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Abstract

Lexically constrained neural machine translation (NMT),
which leverages pre-specified translation to constrain NMT,
has practical significance in interactive translation and NMT
domain adaptation. Previous works either modify the de-
coding algorithm or train the model on augmented datasets.
These methods suffer from either high computational over-
heads or low copying success rates. In this paper, we inves-
tigate ATT-INPUT and ATT-OUTPUT, two alignment-based
constrained decoding methods. These two methods revise
the target tokens during decoding based on word align-
ments derived from encoder-decoder attention weights. Our
study shows that ATT-INPUT translates better while ATT-
OUTPUT is more computationally efficient. Capitalizing on
both strengths, we further propose EAM-OUTPUT by intro-
ducing an explicit alignment module (EAM) to a pretrained
Transformer. It decodes similarly as ATT-OUTPUT, except
using alignments derived from the EAM. We leverage the
word alignments induced from ATT-INPUT as labels and train
the EAM while keeping the parameters of the Transformer
frozen. Experiments on WMT16 De-En and WMT16 Ro-
En show the effectiveness of our approaches on constrained
NMT. In particular, the proposed EAM-OUTPUT method
consistently outperforms previous approaches in translation
quality, with light computational overheads over uncon-
strained baseline.

Introduction
Lexically constrained neural machine translation (NMT) is
a task that translates the source sentence to include pre-
specified lexical constraints. It is useful in a range of set-
tings, including interactive translation with user-provided
lexical constraints (Koehn 2009), domain adaptation where
lexical constraints are from pre-specified dictionary (Hasler
et al. 2018), and scenarios where some phrases, such as
product prices, company names or web URLs, are ex-
pected to be translated perfectly without any error. Different
from statistical machine translation (Koehn, Och, and Marcu
2003), NMT has no explicit word alignment during model
training or decoding. Therefore, it is not trivial to impose
lexical constraints into the NMT model.
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Figure 1: The proposed model structure for constrained de-
coding. We modify the decoding algorithm by adding an
Aligner and Editor. During decoding, the Aligner extracts
alignment from attention weights. If the aligned source to-
ken is in a given source constraint (b ≤ s̃ ≤ e), the Editor
will revise the decoder output probabilities at the current and
the next ly−1 steps to force the generation of the target con-
straint ŷu:v , where ly = v − u+ 1.

Previous works either modify the decoding algorithm or
train the model on augmented code-switched data to solve
this problem. Some works (Hokamp and Liu 2017; Post
and Vilar 2018; Hu et al. 2019) modify the decoding algo-
rithm by enumerating all feasible constraints at each step
and selecting hypotheses with constraints according to the
translation probabilities. Although these methods can guar-
antee the presence of the constraints at test time, they sig-
nificantly slow down the decoding and tend to translate the
specified source phrases repeatedly or omit source phrases
(Zhang et al. 2019). To improve the decoding efficiency,
other works (Hasler et al. 2018; Alkhouli, Bretschner, and
Ney 2018; Song et al. 2020) impose lexical constraints
with word alignments. The alignments can be extracted
with attention weights in vanilla Transformer (Alkhouli,
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Bretschner, and Ney 2018) or from the alignment module
in an alignment-enhanced Transformer (Song et al. 2020).
However, the multi-head attention weights in the Trans-
former are reported to capture poor alignments (Garg et al.
2019). The alignment-enhanced Transformer (Song et al.
2020) relies on external aligner such as GIZA++ (Brown
et al. 1993; Och and Ney 2003) and requires re-training the
whole model on the translation and alignment tasks from
scratch.

Another line of work trains the NMT model on pseudo
code-switched dataset, which is created by replacing the
corresponding source phrases with constraints (Song et al.
2019) or by appending constraints right after its correspon-
dents (Dinu et al. 2019). The bilingual dictionary is requisite
to provide the alignment between source and target phrases.
During inference, the constraints are imposed on the source
sentence similarly. These methods can translate the code-
switched source sentence efficiently, however the noise in
the dictionary may degrade their performance.

