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Abstract

With recent advances in distantly supervised (DS) relation ex-
traction (RE), considerable attention is attracted to leverage
multi-instance learning (MIL) to distill high-quality supervi-
sion from the noisy DS. Here, we go beyond label noise and
identify the key bottleneck of DS-MIL to be its low data uti-
lization: as high-quality supervision being refined by MIL,
MIL abandons a large amount of training instances, which
leads to a low data utilization and hinders model training from
having abundant supervision. In this paper, we propose col-
laborative adversarial training to improve the data utilization,
which coordinates virtual adversarial training (VAT) and ad-
versarial training (AT) at different levels. Specifically, since
VAT is label-free, we employ the instance-level VAT to recy-
cle instances abandoned by MIL. Besides, we deploy AT at
the bag-level to unleash the full potential of the high-quality
supervision got by MIL. Our proposed method brings consis-
tent improvements (∼ 5 absolute AUC score) to the previous
state of the art, which verifies the importance of the data uti-
lization issue and the effectiveness of our method.

Introduction
Relation extraction (RE) aims at identifying the relation be-
tween entities within a specific context and provides essen-
tial support for many downstream tasks. As the performance
of RE systems is generally limited by the amount of training
data, recent RE systems typically resort to distant supervi-
sion (DS) to fetch abundant training data by aligning knowl-
edge bases (KBs) and texts. Since this strategy inevitably
introduces label noise to model training, how to neutralize
the label noise has been viewed as the major problem of DS.

Multi-instance learning (MIL) was introduced to handle
label noise (Zeng et al. 2015; Lin et al. 2016) and has re-
ceived a significant amount of attention. Specifically, MIL
clusters training instances into bags. For each bag, MIL de-
motes its low-quality instances to eliminate label noise and
refines high-quality instances as the bag-level representation
for model training.

Here, we go beyond label noise and identify the key bot-
tleneck of DS-MIL to be its low data utilization. In order to
distill high-quality supervision from DS, MIL only focuses
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Figure 1: Sentence attention score distribution inside the bag
during training process: Most instances are with low scores,
instances with high attention scores (not including 1.0) only
dominate a small part of data.

on a few representative instances (with high attention scores)
and abandons a large proportion of low-score instances. As
in Figure 1, except the situation that one bag only contains
one instance (with attention scores of 1.0), most of the in-
stances are assigned with low attention scores (0.0∼0.2) and
abandoned during the training process. Specifically, as in Ta-
ble 2, control experiments show that even if some low-score
instances are removed, the newly trained model has a lim-
ited performance change. In other words, although DS leads
to abundant training instances, MIL fails to unleash the full
potential of DS, since it abandons the majority of training
instances.

Here, we propose MULTICAST (MULTi-Instance
Collaborative AdverSarial Training) to improve the data uti-
lization. It coordinates adversarial training (AT) (Goodfel-
low, Shlens, and Szegedy 2014) and virtual adversarial train-
ing (VAT) (Miyato, Dai, and Goodfellow 2016) at different
levels. In detail, as the MIL framework intrinsically splits
training data into two classes (i.e., high-quality instances for
constructing bag-level representations and low-quality in-
stances abandoned by MIL), we use different strategies on
them. For low-quality instances, although their associated
labels are not very reliable, they can still provide valuable
information for label-free regularization objectives. Thus,
we apply instance-level virtual adversarial training (IVAT)
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to exploit entity and context information without using their
unreliable label information. For high-quality instances, we
try to compensate their loss of quantity (caused by MIL).
Specifically, we apply bag-level adversarial training (BAT)
to further regularize the constructed representations and un-
leash the full potential of these high-quality instances.

