scored
relative high by Perception Score. We use the same sampling
method on DailyDialog and obtaine 60 generated responses.
We find 78.3% of them are with longer dialog context. This
is consistent with the fact we found on Large Movie Review
Unconditional. Besides, the context in these samples usually
consists of more turns. This suggests that Perception Score
has a better evaluation performance on dialogs with fewer
turns.

Robustness Analysis
We test if Perception Score is robust to the variation of the
text. We suspect that the model learns the implicit standards

of a qualified generation during training. To verify the as-
sumption, we first created four kinds of story endings based
on the test set of the ROCStories dataset, and then evaluate
these endings with various evaluation metrics. The created
endings types are as following: 1) Human-written ending
(HWE). Given the story context, Turkers created a reason-
able story ending. This is used to test metric performance
for a high-quality generation. 2) Lexical different human-
written ending (LDHWE). Given the story context and the
original story ending, Turkers created a reasonable story
ending while avoiding using words from the original one. 3)
Human-written ending with better quality (HWEBQ). Given
the story context and the story ending reference, Turkers cre-
ated a story ending that is of better quality than the original
reference. To reduce the bias, another group of Turkers will
make sure the created endings have better quality than the
original ones. 4) Adversarial endings (AE). Given the con-
text and the reference, Turkers modify the original ending
as little as possible to create an unreasonable story ending.
Figure 4 shows one example of created story endings. We
randomly select 100 stories from the test set of ROCStories,
and 100 Turkers create these four kinds of endings.

The evaluation results of various metrics are shown in Ta-
ble 3. We also include the evaluation metrics’ scores for
the model generated endings (MGE) in the second col-
umn. Since BERTScore has a small scale between 0.8–
1.0, MoverScore could give a negative score, and BLEURT
scores range from a negative number to more than 1.0, we
re-scale these three metrics’s scores to between 0.0–1.0 for
readability.

As is shown in the third column, we find that all the
baseline metrics have difficulty in recognizing the quality of
the good story endings. Since all other metrics are measur-
ing similarity between sentences in word or semantic level,
they fail to fairly evaluate a good story ending that has lit-
tle similarity with the given reference, which is a common
scenario in open-ended generation tasks. Meanwhile, Per-
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Metric MGE HWE LDHWE HWEBQ AE

BLEU-1 0.1551 0.1348 0.1406 0.1612 0.6816
BLEU-2 0.0468 0.0359 0.0309 0.0514 0.5809
BLEU-3 0.0142 0.0125 0.0104 0.0168 0.4411
BLEU-4 0.0052 0.0054 0.0038 0.0074 0.3014

BERTScore (base) 0.4223 0.3631 0.3742 0.3974 0.7586
MoverScore (base) 0.2439 0.2220 0.2359 0.2510 0.5935

BLEURT (base) 0.4785 0.4847 0.4768 0.5007 0.6458
Perception Score (base) 0.1115 0.4817 0.6001 0.7845 0.3650

Table 3: Robustness analysis results on ROCStories dataset. MGE is short for model generated ending; HWE is short for Human
written ending; LDHWE is short for lexical different human written ending; HWEBQ is short for human writing ending with
better quality; AE is short for Adversarial endings.

Story Context
Feliciano went olive picking with his grandmother. While they
picked, she told him stories of his ancestors. Before he realized
it, the sun was going down. They took the olives home and ate
them together.
Original Reference Ending
Feliciano was happy about his nice day.
Human Written Ending with Better Quality
Now whenever Feliciano eats olives, he thinks of his
grandmother and the stories of his ancestors.
Human Written Ending
Feliciano enjoys the time he spent with his grandmother.
Lexical Different Human Written Ending
Felicoano would never forget that great experience.
Adversarial Ending
Feliciano was upset about his day.

