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Abstract

Knowledge-driven dialog has shown remarkable performance
to alleviate the problem of generating uninformative re-
sponses in the dialog system. However, incorporating knowl-
edge coherently and accurately into response generation is
still far from being solved. Previous works dropped into
the paradigm of non-goal-oriented knowledge-driven dialog,
they are prone to ignore the effect of dialog goal, which has
potential impacts on knowledge exploitation and response
generation. To address this problem, this paper proposes a
Goal-Oriented Knowledge Copy network, GOKC. Specifi-
cally, a goal-oriented knowledge discernment mechanism is
designed to help the model discern the knowledge facts that
are highly correlated to the dialog goal and the dialog con-
text. Besides, a context manager is devised to copy facts not
only from the discerned knowledge but also from the dialog
goal and the dialog context, which allows the model to accu-
rately restate the facts in the generated response. The empiri-
cal studies are conducted on two benchmarks of goal-oriented
knowledge-driven dialog generation. The results show that
our model can significantly outperform several state-of-the-
art models in terms of both automatic evaluation and human
judgments.

Introduction
Generating informative and attractive responses have been
demonstrated as a long-standing challenge in open-domain
dialog systems. Multifarious models are proposed based on
the sequence-to-sequence structure (Li et al. 2016; Serban
et al. 2017; Wu et al. 2018) and obtain promising results.
However, these models are still subjected to generate generic
and uninformative responses, such as “I am Okay”; “You
are right”. These bland responses will tend to degrade the
experience of users.

Recently, large-scale knowledge-driven datasets have
been proposed (Ghazvininejad et al. 2018; Dinan et al. 2018;
Moon et al. 2019), to deal with the aforementioned problem,
where the knowledge is linked with utterances to acceler-
ate the research of knowledge-driven conversation models.
Existing methods based on knowledge-driven datasets are
either generative-based methods or retrieve-based methods.
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Knowledge 
Facts 

Forrest 
Gump 

Type Feature Movie 
Honor Academy Award for Best Picture 

Director Robert Zemeckis 

Wish 
Dragon 

Type Cartoon 
Director Chris Appelhans 

Dialog 

User It’s so boring. Let’s talk about movies. 

Bot 

#1: Have you ever seen a feature movie direc-
ted by Chris Appelhans? 

#2: Okay, have you ever seen a feature movie 
directed by Robert Zemeckis? This movie won 
the Academy Award for Best Picture! 

Figure 1: An illustrative example. #1 shows the response
with conflict knowledge facts. #2 shows the response with
coherent knowledge facts.

The retrieval methods select a best-matched response from
the response candidates that are obtained from the database
(Shang, Lu, and Li 2015; Sun et al. 2020), while the gen-
erative methods utilize the dialog context to select knowl-
edge at first, then the selected knowledge will participate
into the generation of responses (Long et al. 2017; Liu et al.
2018). In this paper, we focus on the generative-based meth-
ods since it shows much flexibility and efficiency on knowl-
edge selection and response generation in knowledge-driven
dialog systems.

It is crucial to discern appropriate knowledge facts for re-
sponse generation. Although great progress has been made,
common issues still exist in knowledge driven conversa-
tions. Specifically, the models are difficult to use coher-
ent knowledge facts in response generation. Figure 1 shows
an example to illustrate this problem. Here, the knowledge
facts are given as the triplets form. The dialog is conducted
between user and bot, the bot is required to select appro-
priate knowledge from knowledge facts, then generate re-
sponses to interact with users. However, if a model makes
an inappropriate choice of conflict facts, the generated re-
sponse will contain these contradict facts. In our example,
the fact “feature movie” contradicts with the fact “Chris Ap-
pelhans” in generated response. To tackle this problem, pre-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12535



