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Abstract

Natural language generation (NLG) is an important task with
various applications like neural machine translation (NMT)
and image captioning. Since deep-learning-based methods
have issues of exposure bias and loss inconsistency, reinforce-
ment learning (RL) is widely adopted in NLG tasks recently.
But most RL-based methods ignore the deviation ignorance
issue, which means the model fails to understand the extent of
token-level deviation well. It leads to semantic incorrectness
and hampers the agent to perform well. To address the issue,
we propose a technique called adaptive prior-dependent cor-
rection (APDC) to enhance RL. It leverages the distribution
generated by computing the distances between the ground
truth and all other words to correct the agent’s stochastic pol-
icy. Additionally, some techniques on RL are explored to co-
ordinate RL with APDC, which requires a reward estimation
at every time step. We find that the RL-based NLG tasks are
a special case in RL, where the state transition is determinis-
tic and the afterstate value equals the Q-value at every time
step. To utilize such prior knowledge, we estimate the advan-
tage function with the difference of the Q-values which can
be estimated by Monte Carlo rollouts. Experiments show that,
on three tasks of NLG (NMT, image captioning, abstractive
text summarization), our method consistently outperforms the
state-of-the-art RL-based approaches on different frequently-
used metrics.

Introduction
Natural language generation (NLG) is a promising task in
natural language processing that aims to generate a piece
of new text. It has a wide range of applications, including
neural machine translation (NMT), image captioning, text
summarization and so on.

Since NLG is a sequence prediction task, it usually
adopts maximum likelihood estimation (MLE) with teacher-
forcing technique (Cho et al. 2014; Williams and Zipser
1989). MLE training maximizes the log-likelihood of each
word conditioned on its previous context, but the model is
evaluated using a sequence-level metric like BLEU (Pap-
ineni et al. 2002), ROUGE (Lin 2004) and CIDEr (Vedan-
tam, Lawrence Zitnick, and Parikh 2015) which are non-
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differentiable. This loss inconsistency issue hampers the al-
gorithms to optimize the sequence as a whole. The teacher-
forcing technique trains the model to predict the next word
given the previous ground truth words as input, but at the
test stage, the model utilizes the previously generated words
instead of the ground-truth as the input to generate the fol-
lowing sentence. It results that the model has never been ex-
posed to its own predictions. It is well known as the exposure
bias issue. Besides, the MLE-based approaches treat all in-
correct outputs equally during training (Li et al. 2019).

To address the loss inconsistency and exposure bias
issues, reinforcement learning (RL) methods have been
adopted to train NLG models to avoid these two is-
sues. For example, policy gradient and actor-critic meth-
ods (Bahdanau et al. 2017; Rennie et al. 2017; Ranzato
et al. 2016; Chen et al. 2020a; Wu et al. 2018) are ap-
plied to this task. Unlike MLE, which maximizes the log-
likelihood, RL-based methods optimize the reward function.
The reward function can either be differentiable and non-
differentiable, thus the non-differentiable sequence-level
metrics like BLEU can be properly optimized. RL-based
methods also solve the exposure bias issue as the training
sentences are generated by the agent rather than using the
ground-truth as the instruction.

However, these RL-based training methods can not solve
the issue that all incorrect outputs are treated equally well,
which we call it deviation ignorance in our RL-based
method. It means that, the models may fail to understand
how much the prediction distribution deviates from a prior
distribution related to the ground-truth at token-level. Since
in RL training method for NLG, the objective aims to maxi-
mize the reward, such as BLEU and ROUGE, by estimat-
ing gradient. However, this reward assigns unfair scores
to different incorrect model outputs, which means that all
incorrect token-level outputs are treated equally in a se-
quence during training. In some cases, a huge deviation be-
tween the predicted token and the ground-truth token can
directly cause semantically incorrect results. For instance,
the ground-truth sentence is “the boy is eating an apple”. It
is clearly better for the prediction sentence to be “the kid
is eating an apple” or “the boy is having an apple” rather
than “the cat is eating an apple” or “the dog is eating an ap-
ple”. But the metrics, such as BLEU and ROUGE assign the
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same scores for these different prediction sentences, since
these evaluation metrics are based on recall and precision,
which treat all the incorrect token equally. Whereas, the to-
ken “kid” is more semantically similar to “boy” than to “cat”
or “dog”, which results in the total semantic incorrectness of
the sentences. The extent of incorrectness of the wrong pre-
dictions should be aware by the models, which also provides
important guidance on the training of models.