In this paper, we propose alignment-based constrained de-
coding methods that can balance between decoding accuracy
and efficiency. We improve upon previous work by extract-
ing more accurate alignments and removing the requirement
for GIZA++ and training from scratch. As shown in Fig-
ure 1, the proposed methods impose lexical constraints with
an Aligner and an Editor. At each step, the Aligner deter-
mines whether a source constraint is currently being trans-
lated, and the Editor revises target tokens with the corre-
sponding target constraint accordingly. We investigate ATT-
INPUT and ATT-OUTPUT, two approaches that derive align-
ments from attention weights and incorporate lexical con-
straints into vanilla Transformer. We find that ATT-INPUT
generates better translations while ATT-OUTPUT has higher
decoding efficiency. To capture both advantages, we further
propose EAM-OUTPUT which introduces an explicit align-
ment module (EAM) to a pretrained Transformer. EAM-
OUTPUT decodes similarly as ATT-OUTPUT except extract-
ing alignments from the EAM. While keeping the Trans-
former parameters frozen, the EAM is trained in a self-
training manner with alignment labels induced from ATT-
INPUT. We examine our approaches on WMT16 De-En and
WMT16 Ro-En datasets. The results demonstrate the effec-
tiveness of our proposed methods on balancing translation
quality and decoding efficiency.1

Background
NMT Decoding with Beam Search
Let X = {x1, ..., xS}, Ŷ = {ŷ1, ..., ŷT̂ } and Y =
{y1, ..., yT } be source sentence, reference translation and
model translation, respectively. At inference time, given
model parameters θ and source sentence X, the translation
with the highest probability is selected as model output:

Y = argmax
Y

{T+1∏

t=1

pθ(yt|y0:t−1,X)
}
. (1)

1Code is public at https://github.com/ghchen18/cdalign

where the special tokens y0 (i.e. 〈bos〉) and yT+1 (i.e. 〈eos〉)
are used to represent the beginning and end of all target sen-
tences. The model usually uses beam search algorithm for
decoding. The decoder maintains a beam of size k contain-
ing a set of active hypotheses. At each decoding time step
t, the model predicts a token distribution over the vocab-
ulary V for each hypothesis, producing k × V candidates.
Then it picks the k candidates with the highest overall scores
as the new hypotheses for the next time step. The overall
score is defined as

∑t
t′=1 log pθ(yt′ |y<t′ , X). Any hypoth-

esis that ends with 〈eos〉 is restricted from being extended
further. Beam search returns the highest scored sequence as
the translation Y .

In lexically constrained decoding, apart from the source
sentence X , the model is also provided with Nc constraint
pairs C = {(Cxi ,Cyi )}Nc

i=1, where Cxi = xb(i):e(i) and Cyi =

ŷu(i):v(i) are source and target phrases in the ith constraint
pair respectively. The length of the ith target constraint is de-
noted as lyi = v(i)−u(i)+1. We modify the beam search de-
coding algorithm to incorporate these target constraints into
the translation.

Transformer Model
Transformer (Vaswani et al. 2017) has achieved the state-
of-the-art performance on machine translation task in recent
years. It is an encoder-decoder model that entirely relies
on the attention mechanism (Bahdanau, Cho, and Bengio
2015). During decoding, word alignments can be extracted
from encoder-decoder attention weights. Given source sen-
tence X , we use H = {h1, ..., hS} to denote the encoder
output. At decoding step t, the model takes translation pre-
fix Y = {y0, ..., yt−1} as the decoder input and generates
an output distribution to predict yt. The lth decoder layer
has t decoder hidden states Zlt = {zl1, ..., zlt}. We denote
the encoder-decoder attention weights of the last position as
wlt ∈ RS, in which the element [wlt]s measures the relevance
between decoder hidden state zlt and the encoder output hs.
We extract the aligned source position at for the output tar-
get token yt from the attention weights wlt with maximum a
posterior strategy:

wlt =
1

N

∑

n

softmax
( (HOK

n )(zltO
Q
n )
>

√
dk

)
,

at = argmax
0<s′<S+1

[wlt]s′ .

(2)

where OK
n ,O

Q
n ∈ Rdmodel×dk are the key and query projec-

tion matrices for the n-th head, N is the number of attention
heads and dk = dmodel/N .