vious works (Ghazvininejad et al. 2018; Dinan et al. 2018)
mainly focused on using the encoded dialog context to dis-
cern knowledge. However, the dialog context may not al-
ways contain the appropriate information that is useful for
selecting coherent knowledge, especially in the condition
that the machine proactively guides the conversation (Wu
et al. 2019). To tackle this problem, Recent studies (Wu
et al. 2019; Liu et al. 2020) proposed the large-scale goal-
oriented knowledge-driven conversation dataset, where the
dialog goal is treated as the topic transition path and the
topic is extracted from the knowledge facts of each dialog
session. Existing works (Wu et al. 2019; Xu et al. 2020) en-
code dialog goal together with dialog context and knowledge
facts along the same line, which neglects the effect of dia-
log goal for selecting coherent knowledge facts. However,
in the goal-oriented knowledge-driven conversations, the di-
alog goal provides the vital information to help the dialog
system filter the knowledge facts that are irrelevant to the
information provided by the current goal, thus discern more
coherent knowledge facts for response generation.

To this end, this paper proposed a Goal-Oriented
Knowledge Copy Network (GOKC). Specifically, a goal-
oriented knowledge discernment mechanism is designed to
facilitate the dialog goal participating in the discernment
of knowledge facts for generating prior knowledge distri-
bution. Moreover, to further improve the coherence of dis-
cerned knowledge facts, we employ the ground-truth re-
sponses as the posterior information to supervise the train-
ing of prior knowledge distribution, which enhances the rel-
evance between the discerned knowledge and the target re-
sponse. Although the goal-oriented knowledge discernment
mechanism provides an effective way to discern the coherent
knowledge for generating appropriate responses, it still faces
problems, i.e.: it is hard to explicitly restate the facts that ap-
peared in input sources, and it tends to generate oov (out-
of-vocabulary) words. Researchers have proposed various
methods (See, Liu, and Manning 2017; Gu et al. 2016; Wang
et al. 2019; Yavuz et al. 2019) to tackle these problems.
However, very few of the existing works allow the model to
copy tokens from multiple input sources (i.e.: dialog context,
dialog goal, and knowledge facts) for response generation,
while in the goal-oriented knowledge-driven conversations,
the description words from knowledge and goal are usually
an important component of dialog response. Therefore, we
develop a context manager upon the model decoder, which
can copy tokens from multi-sources. We show that generat-
ing responses using the context manager not only effectively
alleviates the oov problem, but also accurately copy the
facts that appeared in input sources. Our code is released at
https://github.com/jq2276/Learning2Copy.

In summary, our main contributions are: (1) We pro-
pose a goal-oriented knowledge discernment mechanism,
which can incorporate the dialog goal into the discern-
ment of knowledge, through the supervising of posterior
information, the model can generate responses with more
knowledge-coherent facts. (2) We develop a context man-
ager to copy tokens from multiple input sources, which not
only maintain the accuracy of discerned knowledge that
is used into the response generation but also alleviate the

oov problem. (3) The proposed GOKC model combines the
knowledge discernment mechanism and context manager to
generate more coherent and fluent responses. (4) The exper-
iment results on both human evaluation and automatic eval-
uation show that our model has superior performance than
several competitive baseline models.

Related Work
Previous works on end-to-end conversation response gener-
ation (Wu et al. 2018; Zhang et al. 2018; Xing et al. 2017)
benefit from the prosperity of sequence-to-sequence models
on machine translation (Sutskever, Vinyals, and Le 2014),
where the response generation is treated as the sequence
generation problem to obtain the appropriate response by
given the context from the previous dialog turn. However,
these works drop into the paradigm of generating generic
and uninformative responses since they lack the ability to
effectively leverage external information.

To tackle the aforementioned problem, many knowledge-
driven response generation models have been proposed
(Zhao et al. 2019; Tian et al. 2020; Dinan et al. 2018).
(Ghazvininejad et al. 2018) utilizes the memory network to
store the knowledge and combine the widely used Seq2Seq
model to generate responses. (Zhang, Ren, and de Ri-
jke 2019) proposed to use context-aware knowledge pre-
selection for guiding the knowledge selection in response
generation. (Lian et al. 2019) firstly considered the target re-
sponse as a part of the posterior information to participate in
the knowledge selection for response generation, and obtain
the impressive results on several knowledge-driven conver-
sation datasets.