To alleviate the issue of deviation ignorance, we proposed
an adaptive prior-dependent correction (APDC) objective
for the RL training method. APDC can adaptively correct the
deviated prediction distribution with an adaptive Kullback-
Leibler (KL) divergence penalty term for the RL training
objective. The KL divergence is computed by two probabil-
ity distributions. The first distribution is the model training
prediction output and the second distributions is a prior dis-
tribution computed by the well-trained word embedding of
the ground-truth. It can both reduce the token-level deviation
and the bias when the models cannot predict the ground-
truth word. Because merely optimizing metrics like CIDEr
and METEOR cannot fully leverage such important prior in-
formation, and metrics like BLEU and ROUGE cannot even
distinguish the extent of deviation. Additionally, the adap-
tive mechanism helps the algorithm to choose to pay how
much attention to the token-level distribution accuracy.

To make RL work well with APDC, further algorithmic
improvement is needed. We find that the RL-based NLG
tasks are a special case in RL, where the afterstate (Sut-
ton and Barto 2018) value equals the state-action value (Q-
value) at every time step. In such a case, the state transition
is deterministic after the action is given, but other tasks such
as Atari Games (Mnih et al. 2013) and StarCraft II (Vinyals
et al. 2019), can have different next states with a certain
state transition probability. Such RL tasks can utilize this
kind of prior knowledge to produce a more efficient learning
method (Sutton and Barto 2018), but most of the previous
RL method (Bahdanau et al. 2017; Chen et al. 2018; Ranzato
et al. 2016; Rennie et al. 2017; Wu et al. 2018) for NLG ig-
nored this characteristic. However, adaptively deciding the
extent of token-level correction in APDC needs a token-
level reward. Thus, we estimate the Q-value on each step
using K Monte Carlo rollouts. Using the aforementioned
prior knowledge, we further estimate an advantage function
merely based on Q-values to reduce the reward variance and
assign every token with an instant feedback.

In this work, our contributions are summarized as follows:

• To address the deviation ignorance issue, we propose
a novel technique, adaptive prior-dependent correction
(APDC) to enhance RL on natural language generation
(NLG). APDC adaptively corrects the stochastic policy
using the distances of the embeddings between the ground
truth and other words, where “adaptively” means our cor-
rection is self-regulating according to the need.

• We explore advantage-function-weighted policy gradient
(APG) method to coordinate with APDC, which requires
a reward estimation at each step.

• Our experiments cover three major tasks in NLG (neu-
ral machine translation, image captioning, and abstractive

text summarization). The results show that our method
consistently outperforms the state-of-the-art RL-based
approaches in a wide spectrum of applications and has
great generalizability.

Related Work
Recent efforts on incorporating RL to standard DL-based
methods solve the aforementioned two issues (DL-based
related works can be seen in Appendix). MIXER (Ran-
zato et al. 2016) combines optimizing with XENT loss and
REINFORCE algorithm (Williams 1992) to enable it di-
rectly optimize the non-differentiable metrics. Self-critical
sequence training (SCST) (Rennie et al. 2017) also lever-
ages a policy gradient algorithm, but it inventively uses a
self-critical method in its baseline which is calculated by the
algorithm at the inference stage. SPIDEr (Liu et al. 2017)
explores another way of reward estimation, using the rollout
algorithm to estimate the Q-value of each action. Based on
SCST, Chen et al. (2018) introduces the temporal-difference
(TD) learning method. Optimal-Transport-Enhanced RL
(OTRL) (Chen et al. 2020b) introduces Optimal Transport
(OT) to RL to stabilize training, which can be applied to the
sequence generation problem.