With the extracted word alignment pair xat–yt, target
constraints can be imposed on the translation (Alkhouli,
Bretschner, and Ney 2018). However, previous work (Garg
et al. 2019; Song et al. 2020) report that such method is ill-
suited for deriving accurate word alignments, thus degrading
the performance of alignment-based constrained decoding.
As a result, it is necessary to develop novel alignment-based
constrained decoding methods and improve upon previous
approaches by extracting more accurate alignments and by
properly modifying the decoding process.
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Method
We propose alignment-based constrained decoding meth-
ods and introduce the Aligner and Editor modules into the
Transformer, as shown in Figure 1. At each decoding time
step, the Aligner extracts word alignments from attention
weights, while the Editor changes the decoder output proba-
bilities to impose the target constraint according to the word
alignments. We investigate ATT-INPUT and ATT-OUTPUT,
two constrained decoding methods for vanilla Transformer,
and EAM-OUTPUT, a method that combines the benefits of
ATT-INPUT and ATT-OUTPUT to further improve the per-
formance of constrained decoding task.

Decoding with Vanilla Transformer

During beam search with vanilla Transformer, the Aligner
aligns target token yt to source token xs̃ at decoding step t:
xs̃–yt. If s̃ falls into the span of the ith source constraint,
i.e. s̃ ∈ [b(i), e(i)], the Editor revises the decoder output
distribution at time step r (t ≤ r < t + lyi ) to incorporate
the target constraint Cyi = ŷu(i):v(i). In particular, to force
the generation of constrained token ŷu(i)+r−t at step r, the
Editor changes the output probabilities by setting the prob-
abilities of all tokens to zero except ŷu(i)+r−t. The likeli-
hood of ŷu(i)+r−t is set as the maximum probability among
the vocabulary to prevent the corresponding hypothesis from
being trimmed in the following decoding time steps. Every
constraint pair is allowed to be activated only once for each
hypothesis during the whole decoding process. Now, a key
question arises: how do we extract the aligned source token
xs̃ for target token yt from the attention weights?

In previous work (Garg et al. 2019; Ding, Xu, and Koehn
2019), attention weightswlt from last or penultimate decoder
layer are used to align yt and get alignment pair xat–yt
following Equation 2. This may be sub-optimal, especially
when attention weights are from the bottom decoder lay-
ers (Chen et al. 2020b). wlt describes the relevance of the
decoder hidden state zlt and the encoder output H . H repre-
sents the source tokens x1:S . For the top layers, zlt represents
the tth output token yt. However, for the bottom layers, zlt
may be more related to the tth input token yt−1. So wlt de-
scribes the relevance of x1:S and yt or yt−1. Therefore we
make assumption that we can extract the alignment for yt
either with attention weights wlt or wlt+1, depending on the
layer the attention weights are from. We thus propose two
methods and compare them in the experiments.

ATT-OUTPUT When the attention weights are from top
decoder layers, wlt represent the relevance between source
tokens x1:S and target token yt. yt is the decoder output
token at step t when wlt are computed, thus we name this
method ATT-OUTPUT (see the example in Figure 2). The
extracted alignment pair is xat–yt. If at locates in the span
of the ith source constraint, then yt is expected to be the
first token of the ith target constraint Cyi . The Editor revises
the output distribution as discussed before to incorporate the
constraint Cyi .

Dec. Output 
after Revision

Dec. Input

Source Tokens

The given constraint pair:

Dec. 
Hidden State

(1)Att-Output (2)Att-Input

x3, x4 ⇠ ŷu

y0 y1 y2

z51 z52 z53

x1 x2 x3 x4

y1 y2 ŷu

x1 x2 x3 x4

y1 y2 ŷu

yk3y0 y1 y2

z31 z32 z33 z34

Figure 2: An example illustrating the difference between
ATT-OUTPUT and ATT-INPUT. At time step t = 3, the de-
coder input is y0:2. (1) ATT-OUTPUT extracts alignment for
y3 directly from the attention weights of the fifth decoder
layer. (2) For ATT-INPUT, the hypothesis is extended with k
predicted target tokens. To get the alignment for each pre-
dicted token yk3 , ATT-INPUT runs a second decoder forward
process with {y0:2, yk3} as decoder input and derives align-
ment from attention weights of the third decoder layer. →
represents attention weight. We mark the maximum atten-
tion weight red.