We conduct experiments on NYT (Riedel, Yao, and Mc-
Callum 2010), the public DSRE benchmark. MULTICAST
leads to consistent improvements over the previous state-
of-the-art systems. It demonstrates the effectiveness of
MULTICAST and validates our intuition that the data uti-
lization issue is the key bottleneck. We further conduct ab-
lation studies to verify that MULTICAST coordinates dif-
ferent modules effectively. The major contributions of this
paper are summarized as follows:
• We identify the low data utilization issue as the major bot-

tleneck of DS-MIL.
• We propose MULTICAST to boost data utilization. It co-

ordinates VAT and AT at different levels based on MIL
signals (attention scores).

• Controlled experiments verify our intuitions and show that
MULTICAST leads to consistent improvements (∼ 5 ab-
solute AUC score).

Related Work
In the field of distantly supervised relation extraction, the
multi-instance learning framework is introduced to handle
the label noise of DS. Recently, MIL has become a com-
mon paradigm for DSRE and many efforts have been made
for further improvements (Lin et al. 2016; Qin, Xu, and
Wang 2018; Ye and Ling 2019; Yuan et al. 2019; Huang and
Du 2019; Ye et al. 2019; Shang et al. 2020). In these MIL
frameworks, sentences are first encoded by handcrafted fea-
tures (Mintz et al. 2009; Hoffmann et al. 2011) or neural
networks. Then, multiple instances are leveraged to form a
bag-level representation, which has better quality. With re-
gard to the strategy for selecting instances inside the bag, a
soft attention mechanism (Lin et al. 2016) is widely used for
its better performance than the hard selection way.

Based on the multi-instance learning framework, most
previous work focus on further improving the strategy to
handle label noise. Specifically, Ye and Ling (2019); Yuan
et al. (2019) both adopted a relation-aware selective atten-
tion mechanism inside the bag, and constructed a superbag
which contains a group of bags to alleviate the issue of bag
label error. Focusing on transforming the network structure,
Huang and Du (2019) utilized recent self-attention mech-
anism (Vaswani et al. 2017) integrated with convolutional
neural networks (CNNs) to obtain a better sentence repre-
sentation from the noisy inputs, and this work also applied
cooperative curriculum learning to constrain student models
which can learn from each other. At the same time, few at-
tempts have been made on other aspects of DSRE, i.e., Ye
et al. (2019) found that the problem of shifted label distri-
bution influences the performance of DSRE models signifi-
cantly. Similar to our study, Shang et al. (2020) observe that
noisy sentences inside the bag are not useless and developed
a way to relabel the noisy data by employing unsupervised
deep clustering.

At the same time, adversarial training has been found to
be useful for DSRE. Wu, Bamman, and Russell (2017)
firstly introduced adversarial training (Goodfellow, Shlens,
and Szegedy 2014; Miyato, Dai, and Goodfellow 2016) to
relation extraction by generating adversarial noise to the
training data. Qin, Xu, and Wang (2018) leverages gener-
ative adversarial networks (GANs), i.e., it adopts the trained
generator to filter the DS training dataset and redistributes
the false positive instances into the negative set, in which
way to provide a cleaned dataset for relation classification.

Methodology
In our paper, we identify the low data utilization as the key
bottleneck of DS-MIL. As MIL forms accurate bag repre-
sentations to handle label noise, it abandons a large amount
of training instances. Typically, MIL faces the dilemma that
label noise reduction sacrifices the data utilization. Here, we
go beyond typical DS-MIL and propose collaborative ad-
versarial training to improve the data utilization. The dia-
gram of our method (MULTICAST) is visualized in Fig-
ure 2, which contains five components: (1) input representa-
tions; (2) sentence encoder; (3) attention-based MIL frame-
work; (4) instance-level virtual adversarial training module;
(5) bag-level adversarial training module.