Background
Training with XENT Loss
Traditionally, DL-based methods employ maximum likeli-
hood estimation (MLE) with teacher-forcing technique (Cho
et al. 2014; Williams and Zipser 1989), which maximizes the
log-likelihood by lowering the cross-entropy (XENT) loss
during the training stage, while evaluate the model using
a sequence-level metric like BLEU (Papineni et al. 2002),
ROUGE (Lin 2004) and CIDEr (Vedantam, Lawrence Zit-
nick, and Parikh 2015) which are non-differentiable.

In traditional LSTM decoder (Vinyals et al. 2015), based
on MLE, the task is to maximize the conditional possibility
given that Z is the output of the encoder:

p(W | Z) =
T∏
t=0

p (wt | w0:t−1, Z) (1)

where wt is the word at time step t, w0:t−1 is the previously
generated words, W is the generated sentence w0:T .

Thus, the XENT loss objective can be defined as:

LMLE(θ) = −
T∑
t=0

log pθ
(
w∗t | w∗0:t−1, Z

)
(2)

where w∗t is the ground-truth word at step t and w∗0:t−1 is
the previous ground-truth words. By lowering the objective
above, the algorithm maximizes the log-likelihood.

Problem Formulation
The natural language generation (NLG) problem can be
formulated as a Markov Decision Process (MDP), which is
modeled by the five-tuple (S,A, T ,R, γ). In the five-tuple,
S is the state space,A the action space, T the transition func-
tion T : S × S ×A → R+, andR : S×A → R the reward
function. Below are the components of the five-tuple:
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• State S . The state st at time step t consists of the encod-
ing of the previously generated sentence w0:t−1 and the
encoder’s output Z:

st = (w0, w1, ..., wt−1, Z) (3)

• Action A. An action is a word to be generated, namely
at = wt, in the action space A ∈ Rn. The action space A
of our agent is a large discrete action space, which con-
tains all the available words in the dictionary with the
length n.

• Transition function T . It defines the probability of tran-
sition from the current state st to the next state st+1. Once
the agent takes an action (i.e. selects a word), the transi-
tion is determined:

st+1 = (st, at) (4)

According to Equations (3) and (4), we have:

P (st+1|st, at) ≡ 1 (5)

• Reward R. The environment gives a instant feedback
R(s, a) to the agent when it takes an action a ∈ A at
a state s ∈ S to evaluate the action a at state s. In our
tasks, the reward is computed by comparing the gener-
ated sequence to corresponding ground-truth sequences.
The reward is defined as follows:

rt =

{
0 0 ≤ t < T

r t = T
(6)

where r is the score computed using the evaluation met-
rics, which are non-differentiable sequence-level metrics
such as BLEU or CIDEr, and T is the final time step.

• Discount factor γ. The discount factor γ ∈ [0, 1] is
the hyper-parameter representing the trade-off between
the instant feedback and the long-term yield. Specifically,
when γ = 0, the agent only sees the instant reward. When
γ = 1, all the future reward is seen by the agent.

Method
Training with Advantage-function-weighted Policy
Gradient
Reinforcement learning (RL) can be used as a method
for optimizing model parameters over flexible performance
metrics, such as BLEU, ROUGE, and CIDEr, in NLG tasks.
In RL-based NLG tasks, the language generative models,
such as Transformer and LSTM, can be viewed as an agent
that interacts with an environment, e.g. words (tokens) and
source sentences for NMT, words and images for image cap-
tioning. The parameters of the model, θ, define a policy πθ.
The execution of the policy results in an “action”, the pre-
diction of the next token. After executing the action, the
agent updates its internal state. Once the end-of-sequence
(EOS) has been reached, the agent observes a final “reward”
r such as BLEU. Details can be seen in the previous section.
The whole architecture of our proposed method: APG with
APDC is shown in Figure 1.