ATT-INPUT Different from ATT-OUTPUT, when attention
weights wlt+1 are from the bottom decoder layers, wlt+1 rep-
resent the relevance between source tokens x1:S and tar-
get token yt. Thus we can extract alignment pair xat+1

–yt
from wlt+1 using Equation 2. This method is called ATT-
INPUT since wlt+1 are computed at step t + 1 and yt is the
last decoder input token at this step. To compute wlt+1, the
model has to run one more forward pass with y0:t as the de-
coder input (see the example in Figure 2). Specifically, the
model extends each hypothesis with the top k scored target
tokens, producing k × k candidates. Then it runs one ad-
ditional forward pass with the k × k candidates as decoder
input and aligns yt of each candidate to the source token
xjat+1

(j ∈ [1, k2]). If xjat+1
is in the span of the ith source

constraint, then yt is expected to be the first token of ith
target constraint Cyi and the Editor will revise yt of the cor-
responding candidate to be ŷu(i). After that, the beam search
algorithm selects the top k scored non-repeating hypotheses
from the k×k candidates as the beam for the next time step.
For a hypothesis that is selected for revision withCyi , the Ed-
itor will revise the output distribution as discussed before at
step r (t < r < t+ lyi ), forcing the translation to contain Cyi .
Since ATT-INPUT requires one additional forward pass, it is
less computationally efficient compared with ATT-OUTPUT.

Decoding with Explicit Alignment Guidance
In our primary experiments, we find that ATT-INPUT trans-
lates better in terms of quality, while ATT-OUTPUT is more
efficient. We also evaluate the word alignments quality and
find that ATT-INPUT extracts significantly more accurate
word alignments. To capture the advantages of both meth-
ods, we propose EAM-OUTPUT, which introduces an ex-
plicit alignment module (EAM) to the trained transformer,
and further improves translation performance over ATT-
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OUTPUT by extracting more accurate word alignments. Dif-
ferent from the joint training scheme in previous methods
(Garg et al. 2019; Song et al. 2020), the EAM performs
self-training on alignments extracted with ATT-INPUT while
keeping the pretrained Transformer frozen.

Specifically, we add an alignment module only at the
penultimate layer, the best layer to extract alignments with
ATT-OUTPUT (Garg et al. 2019). The alignment mod-
ule performs multi-head attention similar to the encoder-
decoder attention sub-layer. It takes the encoder outputH =
{h1, ..., hS} and the current decoder hidden state zL−1t as
input and outputs gt, the alignment score corresponding to
the output token yt, using the similar equation as Equation 2.

We train the alignment module on the same training set
that the Transformer is trained with and use symmetrized
ATT-INPUT alignments as labels. Specifically, given the at-
tention weights W l = {wl2;...;wl

T̂+1
} ∈ RT̂×S at the third

layer2 for a pair of sentences X and Ŷ , binary word align-
ments R can be extracted with:

Rt,s =





1 if s = argmaxs′ W
l
t,s′

0 otherwise
. (3)

We extract alignments with source-to-target and target-
to-source vanilla Transformers and merge them with the
‘grow-diag’ heuristic (Koehn et al. 2005) following previ-
ous practice (Garg et al. 2019; Zenkel, Wuebker, and DeN-
ero 2019) to get symmetrized ATT-INPUT alignments R̂.
In this way, we remove the requisite for external aligners
such as GIZA++ or Fast-Align (Dyer, Chahuneau, and Smith
2013). While the Transformer is pretrained and fixed, we
train the alignment module with the loss function follow-
ing Garg et al. (2019):

La = − 1

T̂

T̂∑

t=1

S∑

s=1

(
R̂pt,s � logGt,s), (4)

where G = {g1;...;gT̂ } is the alignment score matrix pre-
dicted by the EAM module, and R̂p denotes the normal-
ized reference symmetrized ATT-INPUT alignments.3 In this
way, we transfer the alignment knowledge contained in sym-
metrized ATT-INPUT alignments into the EAM model and
extract better word alignments. With the introduced EAM
model, we follow ATT-OUTPUT for constrained decoding,
except that we replace attention weights wlt with gt when
extracting the alignment pair xat–yt.

Experiments
Setup
Data We evaluate our methods on German-English (De-
En) and Romanian-English (Ro-En) language pairs. Mod-
els are trained on WMT16 De-En and WMT16 Ro-En

2We set l = 3 because our primary experiments show that atten-
tion weights from the third decoder layer obtain the best alignment
performance with ATT-INPUT.