Inputs: Embeddings
For each word ti in sentence s, we employ word embed-
ding wi ⊂ Rdw to capture its semantic information. More-
over, to encode the sentence in an entity-aware manner, rel-
ative position embedding (Zeng et al. 2015) is leveraged to
represent the position information in the sentence. Relative
distances di1, di2 of word ti correspond to the distances be-
tween ti and two entities e1 and e2, and can be transferred
to position vectors pi1, pi2 ⊂ Rdp by looking up a posi-
tion embedding table. This embedding table is initialized
randomly and updated during the training process. Concate-
nating the above two embeddings, each word ti can obtain
its entity-aware representation as mi = [wi; pi1; pi2] ⊂ Rd.
Thus the instance representation can be constructed as X =
[m1;m2; . . . ;ml] ⊂ Rl×d, where d = dw + 2 · dp and l is
the maximum length of the sentences.

Encoder: Piecewise CNN
Convolutional neural networks capture the sentence seman-
tics with sliding windows. In the convolutional layer, the
embedding window Xt;t+u = [mt;mt+1 . . . ;mt+u−1] ⊂
Ru×d interacts with convolution kernels {W1, . . . ,Wp} ⊂
Ru×d to extract sentence-level features, where u is the width
of kernel and p is the number of kernels.

Followed by max-pooling layer, the most responsive re-
gion of convolutional output C ⊂ Rl×p is retained. Instead
of just using a unified pooling layer, Zeng et al. (2015) ap-
plied max-pooling operation to different pieces of sentence
respectively, which has been proved to better capture struc-
tured information between two entities. The final feature
vectorH ⊂ R3×p can be obtained by concatenating all pool-
ing results of three pieces.
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Figure 2: (a) Instances x1, x2 . . . xj inside the bag firstly encode themselves by piecewise convolutional neural networks, and
obtain sentence-level representations h1, h2 . . . hj . Based on the MIL framework, selective attention is adopted to form better
bag-level representations z =

∑
i αihi over instances. (b) Inside the bag, those noisy or unrepresentative instances with lower

attention score αi are selected {xi|αi < Tα} for additional virtual adversarial training. (c) Outside the bag, reliable bag-level
representations z are further enhanced via adversarial learning.

MIL: Multi-Instance Learning
For a model parameterized by θ, input representation xi ∈
X of each sentence si in bag B can be encoded to feature
vector hi ∈ H , then multi-instance learning framework con-
siders all instances inside the bag to get a relatively accurate
representation z, which is defined as:

z =
∑
i

αihi

As for the weight α, we adopt a soft attention mechanism
as in Lin et al. (2016), where αi is the normalized attention
score calculated by a query-based function fi which mea-
sures how well the sentence representation hi and the predict
relation r matches:

αi =
efi∑
j e
fj

where fi = hiAqr, A is a weighted diagonal matrix and
qr is the query vector which indicates the representation of
relation r (randomly initialized).

Then, based on this bag-level representation, a simple
fully-connected layer with activation function softmax is
added to map the feature vector z to a conditional proba-
bility distribution p(r|Z, θ):

p(r|Z, θ) = eor∑nr

i=1 e
oi

where o = Mz + b is the score associated to all relation
types, nr is the total number of relations, M is a projection
matrix and b is the bias term.

Finally, we define the objective function of MIL frame-
work using cross-entropy as follows:

J(θ) = −
∑
i=1

log p(ri|zi, θ)

IVAT: Instance-Level Virtual Adversarial Training
In MIL, the normalized attention score αi describes how
much the instance xi contribute to the final representation
z. A higher value indicates the instance is cleaner or more

representative, while a lower value implies the instance is
noisy (i.e., its relation label is not reliable). In other words,
the attention score is the label quality signal used in MIL.

We refer instances with high attention scores as Xclean

(i.e., clean instances) and instances with low attention scores
as Xnoisy (noisy instances). As discussed in section In-
troduction, MIL mainly focuses on Xclean and abandons
Xnoisy during the training. To improve the data utilization
of MIL, we introduce virtual adversarial training at the in-
stance level to exploit entity and context information from
Xnoisy . Now we proceed to introduce module details.