Policy gradient training In RL, the agent aims to max-
imize the cumulative rewards Eπ

[∑T
t=1 γ

t−1r
]

with dis-
count factor γ by estimating the policy gradient ∇θLRL(θ)
and updating its parameters, instead of maximum likelihood
estimation. In policy gradient methods, the expected gradi-
ent can be approximated using a single Monte-Carlo sample
(a0, a1, ..., at−1) from πθ, and the gradient ∇θLRL(θ) can
be calculated as follows:

∇θLRL(θ) =
T∑
t=0

Eπ [φt∇θlog (πθ (at|st))] (7)

where φ can be many formulas, such as R = r − rbaseline
and Aπ(st, at) = Qπ(st, at) − V π(st) (advantage func-
tion). Qπ(st, at) is the Q-value (state-action value) function
and V π(st) is the state value function. The policy gradient
method has high variance on the gradient estimation, but us-
ing a baseline can decrease the variance of gradient estima-
tion, and the expected gradient remains unchanged (Sutton
and Barto 2018). Among the formulas, the advantage func-
tion yields almost the lowest possible variance, though in
practice, the advantage function is not known and must be
estimated (Schulman et al. 2016). Therefore, we use the ad-
vantage function instead of other formulas, which is differ-
ent from (Rennie et al. 2017; Ranzato et al. 2016; Wu et al.
2018; Chen et al. 2020b), and the gradient ∇θLRL(θ) can
be calculated with the advantage function:

∇θLRL(θ) =
T∑
t=0

Eπ[Aπ(st, at)∇θlog(πθ(at|st))] (8)

Advantage function estimation We use the generalized
advantage estimator (GAE) (Schulman et al. 2016) to esti-
mate the advantage function. It can be calculated as follows:

Aπ(st, at) =
∞∑
l=1

(γλ)l(rt+γV
π(st+l+1)−V π(st+l)) (9)

Here we use GAE(γ, 0) (l = 0), it can be calculated as fol-
lows:

Aπ(st, at) = rt + γV π(st+l+1)− V π(st+l) (10)

Therefore, we need to estimate the value function V π(st) to
estimate the advantage function. In RL, according to the def-
inition of Q-value and value function, the Q-value function
can be calculated as follows:

Qπ(st, at) = rt + γ
∑

st+1∈S
P (st+1|st, at)V π(st+1) (11)

where P (st+1|st, at) is the state transition probability. Due
to the determinacy of the state transition, the probability
P (st+1|st, at) ≡ 1. Here we set γ = 1 for our NLG tasks,
which is the same as recent work. Thus the process of calcu-
lating the value function can be simplified as follows:

V π(st+1) = Qπ(st, at)− rt (12)

According to Equation (6) and (12), the estimated advantage
function can be written as:

Ãπ(st, at) = Q̃π(st, at)− Q̃π(st−1, at−1) (13)
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Figure 1: Architecture of our approach: APG with APDC.

Where Ãπ(st, at) and Q̃π(st, at) are the estimations of
Aπ(st, at) and Qπ(st, at) .Thus, we only need to estimate
the Q-value function to calculate the advantage function.

Q-value function estimation Applying RL techniques in
NLG tasks may suffer from the large action space issue (typ-
ically the case in NLG tasks with large vocabularies) (Bah-
danau et al. 2017), which leads to inaccurate Q-value esti-
mation. It can be alleviated by pruning the actions with very
small possibilities to take. The agent samples from the ac-
tions with topN probability (N is much less than the vocab-
ulary size). Here we use same method as (Liu et al. 2017) to
sample actions in each step and generate complete sentences
for estimating Q-value:

Q̃π(st, at) =
1

k

k∑
k=1

R[a0:t; (at+1:T )k] (14)

k at+1:T are sampled from the current policy, and compute
the average of the k final rewards to estimate Q-value.

Adaptive Prior-Dependent Correction Enhanced
Reinforcement Learning
Most RL training methods for NLG tasks ignore the issue
of deviation ignorance which ignores the similarity between
the correct and incorrect predictions, and treats all incor-
rect predictions (deviation) equally. The most straightfor-
ward way to solve this issue is to improve the reward (eval-
uation metric), and some existing metrics such as METEOR
and CIDEr can alleviate this issue to some extent. But the
main drawback of this solution is the lack of flexibility, and
it is difficult for us to design a common reward for all NLG
tasks. Another drawback is that, it cannot make full use of
the prior knowledge. Therefore, we proposed APDC that is a
more flexible method to alleviate deviation ignorance issue
for NLG tasks.