3We simply normalize rows corresponding to target tokens that
are aligned to at least one source token of R̂.

training set and evaluated on alignment testset and WMT
news translation testset. We use newstest2013 and
newsdev2016 as development sets for De-En and Ro-
En respectively. For the alignment testset, we use the hand-
aligned, publicly available alignment testset for De-En4 and
Ro-En5. For the WMT news translation testset, we use
newstest2016 for both De-En and Ro-En translations.
All texts are tokenized using the Moses tokenizer (Koehn
et al. 2007). We remove sentences longer than 250 words
and sentence pairs with a source/target length ratio ex-
ceeding 1.5 in the training set. For all language pairs, we
use byte-pair-encoding (Sennrich, Haddow, and Birch 2016,
BPE) with 32K joint merge operations.

Model Configuration The base Transformer model de-
scribed in Vaswani et al. (2017) with shared embeddings
is used in all experiments. Model is implemented on
fairseq toolkit6 (Ott et al. 2019). We use Adam (Kingma
and Ba 2015) and label smoothing for training. The learn-
ing rate is 0.0005 and warmup step is 4000. All the drop-
out probabilities are set to 0.3. The batch size is 32k tokens.
Maximum updates number is 100k for the De-En language
pair and 50k for the Ro-En language pair. For training the
EAM, the maximum updates number is 10k. Consistent with
the observation in Kovaleva et al. (2019), the source punctu-
ation token at the end of sentence may have large attention
weights, which interferes with the alignment extraction. We
thus mask the attention weights of the punctuation token at
the end of the sentence.

Evaluation Our methods are evaluated on alignment ex-
traction task and lexically constrained translation task. The
alignment task is evaluated by alignment error rate (AER)
introduced in Vilar, Popović, and Ney (2006) on the align-
ment testset. We run NMT models to force-generate the tar-
get side of the testset and measure AER against the human
alignment. We extract alignments of two directions for both
language pairs and merge them with ’grow-diag’ heuris-
tic (Koehn et al. 2005). All AER scores are calculated in
raw text format without BPE.

The constrained translation task is evaluated on clean and
constrained testsets. Following previous works (Dinu et al.
2019; Hokamp and Liu 2017), we use beam search with
beam size of 5. To eliminate the impact of sampling, we
repeat experiments on five different sets of constraints and
report the averaged scores. We report case-sensitive BLEU
score using sacreBLEU7 (Post 2018). The copying success
rate (CSR) is the percentage of constraints that are success-
fully generated in the translation, and is calculated at word
level after removing the BPE symbol. Statistical significance
is tested with compare-mt toolkit (Neubig et al. 2019) for

4https://www-i6.informatik.rwth-aachen.de/goldAlignment
5http://web.eecs.umich.edu/∼mihalcea/wpt/index.html#

resources
6https://github.com/pytorch/fairseq
7BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a

+version.1.4.3
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Layer ATT-OUTPUT ATT-INPUT
De-En Ro-En De-En Ro-En

1 75.7 89.5 17.0 90.5
2 68.5 73.9 23.7 19.6
3 70.5 73.6 16.3 14.3
4 30.7 29.7 64.4 66.6
5 24.9 24.2 74.7 75.1
6 30.5 29.2 74.9 75.9

Table 1: AER scores of symmetrized alignments on the de-
velopment set. Symmetrized GIZA++ alignments are used
as reference. The lower AER score the better. The best per-
formance among all layers is underlined and in bold.

1000 resamples and p = 0.05. The decoding speed is tested
on a single GeForce RTX 2080Ti GPU.

Baselines We compare with three existing methods to
make the evaluation convincing.
• Vectorized Dynamic Beam Allocation (Hu et al. 2019,

VDBA), which improves grid beam search (Hokamp and
Liu 2017) and dynamic beam allocation (Post and Vilar
2018) with higher decoding efficiency.
• Add alignment head method (Song et al. 2020, Add-

AlignHead), which jointly trains the model on translation
and alignment tasks and uses the averaged attention weights
over all decoder layers for constrained decoding.
• Code Switching method (Song et al. 2019, Code-

Switch), which translates with constraints by training model
on synthetic code-switching corpus.