For instances {x1, x2, . . . , xi} inside bag B, we use
{α1, α2, . . . , αi} to refer their normalized attention scores
(outputs of the selective attention in section MIL). Then, we
leverage a hyperparameter Tα to identify instances that are
ignored by MIL:

Xnoisy = {xi|αi < Tα}
For instance x ∈ Xnoisy , we refer its conditional prob-

ability distribution output to be p(y|x, θ). Then, we refer
its representation under a small perturbation ||d|| ≤ εx
to be x + d, and the corresponding model output to be
p (y|x+ d, θ). These two outputs are regularized to be sim-
ilar, i.e.,

livat (d, x, θ) := KL [p (y|x, θ) ‖p (y|x+ d, θ)]

where KL is the Kullback–Leibler divergence which mea-
sures the similarity of two probability distributions. As to
the adversarial perturbation dv−adv , its ideal choice should
be the direction maximizing livat, i.e.,

dv−adv := argmax
d
{livat (d, x, θ) ; ‖d‖2 ≤ εx}

Following previous work (Miyato et al. 2018), we employ
an efficient way to estimate dv−adv under L2 norm:

dv−adv ≈ εx
g

‖g‖2
where g = ∇rKL [p(y|x, θ), p(y|x+ r, θ)]|r=ξd with ξ > 0
and d is a randomly sampled unit vector. For neural net-
works, this approximation can be performed with K sets of
back-propagations.
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With such a perturbation dv−adv , our objective is to make
the local distributional smoothness (LDS) of the model as
high as possible, this is defined as:

LDS-X (θ) := −
∑

x∈Xnoisy

livat (dv−adv, x, θ)

BAT: Bag-Level Adversarial Training
Different from noisy instances, high-quality instances are
used to construct the bag-level representation z, which better
matches the associated relation and allows MIL to reduce the
impact of label noise. Here we leverage adversarial training
to unlease the full potential of that high-quality supervision.

Specifically, we add a perturbation d to the bag-level rep-
resentation z instead of word embedding x. Different from
IVAT, we employ the training label instead of the original
output to regularize the output under perturbation, i.e.,

lbat (d, z, θ) := − log p (r|z + d, θ)

Similar to the virtual adversarial perturbation dv−adv in
section IVAT, adversarial perturbation dadv is in the direc-
tion with maximum model output change, which is further
defined as:

dadv := argmax
d
{lbat (d, z, θ) ; ‖d‖2 ≤ εz}

Generally, a linear approximation (Goodfellow, Shlens,
and Szegedy 2014; Miyato, Dai, and Goodfellow 2016) of
adversarial perturbation vector dadv under L2 norm (Fast
Gradient Method) is:

dadv ≈ εz
g

‖g‖2

where g = ∇z log p(r|z, θ), which can be efficiently com-
puted by back-propagation in neural networks. With such a
perturbation, our maximization objective is marked as:

LDS-Z (θ) :=
∑
z

lbat (dadv, z, θ)

Objective
Considering the original objective of MIL framework men-
tioned in section MIL, and two regularization terms at in-
stance level and bag level, the overall maximization objec-
tive function of our method is:

L = J(θ) + β1 LDS-X(θ) + β2 LDS-Z(θ)

where β1 > 0 and β2 > 0 are the weight coefficients corre-
sponding to the modules IVAT and BAT. Module IVAT uses
a hyperparameter Tα to decide extra-learning data ratio. Em-
pirically, the value of β1 is closely related to the value of
parameter Tα (larger Tα ∼ larger β1).

Experiments
Our experiments are designed to verify the effectiveness of
the proposed method — MULTICAST.