Prior-dependent correction (PDC) with KL divergence
To alleviate this issue, we enhance the RL objective LRL(θ)
with an additional objective LKL(θ) which makes better use

of the prior knowledge to capture the deviation between in-
correct prediction of the model and the ground truth. We use
Kullback-Leibler (KL) divergence to measure how well the
predicted distribution pθ(wt) matches the prior distribution
of ground truth p∗(wt) at each time step during training. The
KL divergence is calculated as follows:

LKL(θ) =
T∑
t=0

KL [p∗(wt)||pθ(wt)] (15)

where pθ(wt) = pθ(wt | w0, w1, . . . , wt−1, Z), and it is the
predicted distribution of the model (where wt ∼ pθ(wt) is a
random variable) and p∗(wt) is a prior distribution related to
ground truth at time step t, which will be introduced later. In
this way, the agent can capture the deviation and update its
parameters “unequally” for different incorrect predictions.
Meanwhile, it adds a constraint that the stochastic policy not
to far from the prior distribution p∗(wt).

The prior distribution p∗(wt) In NLG tasks, one of the
priors we can use is the pre-trained word embedding. There-
fore, we pre-train the word embedding. Then we utilize the
embedding to obtain the prior distribution. Making full use
of the prior knowledge of word embeddings, the prior distri-
bution reflects the similarity between words. The aforemen-
tioned prior distribution p∗(wt) is calculated as:

p∗(wt) = σ (cos sim (emb (w∗t ) , emb (wt))) (16)

where σ(x) is the SoftMax function, cos sim(x, y) stands
for the cosine similarity between vector x and y, emb(w)
represents the pre-trained word embedding of the token w,
and w∗t is the ground-truth word of the time step t.

Thus, the probability of the ground-truth word in p∗(wt)
is the highest, and the more similar the semantic meaning to
the ground truth, the higher the probability of the word.

Adaptive prior-dependent correction (APDC) Addi-
tionally, PDC is a token-level objective which is suffer from
the issue of generation diversity and and short-sighted (Li
et al. 2015), but the superiority of RL is that, it can opti-
mize the evaluation metric at the sequence level to avoid
these issues, but PDC may undermine the superiority. There-
fore, PDC needs a sequence-level adaptive factor to adjust
how much the token-level objective affects sequence-level
training. Incorporating such idea, we modify the above-
mentioned KL divergence to make it self-regulating:

LKL(θ) =
T∑
t=0

e−αÃ
π(st,at)KL [p∗(wt)||pθ(wt)] (17)

Here we use e−αÃ
π(st,at) as the adaptive factor to ensure

it is a positive value and monotonically decreasing, where
α is a hyper-parameter to adjust the scale of the adaptive
factor. The Aπ(st, at) measures how much a token is better
than the others for entire sentence at sequence level. If the
Aπ(st, at) is high, it means the action may also be reason-
able at sequence level, and it is less necessary to correct the
output distribution, and vice versa. This mechanism can also
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be interpreted that, the influence of the PDC will be weaken
if the action has larger expected cumulative rewards com-
pared to other actions, and vice versa. It helps the algorithm
choose to pay how much attention to the token-level distri-
bution accuracy.

The final objective for RL is written as follows:

L(θ) = −LRL(θ) + βLKL(θ) (18)

where β is a hyper-parameter to adjust the scale of the LKL
term. We train the model by minimize L(θ).

Experiments
We evaluate our APDC enhanced RL training method on
three common language generation tasks: neural machine
translation (NMT), image captioning, and abstractive text
summarization (summarization for short).