Figure 4: Turker created ending example used in robustness
analysis.

ception Score is around 0.5, correctly showing the created
endings have similar quality with the original reference end-
ings. In the LDHWE column, we find the results are simi-
lar to that in the HWE column. It shows that whether Turk-
ers are intended to write a different ending than the origi-
nal reference, the overall wording and semantic of created
ending is different than the original one. It matches the as-
sumption that there could be many ground truth references
given one context in open-ended natural language genera-
tion tasks, and using similarity-based metrics with limited
references will inevitably lead to quality misjudgment. In
the HWEBQ column, although each baseline metric shows
slightly higher scores than MGE, the value difference can
not reflect true quality difference. For example, BLEU-1
only increases 0.0061. Meanwhile, our Perception Score
better reflects the quality difference. We suspect that the re-
sults reflect the great generalizability of Perception Score.
In the AE column, all other baselines show a significant
boost and give high scores for the unreasonable endings.
Meanwhile Perception Score for these endings are much less
than 0.5, which shows adversarial endings are much worse
than the orignal endings. These results show that Percep-
tion Score better captures the overall quality of adversarial

RocStory CIC

Perception Score (base) 0.671 0.563
w/o model uncertainty 0.653 0.551
w/o data uncertainty 0.636 0.538

w/o context 0.251 -

Table 4: Ablation study of Perception Score. CIC is short for
COCO Image Captions dataset. Since COCO Image Cap-
tions is an unconditional generation task, it is not applicable
for w/o context option. p-value<0.001.

endings than other metrics. It also shows taking context into
consideration renders better sentence quality judgment.

Discussion
Perception Model is an essential part in our proposed met-
ric. Our results shows Perception Model resolves some of
the limitations of the popular automatic evaluation metrics.
However, there is no one hyper-parameter configuration of
Perception Model that applies to all tasks. It is important
for the users to be aware that like all other learned metrics,
Perception Model under different configurations and tuning
processes will result in different performance. What’s more,
although all five generation tasks in this paper are based on
English, Perception Score is applicable to other languages
after replacing the Perception Model to a pre-trained model
that matches the target language.

Conclusion
We propose Perception Score, a learned metric for open-
ended natural language generation tasks. Perception Score
incorporates context information to get a more comprehen-
sive textual representation. Perception Score perceives the
realness of the generation against the gold reference through
distinguishing a generated sentence from the real sentence.
It shows superiority than various metrics on both condi-
tional generation tasks and unconditional generation tasks.
Besides, Perception Score is also more robust than popular
metrics. For future work, we look forward to extending the
Perception Model with zero-shot or few-shot learning.

12908



References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. arXiv preprint arXiv:1701.07875 .
Cai, P.; Chen, X.; Jin, P.; Wang, H.; and Li, T. 2020. Distri-
butional Discrepancy: A Metric for Unconditional Text Gen-
eration.
Celikyilmaz, A.; Clark, E.; and Gao, J. 2020. Eval-
uation of Text Generation: A Survey. arXiv preprint
arXiv:2006.14799 .
Cer, D.; Yang, Y.; Kong, S.; Hua, N.; Limtiaco, N.; John,
R. S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar,
C.; Sung, Y.; Strope, B.; and Kurzweil, R. 2018. Universal
Sentence Encoder. CoRR abs/1803.11175. URL http://arxiv.
org/abs/1803.11175.
Chaganty, A.; Mussmann, S.; and Liang, P. 2018. The price
of debiasing automatic metrics in natural language evalau-
tion. In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Pa-
pers), 643–653. Melbourne, Australia: Association for Com-
putational Linguistics. doi:10.18653/v1/P18-1060. URL
https://www.aclweb.org/anthology/P18-1060.
Chen, X.; Fang, H.; Lin, T.-Y.; Vedantam, R.; Gupta, S.;
Dollár, P.; and Zitnick, C. L. 2015. Microsoft coco cap-
tions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325 .
Cui, Y.; Yang, G.; Veit, A.; Huang, X.; and Belongie, S.
2018. Learning to Evaluate Image Captioning. In CVPR.
de Masson d'Autume, C.; Mohamed, S.; Rosca, M.; and Rae,
J. 2019. Training Language GANs from Scratch. In Wal-
lach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.;
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