Dataset
We evaluate our model on the widely used DSRE dataset
— NYT (Riedel, Yao, and McCallum 2010), which aligns
Freebase (Bollacker et al. 2008) entity relation with New
York Times corpus. This dataset uses the corpus from 2005
to 2006 as the training set, and employs the data of 2007
as a test set. In detail, the training set consists of 522,611
sentences, 281,270 entity pairs and 18,252 relation facts,
while the testing set contains 172,448 sentences, 96,678 en-
tity pairs, and 1,950 relation facts. For relation labels, this
dataset supports 53 different relations including NA which
means no relation between an entity pair.

It is worth noting that, some previous work (Wu, Bam-
man, and Russell 2017; Qin, Xu, and Wang 2018; Ye and
Ling 2019) use another dataset which contains 578,288 sen-
tences in the training set. In fact, that dataset is inaccu-
rate because there is considerable training data and test data
overlaps. This bug was fixed in March 2018, and all recent
work (Huang and Du 2019; Shang et al. 2020) since then
adopt the correct dataset as the benchmark. In order to en-
sure the fairness and scientificity of our experiments, we use
the original dataset release in our study and employ the pop-
ular relation extraction toolkit OpenNRE (Han et al. 2019).

Evaluation Metrics
Following previous literature (Riedel, Yao, and McCallum
2010; Zeng et al. 2015; Lin et al. 2016), we conduct held-out
evaluation. Specifically, Precision-Recall curves (PR-curve)
are drawn to show the trade-off between model precision
and recall, the Area Under Curve (AUC) metric is used to
evaluate the overall model performances, and the Precision
at N (P@N) metric is also reported to consider the accuracy
value for different cut-offs (default using all sentences for
each entity pair while testing). Besides, we also conduct hu-
man evaluation to further support our claims. We adopt the
test set used in the existing literature (Hoffmann et al. 2011),
which contains 395 sentences with human annotations.

Baseline Models
We choose six recent methods as baseline models.
• PCNN-ATT (Lin et al. 2016) uses selective attention to

reduce the weights of noisy instances.
• PCNN-ATT+ADV (Wu, Bamman, and Russell 2017)

adds adversarial noise to DS training data.
• PCNN-ATT+DSGAN (Qin, Xu, and Wang 2018) utilizes

GANs to remove potentially inaccurate sentences from
the original training dataset.

• PCNN-ATT-RA+BAG-ATT (Ye and Ling 2019) uses
intra-bag and inter-bag attentions to deal with the noise
at sentence-level and bag-level.

• PCNN-ATT+SELF-ATT+[CCL-CT] (Huang and Du
2019) integrates a self-attention mechanism into the CNN
structure and defines two student models for collaborative
curriculum learning.

• PCNN-ATT+DC (Shang et al. 2020) employs unsuper-
vised deep clustering to generate reliable labels for noisy
sentences.

12678



Method AUC P@100 P@200 P@300 P@Mean
PCNN-ATT (Lin et al. 2016) 34.13 73.0 69.0 66.0 69.3
PCNN-ATT+ADV (Wu, Bamman, and Russell 2017) 34.99 80.2 72.1 69.4 73.9
PCNN-ATT-RA+BAG-ATT (Ye and Ling 2019) 35.03 77.0 75.5 72.3 74.9
PCNN-ATT+DSGAN (Qin, Xu, and Wang 2018) 35.19 76.2 70.7 68.4 71.8
PCNN-ATT+SELF-ATT* (Huang and Du 2019) 36.80 81.1 71.6 70.4 74.4
PCNN-ATT+SELF-ATT+CCL-CT* (Huang and Du 2019) 38.10 82.2 79.1 73.1 78.1
PCNN-ATT+MULTICAST (Ours) 38.78±0.15 83.7±1.5 79.2±1.0 74.2±0.7 79.0±0.6

Table 1: Performances of all compared models. Models marked with * are quoted from original papers, since there are no
open-source codes released.
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Figure 3: PR-Curve. Models with * directly quote the drawn
curves from the corresponding papers.