For the three tasks, we use fastText (Bojanowski et al.
2017) to pre-train the embedding. The pre-training settings
are the same as the original paper of fastText. In RL training,
we use the BLEU as the reward for NMT, CIDEr for image
captioning and ROUGE-L for summarization (as most RL
training methods typically do). All the experimental results
obtained are based on the optimal settings.

Neural Machine Translation
Neural machine translation (NMT) is an approach to ma-
chine translation that uses a deep neural network to predict
the likelihood of a sequence of words, modeling the entire
sentences in a single integrated model.

Datasets We evaluated our RL training method for NMT
on commonly used machine translation datasets: WMT14
(Bojar et al. 2014) English-German (En-De), WMT17 (On-
drej et al. 2017) English-Chinese (En-Zh), and WMT17
Chinese-English (Zh-En). For a fair comparison, we em-
ploy the same pre-processing in (Vaswani et al. 2017) for
WMT14 En-De dataset, and the same pre-processing in (Wu
et al. 2018) for WMT17 En-Zh and Zh-En datasets. We
chose the Transformer (Vaswani et al. 2017) as the base
model for all methods. For Zh-En and En-Zh translations,
we adopt the Transformer big setting. For En-De transla-
tion, we adopt the Transformer base setting. These settings
are the same as used in the original paper of Transformer.

Experiment configuration We compare our method for
NMT with state-of-the-art methods and several variants of
our and their methods. Here are the configurations.
• Transformer. We use the Transformer (Vaswani et al.

2017) trained with XENT loss as a baseline, which is the
method in the original paper and achieves state-of-the-art
translation performance in several datasets.

• MIXER (Ranzato et al. 2016) uses seq2seq (Bahdanau,
Cho, and Bengio 2014) as the NMT model. For a fair
comparison, we implement Transformer+MIXER for the
three language pairs. We do not implement MIXER en-
hanced with APDC for NMT, image captioning, and sum-
marization, as the reward is not obtained until the se-
quence is completed.

• RL4NMT. We re-implement RL4NMT (Wu et al. 2018)
based on their open-source code.

• APG+PDC. Advantage-function-weighted Policy Gra-
dient (APG) is our proposed RL algorithm. PDC is
APDC without the adaptive factor. APG+PDC means
APG trained with PDC. We will not re-describe these in
the following sections since the settings are the same.

• RL4NMT+PDC. RL4NMT uses reward shaping instead
of estimating a Q-value in each time step, which calcu-
lates BLEU score with incomplete sentences w1:t instead
of w1:T , and then uses BLEU at time t minus BLEU at
time t − 1 as the reward at time t. The reward used in
(Wu et al. 2018) is a token-level reward, but our adap-
tive factor of APDC is a sentence-level expected reward.
Therefore we implement RL4NMT enhanced with PDC
and RL4NMT+APDC is not applicable here.

Experimental results We compare our method with one
MLE training and two RL training methods, which are
strong baselines. Table 1 shows the results of comparing
APDC with these strong baselines. For the language pair En-
De, the result we obtain is very close to those in the original
paper of Transformer. For language pairs En-Zh and Zh-En,
the results we obtain are very close to those in the original
paper of RL4NMT. The results show that APG+APDC out-
performs the strong baselines for all language pairs, which
validates the advancement of our method.

Image Captioning
Image captioning, also called image description, is a task
that aims to automatically generate natural language descrip-
tions according to the content observed in an image.

Datasets We evaluate our proposed method on the
MSCOCO dataset (Lin et al. 2014), which is a standard
benchmark for image captioning. We follow the split method
proposed in (Karpathy and Fei-Fei 2015) for MSCOCO.

Experiment configuration We compare our method for
image captioning with several state-of-the-art methods and
their variants.

• Top-down. Top-down (Anderson et al. 2018) used faster
R-CNN (Ren et al. 2015) to detect objects in the image,
and a Top-down attention mechanism to dynamically at-
tend to these object features. They also implement Top-
down model trained with SCST (Top-down+SCST) and
XENT loss (Top-down+MLE). Top-down+MLE is used
as the pre-trained model of all RL training methods. In
this paper, we follow the same setup as (Anderson et al.
2018) for extracting image features and decoder LSTM
for all methods.