Method De-En Ro-En

Add-AlignHead 23.2 40.9

ATT-OUTPUT 29.1 43.8

ATT-INPUT 20.2 35.2

EAM-OUTPUT 22.2 39.7

Table 2: AER scores of symmetrized alignments on the
alignment testset. ‘Grow-diag’ heuristic is used to extract
symmetrized alignments. The lower AER score the better.

Alignment Extraction Task
To determine the best layer to extract alignments, we enu-
merate every decoder layer to induce binary alignments on
the development set with force decoding using the ATT-
OUTPUT and ATT-INPUT methods (see Table 1). The corre-
sponding reference alignments are induced with GIZA++8.
Alignments extracted with attention weights from the fifth
decoder layer get best performance for ATT-OUTPUT, which
is in consistent with the observation in Garg et al. (2019).

8https://github.com/moses-smt/mgiza

The alignments using attention weights from the third de-
coder layer get best AER for ATT-INPUT, which outper-
forms the best alignments with ATT-OUTPUT. In the fol-
lowing experiments, we use attention weights from the fifth
layer for the ATT-OUTPUT method and the third layer for
the ATT-INPUT method.

ATT-OUTPUT extracts alignments for target token yt be-
fore observing yt. In contrast, for the ATT-INPUT strategy,
the alignments are extracted from attention weights after
another decoder forward pass where yt is among the de-
coder input. This could explain the superior alignment per-
formance of ATT-INPUT over ATT-OUTPUT. Suppose for
the same source sentence, two alternative translations di-
verge at position t, with yt and y′t which respectively cor-
respond to different source words. Presumably, the source
word that is aligned to yi and y′i should change correspond-
ingly. However, this is not possible under the ATT-OUTPUT
method, because the alignment is extracted before prediction
of yt or y′t.

We further evaluate the alignments extracted with differ-
ent alignment-based decoding methods on the testset with
force decoding and present the AER in Table 2. Among
all methods, ATT-INPUT gets the best AER since the other
three methods align yt before observing it. For the other
three methods, EAM-OUTPUT extracts the best alignments,
indicating that EAM-OUTPUT can potentially improve the
alignment-based constrained decoding performance.

Constrained NMT Task
Constraints In practice, the constraints are provided by
human translators through user feedback or by looking up
the domain-specified dictionaries. Following previous work
(Hokamp and Liu 2017; Post and Vilar 2018), in the exper-
iment we simulate the practical scenario by sampling con-
straints from phrase pairs that are extracted from source
and reference sentences using human-annotated alignments
for the alignment testset and GIZA++ alignments for WMT
news testset. Constraints are assumed to be not easily trans-
lated; thus they exclude the top-100 highest frequency to-
kens and tokens that have been successfully translated with
greedy search. The number of constraints in each sentence
is up to 3. For each constraint, the length of constrained
phrase is sampled among 1 to 3. We sample uniformly in
the sentences before applying BPE. In practical applications
like domain adaptation via terminology dictionaries, con-
straints are given in the same order as their corresponding
source phrases in the source sentence, which could be dif-
ferent from the order of constraints in the translation. We
shuffle the sampled constraints to simulate this scenario.

Results The BLEU and CSR results on constrained de-
coding task are shown in Table 3 and Table 4, respectively.
ATT-INPUT performs better than ATT-OUTPUT in terms of
BLEU and CSR. The averaged BLEU over all language
pairs of ATT-INPUT are 2.8 and 2.9 higher than that of
ATT-OUTPUT on the alignment and news translation test-
sets, respectively. However, ATT-OUTPUT decodes faster
than ATT-INPUT, which can be attributed to ATT-INPUT
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Model
Alignment testset WMT news translation testset