Overall Comparison
We summarize the model performances of our method and
above-mentioned baseline models in Table 1. From the re-
sults, we can observe that: (1) With the help of our pro-
posed modules (MULTICAST, i.e., IVAT+BAT), the vanilla
baseline model PCNN-ATT achieves the best performance
in all five metrics. (2) Compared with the standard base-
line model PCNN-ATT, MULTICAST improves the met-
ric AUC (34.13→38.78) by 13.6% and the metric P@Mean
(69.3→79.0) by 14.0%.

The overall PR-curve is visualized in Figure 3. From the
curve, we can observe that: (1) Compared to the PR-curve
of standard baseline model PCNN-ATT, our method shifts
up the curve a lot. (2) Our method surpasses current SOTA
model in almost all ranges (except when the recall is be-
tween 0.05 and 0.10) along the curve.

Controlled Experiment
We identify the low data utilization issue as the key bottle-
neck of DS-MIL. To verify that those low-score sentences
are not used by the model, we remove these sentences from
the training set with different thresholds (e.g. αi < 0.1, 0.2),
and use the reduced dataset to re-train PCNN-ATT models
and our proposed models.

Dataset Size Method AUC
522611 PCNN-ATT 34.13
(unfiltered) +MULTICAST 38.93
334194(-36%) PCNN-ATT 33.87(-0.7%)
(filtered @ 0.1) +MULTICAST 36.50(-6.2%)
310039(-41%) PCNN-ATT 33.70(-1.3%)
(filtered @ 0.2) +MULTICAST 36.24(-6.9%)

Table 2: Model performances of the original dataset and re-
duced dataset

We summarize model performances on the original
dataset and reduced dataset in Table 2. With the significant
reduction in the amount of data, the MIL method PCNN-
ATT only has subtle performance changes (i.e., yielding
∼ 1% performance loss). It verifies our intuition that MIL
abandons these instances and ignores them during train-
ing. Besides, our method has a noticeable large performance
drop (38.93→36.50) after removing these training instances.
It verifies that our proposed method effectively recycles
abandoned training instances thus leading to a better data-
utilization.

Human Evaluation
We also evaluate our proposed method MULTICAST on the
human-annotated dataset and results are listed in Table 3.

From the table we can observe that: (1) Our method can
still significantly improve model performance under accu-
rate human evaluation. (2) Compared to other baseline mod-
els, our method can generalize better.

Ablation Study
We further conduct ablation studies to verify the effective-
ness of our proposed modules respectively.

As to module IVAT, it is designed for utilizing training
instances that are abandoned by the MIL framework. Intu-

Method AUC F1
PCNN-ATT 38.91 46.98
PCNN-ATT+DSGAN 43.51(+4.60) 47.49(+0.51)
PCNN-ATT+MULTICAST 46.03(+7.12) 50.29(+3.31)

Table 3: Model performances of human-annotated dataset
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Method AUC P@100 P@200 P@300 P@Mean
PCNN-ATT (Lin et al. 2016) 34.13 73.0 69.0 66.0 69.3
+BAT 35.10(+0.97) 79.0(+6.0) 77.5(+8.5) 70.7(+4.7) 75.7(+6.4)
+IVAT 37.97(+3.84) 81.2(+8.2) 77.6(+8.6) 73.1(+7.1) 77.3(+8.0)
+IVAT+BAT 38.93(+4.80) 86.2(+13.2) 78.6(+9.6) 74.1(+8.1) 79.6(+10.3)
PCNN-ATT-RA+BAG-ATT (Ye and Ling 2019) 35.03 77.0 75.5 72.3 74.9
+IVAT* 38.23(+3.20) 87.0(+10.0) 82.5(+7.0) 75.3(+3.0) 81.6(+6.7)
PCNN-ATT+DSGAN (Qin, Xu, and Wang 2018) 35.19 76.2 70.7 68.4 71.8
+BAT 36.24(+1.05) 79.2(+3.0) 73.1(+2.4) 71.8(+3.4) 74.7(+2.9)
+IVAT 39.21(+4.02) 84.2(+8.0) 77.6(+6.9) 73.4(+5.0) 78.4(+6.6)
+IVAT+BAT 40.85(+5.66) 86.2(+10.0) 81.1(+10.4) 74.4(+6.0) 80.6(+8.8)