• MIXER. MIXER uses a convolutional neural network
(CNN) pre-trained on the ImageNet to extract image fea-
tures. For a fair comparison, we implement the Top-down
model trained with MIXER, and obtain a better result than
MIXER with original settings.
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Method En-De En-Zh Zh-En
Transformer+MLE (Vaswani et al. 2017) 27.30 34.12 24.29
MIXER (Ranzato et al. 2016) 27.43 34.38 24.59
RL4NMT (Wu et al. 2018) 27.52 34.46 24.70
APG 27.63 34.54 24.81
APG+PDC 27.70 34.56 24.90
RL4NMT+PDC 27.81 34.62 24.94
APG+APDC 28.03 34.91 25.28

Table 1. BLEU score of NMT for En-De, En-Zh, and Zh-En.

Method BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr
SCST (Att2all) (Rennie et al. 2017) - 34.2 26.7 55.7 114.0

OTRL (Chen et al. 2020a) 79.3 34.4 26.8 56.2 111.8
Top-Down+MLE (Anderson et al. 2018) 77.2 36.2 27.0 56.4 113.5
Top-Down+SCST (Anderson et al. 2018) 79.8 36.3 27.7 56.9 120.1
Top-Down+MIXER (Ranzato et al. 2016) 78.4 36.2 27.4 56.5 115.6

Top-Down+SCST+APDC 79.9 36.6 27.8 56.9 120.2
APG 80.1 36.4 28.0 56.9 120.2

APG+PDC 80.3 36.7 28.4 57.3 121.2
APG+APDC (METEOR) 80.1 36.5 29.2 57.1 119.7

APG+APDC 80.8 37.9 28.9 58.1 123.6

Table 2. Performance of image captioning on the MSCOCO Karpathy test split.

• SCST. Self-critical sequence training (SCST) (Rennie
et al. 2017) is a state-of-the-art RL training method for
image captioning. It regards the sequence from the in-
ference algorithm as a baseline in reward to reduce the
variance of gradient estimation. To validate the effective-
ness of APDC, we also implement SCST+APDC, where
the advantage function of adaptive factor for SCST is
rt − rbaseline (in SCST, the function of (rt − rbaseline)
used is similar to the advantage function in our method).

• OTRL. Optimal-Transport-Enhanced RL (OTRL) (Chen
et al. 2020a) combines RL and Optimal-Transport learn-
ing (Chen et al. 2019) and obtains the state-of-the-art per-
formance on MSCOCO dataset. They also use Top-down
as the baseline model.

Experimental results beta We compare our method with
one MLE training and several RL training methods, which
are strong baselines. We report BLEU-1, BLEU-4, CIDEr,
ROUGE-L and METEOR scores. The results are summa-
rized in Table 2. It is observed that, under several different
setups, our method consistently outperforms all baselines.

Abstractive Text Summarization
Abstractive text summarization condenses a piece of text to
a shorter one containing the primary information.

Datasets We use the CNN/Daily Mail (Hermann et al.
2015; Nallapati et al. 2016) dataset to evaluate our proposed
method, which is a standard summarization benchmark. We
use the same pre-processing as (See, Liu, and Manning
2017), and use the Pointer-Generator networks (See, Liu,

and Manning 2017), which is a state-of-the-art summariza-
tion method, as the base model for our RL training method.

Experiment configuration We compare our method for
summarization with the following methods.

• Pointer-Generator+Coverage. Pointer-Generator (See,
Liu, and Manning 2017) proposes a hybrid pointer-
generator network that can copy words from the source
text via pointing, and the coverage mechanism with cov-
erage loss. For summarization, ROUGE-L score is the re-
ward for all RL training methods.

• MIXER. For a fair comparison, we implement Pointer-
Generator+Coverage model trained with MIXER, and ob-
tain a better result than MIXER with original settings.

• OTRL. OTRL also uses Pointer-Generator+Coverage as
their baseline, and evaluate their method on CNN/Daily
Mail dataset with the same data pre-processing as ours.