De→En En→De Ro→En En→Ro Avg. De→En En→De Ro→En En→Ro Avg. Time

Vanilla Transformer 31.0 24.1 21.0 16.7 23.2 36.2 31.7 33.2 26.6 31.9 716

VDBA 34.2? 25.4 24.2? 19.2? 25.8 41.5 32.7 37.5 30.5 35.6 1590

Add-AlignHead 33.3 27.0 24.0? 17.6 25.5 41.0 36.1 36.4 30.5 36.0 1145

Code-Switch 33.1 27.4? 22.7 17.2 25.1 40.8 36.1 36.7 30.6 36.1 759

ATT-OUTPUT 29.6 23.6 22.2 17.4 23.2 38.5 33.7 35.3 29.0 34.1 997

ATT-INPUT 33.7 26.9 23.6 19.7? 26.0 41.6 36.9 37.6 31.7 37.0 1442

EAM-OUTPUT 34.7 27.7 24.2 19.6 26.6 42.6 37.8 38.0 32.1 37.6 968

Table 3: BLEU scores of constrained decoding on the testsets of both alignment task and news translation task. The best
result among each column is underlined and in bold. The ‘Vanilla Transformer’ row presents unconstrained decoding results
with vanilla Transformer. Scores with asterisk indicate no significant difference with EAM-OUTPUT results after statistic
significance test. Time (Second) is the total decoding time on De-En news translation testset when batchsize = 1.

Model De→En En→De Ro→En En→Ro

VDBA 99.3% 99.7% 99.0% 99.0%

Add-AlignHead 90.3% 89.8% 80.8% 84.4%

Code-Switch 91.2% 90.2% 81.2% 66.2%

ATT-OUTPUT 92.9% 85.9% 83.6% 82.1%

ATT-INPUT 95.2% 95.1% 93.9% 97.3%

EAM-OUTPUT 97.4% 96.1% 93.7% 96.7%

Table 4: Copying success rate (CSR) on the alignment test-
set. CSR is calculated on word level without BPE.

requiring an additional forward pass to extract alignments
(discussed in Section ). EAM-OUTPUT gets the highest
averaged BLEU score in both alignment and news trans-
lation testsets. It significantly outperforms Add-AlignHead
and Code-Switch in terms of BLEU and CSR. When com-
paring with ATT-INPUT, it obtains slightly higher BLEU
and similar CSR, with significantly faster decoding speed.
VDBA gets the highest CSR score, but its time complexity is
also the highest and the averaged BLEU is lower than EAM-
INPUT. In summary, EAM-OUTPUT achieves the best over-
all performance when considering BLEU, CSR and decod-
ing speed.

We also test EAM-INPUT, the method that adds the EAM
to the third decoder layer and decodes similarly as ATT-
INPUT, except replacingwlt+1 with gt+1, the output of EAM
when the decoder input is y0:t. We find that although EAM-
INPUT extracts significantly better alignments than EAM-
OUTPUT, they have similar BLEU scores. For the alignment
task, observing the ground truth ŷt can help to extract more
accurate alignment for ŷt. However, for constrained decod-
ing, since EAM-INPUT only observes yt predicted by the
model, its alignment extraction ability may degrade. Consid-

ering the computational overhead brought by EAM-INPUT,
we recommend EAM-OUTPUT for constrained decoding.

Metric no-cons gt-cons o2m-cons

BLEU 30.5 31.2 30.9

CSR 67.9% 96.4% 81.2%

Table 5: Constrained decoding on the De-En WSD testset.
No-cons, gt-cons and o2m-cons represent decoding given
no, ground truth and one-to-many constraints respectively.

Decoding with One-to-many Constraints In practical
scenarios when constraints are derived automatically from
dictionaries, each source phrase may have multiple tar-
get translation candidates. We extend the EAM-OUTPUT
method to work under such setting and test its perfor-
mance on De-En word sense disambiguation (WSD) test-
set9 (Rios Gonzales, Mascarell, and Sennrich 2017). Each
source sentence in the testset has an ambiguous phrase and
each ambiguous phrase is provided with multiple transla-
tion candidates. During inference, if the aligned source to-
ken locates in the source phrase span, we enumerate all tar-
get constraint candidates and append each after the hypoth-
esis to get a batch of new hypotheses. The batch size is the
same as the constraint candidates number. Then the model
runs another decoder forward pass and selects the constraint
with the highest length-averaged log-probability as the tar-
get constraint. EAM-OUTPUT trained on WMT16 De-En
training set is used in this experiment. According to the re-
sults shown in Table 5, EAM-OUTPUT improves over un-
constrained baseline given one-to-many constraints, demon-
strating its ability to select the right target constraint from
multiple candidates. We also present the upper bound when

9https://github.com/ZurichNLP/ContraWSD
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Item Translations

Input Dies bestätigt auch Peter Arnold vom Landratsamt Offenburg.

Without constraint Peter Arnold of the Landratsamt Offenburg also confirms this.