Table 4: Ablation study with three baseline models. The model marked with * does not have bag representation and cannot be
integrated with BAT (it employs a two-layer attention mechanism to get relation-aware embedding).
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Figure 4: PR-curves of modules IVAT and BAT

itively, improvements from this module are orthogonal to
attempts aiming to further improve the supervision quality.
Thus, we add this module to three baselines and summa-
rize their performances in Table 4. Module IVAT brings sta-
ble and significant improvements to different baseline mod-
els in all metrics. For the standard baseline model PCNN-
ATT, with the IVAT module alone, its AUC score is already
close to the current SOTA model (37.97∼38.10). For an-
other two baseline models, module IVAT also leads to con-
sistent performance improvements. For instance, with IVAT,
all metrics of the method PCNN-ATT-RA+BAG-ATT have
exceeded the SOTA model (e.g., its P@N score and AUC
score reaches 81.6 and 38.23, while the SOTA gets 78.1 and
38.10).

For module BAT, it aims to make full use of high-quality
representations at bag level. As this module still relies on su-
pervised label information (i.e., the more accurate represen-
tation is, the more model performance can be enhanced), it
has fewer performance improvements than IVAT. Still, this
module leads to consistent performance improvements on
both baselines that have bag-level representations. Besides,
we find the two modules are not exclusive (0.97+3.84∼4.80,
1.05+4.02∼5.66).

To better understand the effects of two modules, we draw
their PR-curves in Figure 4. From the figure we can observe
that: (1) the IVAT module significantly raises the curve of
baseline model in all ranges. (2) the BAT module has a larger
benefit with a higher precision score. This observation fur-
ther verifies our intuitions.

Discussion About AT and VAT
Our method MULTICAST leverage two strategies to coor-
dinate AT and VAT: (1) instead of adding AT/VAT to all in-
stances, MIL attention signals are leveraged to recognize the
proper subset to apply these techniques. (2) instead of apply-
ing both AT and VAT at both levels, we only apply AT at the
bag level and VAT at the instance level.

Effectiveness of Level Selection Classical methods apply
AT (Wu, Bamman, and Russell 2017)/VAT to all instances
without any selection. In contrast, MULTICAST applies AT
and VAT at different levels. To verify the effectiveness of this
strategy, we conduct comparison to the conventional meth-
ods and summarize the results in Table 5. The gap between
adding AT to all instances and adding AT to bag features
are marginal. Intuitively, these two methods are very simi-
lar to each other, while adding AT at the bag-level is faster
(no need to conduct back-propagate to the embedding layer).
On the other hand, adding VAT to all more instances (which
would also be slower) performs worse than only adding VAT
to abandoned instances. It verifies that the context infor-
mation of high-quality instances are already utilized by the
training algorithm, and there is no need to apply VAT on
these instances.

Method Level AUC
PCNN-ATT - 34.13

PCNN-ATT+AT all instances 34.99(+0.86)
bag features 35.10(+0.97)

PCNN-ATT+VAT all instances 37.35(+3.22)
noisy instances 37.97(+3.84)

Table 5: Discussion of different level selection ways
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KB Fact: (lebron james lived in akron) Bag Label: /people/person/place lived

Sentences Attention Score Sentence Label
w/o BAT w/ BAT w/o IVAT w/ IVAT

an estimated 40,000 ohio state fans came to town, including the akron
native lebron james, giving this quintessential college town ... 0.59 0.71 lived in lived in

bynum is not another lebron james, the high school phenomenon from
akron, ohio, who was the top draft pick in 2003 and immediately ... 0.19 0.13 NA borned in

lebron james and his friends used to drive from akron, ohio,
fill a few of the empty aquamarine seats in cleveland’s downtown ... 0.22 0.16 lived in NA