Experimental results We compare our method with the
baseline and most recent works. The results are summarized
in Table 3. We report ROUGE-1, ROUGE-2 and ROUGE-
3 scores. APG+APDC achieves better ROUGE scores on
CNN/Daily Mail dataset. It indicates that our method can
better capture the semantic meaning from the source text.

Analysis
From Figure 2 and Tables 1,2 and 3, it is observed that APG
outperforms other RL methods. There are two main reasons:
(1) All of the policy gradient methods have a large variance
of the gradient estimation, and the advantage function yields
almost the lowest possible variance. APG used advantage
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Method ROUGE-1 ROUGE-2 ROUGE-L
Pointer (See, Liu, and Manning 2017) 39.53 17.28 36.38
MIXER (Ranzato et al. 2016) 39.78 17.91 37.15
OTRL (Chen et al. 2020a) 41.40 18.22 38.86
APG 41.51 18.34 38.93
APG+PDC 41.60 18.48 39.02
APG+APDC 42.73 18.81 39.85

Table 3. Results of abstractive text summarization on CNN/Daily Mail dataset. “Pointer” means the method Pointer-
Generator+Coverage.

Figure 2: Ablation study on the three tasks.

function instead of (r − rbaseline) used in SCST, MIXER,
RL4NMT and OTRL. It also alleviates the sparse reward
and late feedback issues. (2) MIXER, RL4NMT and OTRL
use a parameterized estimator to estimate baseline, which
may introduce estimation bias, while in APG, the advantage
function is estimated by the non-parametric Qt and Qt−1
which are the expected cumulative rewards estimated by K
Monte Carlo rollouts at time step t− 1.

We have analyzed that BLEU or ROUGE score as the
reward in RL will bring deviation ignorance problems. To
some extent, using the reward of CIDEr or METEOR score
can alleviate the issue. But merely optimizing these metrics
cannot make full use of the prior distribution to correct the
bias of the agent’s stochastic policy. These metrics are also
inflexible, as most of the works on NMT and summariza-
tion adopts BLEU and ROUGE. In the experiments of image
captioning, the results show that optimizing CIDEr or ME-
TEOR can alleviate the issue of deviation ignorance, but us-
ing RL enhanced with APDC achieves better performance.

Ablation study To evaluate the effectiveness of differ-
ent components, we compare the results of applying APG,
APG+PDC, and APG+APDC on the three tasks. The results
also show that APG+PDC (other RL+PDC) outperform the
APG (other RL), since PDC alleviates the deviation igno-
rance issue. However, as Figure 2 shows, the improvement
of PDC is not significant. Since PDC is a token-level ob-
jective, but the advantage of RL is that the model can be
trained at the sequence level, and PDC weakens this ad-
vantage. Therefore, PDC needs a sequence-level adaptive
factor to adjust how much the token-level objective affects

sequence-level training. The results that APG+APDC sig-
nificantly outperforms other methods also proves the impor-
tance of the adaptive mechanism.

We compare our method with one MLE training and sev-
eral RL training methods, which are strong baselines. We
report BLEU-1, BLEU-4, CIDEr, ROUGE-L and METEOR
scores. The results are summarized in Table 2. It is observed
that, under several different setups, our method consistently
outperforms all baselines.

Conclusion
In this work, we leverage reinforcement learning (RL) in
natural language generation (NLG) tasks to solve the expo-
sure bias and loss inconsistency issues of the deep-learning-
based methods. We propose a novel technique: adaptive
prior-dependent correction (APDC) to further address the
deviation ignorance issue that former RL-based approaches
on NLG seldom study. Furthermore, we combine some ad-
vantage function estimation techniques which utilize the
prior knowledge that the afterstate value equals the Q-value
at every time step. We utilize advantage-function-weighted
policy gradient (APG) to work well with APDC. Enhancing
APG with APDC can strike a balance between token-level
and sequence-level optimization. Our experiments show
that, on three tasks, our method consistently outperforms the
state-of-the-art approaches on different frequently-used met-
rics.
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