+(Landratsamt,District Office) This is also confirmed by Peter Arnold of the District Office Offenburg.

Reference This was also confirmed by Peter Arnold from the Offenburg District Office.

Input Bekannt ist der Büchner-Preisträger vor allem als Prosaautor, Theatertexte sind in seinem Werk rar.

Without constraint The bookmaker-prizewinner is known mainly as a prosaautor, theatre texts are rar in his work.

+(Büchner, Büchner)+(rar, rare)

+(Prosaautor, prose writer)
The Büchner-laureate is known above all as prose writer, theatre texts are rare in his work.

Reference
The Büchner prizewinner is known primarily as a writer of prose, with theatre texts something of a

rarity for him.

Table 6: Lexically constrained translation examples for German to English with the EAM-OUTPUT method.

giving the ground truth target constraints (gt-cons) for refer-
ence. More explorations in decoding with one-to-many con-
straints are left as future work.

Case Study We present two examples of translations
with EAM-OUTPUT in Table 6. The vanilla Transformer
just copies some German phrases and fails to translate
them, such as ‘Landratsamt’, ‘Prosaautor’ and ‘rar’. It mis-
translates the person name ‘Büchner’ which should be
copied. The EAM-OUTPUT method successfully translates
these phrases given the constrained pairs. These examples
and manual inspections of others indicate that our method
successfully incorporates the given constrained pairs into the
translations.

Related Work
Hokamp and Liu (2017) propose Grid Beam Search (GBS),
a lexically constrained decoding algorithm with only target
constraints provided. The constraints are enforced in out-
put translations by enumerating constraints at each decoding
step. The beam size varies with the number of constraints
and can hardly scale to batch decoding. Post and Vilar
(2018) propose dynamic beam allocation (DBA) algorithm,
which dynamically allocates the slots in a beam with fixed
size and improves the efficiency of GBS. Hu et al. (2019)
further improve DBA by batch decoding and trie representa-
tions. However, Zhang et al. (2019) report that these meth-
ods either translate the specified source phrases repeatedly
or omit some source phrases. Hasler et al. (2018) propose to
conduct alignment-based constrained decoding with finite-
state acceptors, but they fail to extract accurate alignments
from attention weights. Song et al. (2020) add additional at-
tention modules on each decoder layer and jointly train the
model on the translation and alignment tasks (Garg et al.
2019). It trains an alignment-enhanced Transformer from
scratch and requires alignment labels from external aligners
such as GIZA++; thus its training cost is high. Recently, Su-
santo, Chollampatt, and Tan (2020) propose to impose target

constraints with Levenshtein Transformer (Gu, Wang, and
Zhao 2019) in a non-autoregressive manner. Starting from
the given constraints, the model inserts tokens at every time
step. They assume the order of given constraints are the same
with their order in the reference, which may not be the case
when constraints are provided by dictionaries.

Another line of works (Song et al. 2019; Dinu et al. 2019;
Chen et al. 2020a) create a synthetic code-switching cor-
pus to augment the training data. The code-switching cor-
pus is built by replacing or appending the target constraint
with the corresponding source phrase according to a bilin-
gual dictionary (Song et al. 2019; Dinu et al. 2019) or by
appending the target constraints after the source sentence
(Chen et al. 2020a). By training on a mixture of original
and synthetic parallel corpora, the model learns to translate
code-switching source sentences. Although translating fast,
Song et al. (2019); Dinu et al. (2019) rely on the quality of
the bilingual dictionary and all these works cannot guarantee
the presence of target constraints in translation.

Conclusion

Lexically constrained machine translation aims to incorpo-
rate external target constraints into NMT model and has
many practical applications, such as interactive translation
and NMT domain adaptation. In this paper, we investigate
ATT-INPUT and ATT-OUTPUT, two alignment-based con-
strained decoding methods for vanilla Transformer and pro-
pose EAM-OUTPUT, a novel self-training and alignment
based constrained decoding approach. EAM-OUTPUT ex-
tends standard Transformer by introducing an alignment
module in a plug and play manner. We train this module
with self-training while keeping the underlying pretrained
Transformer frozen. Experiments on alignment and trans-
lation tasks have proven the effectiveness of our methods.
In particular, EAM-OUTPUT improves over all baselines
on balancing among translation quality, constraints copying
success rate and decoding efficiency.
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