Table 6: Case study of how modules IVAT and BAT work

Method AUC
PCNN-ATT 34.13
+Instance-Level AT+Bag-Level VAT 32.34( -1.79)
+Instance-Level AT+Bag-Level AT 34.16(+0.03)
+Instance-Level VAT+Bag-Level VAT 36.36(+2.23)
+Instance-Level VAT+Bag-Level AT 38.93(+4.80)

Table 7: Discussion of different collaboration ways

Effectiveness of Collaboration After clarifying the
choice of level selection, we proceed to consider the cooper-
ation strategy between AT and VAT (results are summarized
in Table 7): (1) For instance-level noisy data, AT may am-
plify the effects of wrong labels and results in severe confir-
mation bias problem (Tarvainen and Valpola 2017), which
makes the model converge too fast and learn nothing ex-
tra (34.13∼34.16). (2) For bag-level high-quality features,
VAT may weaken the original supervised information pro-
vided by MIL framework and complicates model training
(38.93→36.36, 34.16→32.34). Comparing Table 5 and Ta-
ble 7, Instance-Level AT and Bag-Level VAT actually has a
negative impact on the model performance (35.10→34.16,
37.35→36.36).

Case Study and Visualization
In order to better understand how BAT and IVAT work, we
conduct case studies and visualization.

In our method MULTICAST, both IVAT and BAT im-
prove model performance, but the ways they work are en-
tirely different. We select a typical bag to illustrate their
roles respectively: (1) For the bag (see Table 6) with KB
fact (lebron james lived in akron), it consists of three dif-
ferent sentences. Module IVAT pays its attention to these
low-score (0.19, 0.22) sentences. With the help of the IVAT
module, these sentences are allowed to rethink their prob-
ability distributions without considering their noisy labels.
For example, although the 3rd sentence (lebron james and
his friends used to drive from akron ...) mentions the entity
pair (lebron, james), it actually fails to express the relation
live in. With the help of IVAT, this instance succeeds to real-
ize the error and find its true label to be NA. (2) Meanwhile,
the BAT module focuses on accurate bag features formed by
high-quality instances. In this bag, the final representation
is mainly composed of the 1st sentence (... including the
akron native lebron james), which is representative enough

0.80.1

0.1

0.5

0.4
0.1

/

Figure 5: Effect diagram of modules IVAT and BAT

to express current bag label lived in. After the adversarial
enhancement at bag level, the model is more confident in the
high-quality instance with higher attention score (the repre-
sentation of the 1st instance is near to the bag-level repre-
sentation).

Moreover, we draw a diagram to better illustrate their
mechanisms. On the left side of Figure 5, original DS-MIL
only uses bag features zx and zy for training and obtains
a decision boundary without considering noisy instances
like y2. Thus, the resulting model may not be trained with
abundant instances and have issues like shifted label distri-
bution (Ye et al. 2019). On the right side, IVAT helps in-
stances x3 and y2 find their correct labels. It works with
BAT to smooth model outputs in their respective adversar-
ial domains, which prompts the model to generate a better
classification boundary.

From the above diagram we can also see that, IVAT acts
on those noisy instances (x3, y2, y3), which are far away
from the targets of module BAT — bag features zx, zy .
Therefore, the adversarial domains of modules BAT and
IVAT only have limited overlap, which provides an intuitive
explanation for why the effects of two modules are orthogo-
nal (see Table 4, 0.97+3.84∼4.80, 1.05+4.02∼5.66).

Conclusion

In this paper, we propose Multi-Instance Collaborative Ad-
versarial Training (MULTICAST) to alleviate the problem
of low data utilization under MIL framework. Experiments
have shown the effectiveness of our method with stable
and significant improvements over several different baseline
models, including current SOTA systems.
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