Recently, imposing goals on knowledge-driven conver-
sation having attracted lots of research interests (Wu et al.
2019; Liu et al. 2020) since the conversation goal can pro-
vide potential guidance on knowledge selection and re-
sponse generation. In this paper, we focus on goal-oriented
knowledge-driven conversations. Our work is inspired by
(Lian et al. 2019), where they leverage the posterior infor-
mation to select the most relevant piece of knowledge for
response generation, while we employ the dialog goal and
dialog history as the prior information and combine with the
posterior information (i.e. target response) to estimate the
knowledge fact distribution, which provides a softer way to
discern appropriate knowledge facts. Our work is also en-
lightened from the pointer generator network (PGN) (See,
Liu, and Manning 2017). We extend PGN copy tokens from
a single input source that can copy tokens from multiple in-
put sources, which allows the model to accurately restate
facts in generated responses.

Approach
Problem Formalization
Suppose we have a goal-oriented dialogue corpus D =
{(Ui,Ki, Gi, Yi)}Ni=1, where ∀(Ui,Ki, Gi, Yi) ∈ D, Ui =
(ui,1, · · · , ui,n) represents the dialogue history, Ki =

{ki,j}NK
j=1 is a set of knowledge facts that correspond to

this conversation and each element ki,j could be in an ar-
bitrary format such as a passage or a triple. The response
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Figure 2: The architecture of the proposed GOKC model.

Yi = (yi,1, · · · , yi,m) is produced on the basis of the pro-
vided dialogue goal Gi = (gi,1, · · · , gi,l) which is con-
structed upon the knowledge set Ki. Here, n,m, l denote
the sequence lengths of Ui, Yi, Gi respectively. Our goal is
to learn a response generation model P (Y |U,K,G) with D
when given a new dialogue history U paired with the related
knowledge set K, one can generate an appropriate response
Y that achieved the given dialogue goal G. Thus the dia-
logue goal could be used to lead the dialogue session from
one topic to another smoothly.

Architecture Overview
A high-level architecture overview of the proposed GOKC
is shown in Figure 2. The model consists of four parts: en-
coder, decoder, knowledge discernment module, and con-
text manager. (1) The encoder part encodes the knowledge
K, the dialog goal G, and the dialog history U by knowl-
edge encoder, goal encoder, and utterance encoder respec-
tively. Please note that the response Y is also encoded by the
knowledge encoder during the training stage. (2) The knowl-
edge discernment module receives the information encoded
by the encoder and obtains the knowledge facts distribution
by leveraging the knowledge discernment mechanism. (3)
The decoder generates hidden states at each time t, which is
used to attend over each representation of input tokens and
generate distributions over these tokens for copying them
from input sources. Meanwhile, the decoder outputs a dis-
tribution over a fixed vocabulary. (4) The context manager
combines these distributions to generate an overall distribu-
tion for decoding tokens at each time t.

Encoder
The utterance encoder, goal encoder and knowledge en-
coder are all built upon the bi-directional recurrent neural
network (Bi-RNN) with gated recurrent unit (GRU) (Cho
et al. 2014). For simplicity, denote the input sequence as

X = (x1, x2, ..., xN ), at step t, the forward RNN receives
the current input xt and the previous forward hidden state
hfwt−1 to generate current forward state hfwt . Meanwhile the
backward RNN generates the backward hidden state hbwt by
encoding the input xt and hbwt−1. The overall output state at
time t is formulated as:

ht = [hfwt ;hbwt ] = [
−−−→
GRU(xt, h

fw
t−1);

←−−−
GRU(xt, h

bw
t−1)] (1)

Where [a; b] means the concatenation operation between a
and b. We define o = (h1, h2, ..., hN ) ∈ Rde×N as the out-
put hidden states at all time steps, and s = [hfwN ;hbw0 ] ∈
Rde×1 as final hidden state. Intuitively, s is a concatenation
of forward hidden state and backward hidden state at their
final steps.

We define the output states at all time steps of U , G, K
and Y as oU , oG, {oK,j}NK

j=1 and oY , respectively. The final

states of U , G, K, Y can be denoted as sU , sG, {sK,j}NK

j=1,
sY , respectively1.

Knowledge Discernment
The knowledge discernment module is used to discern the
knowledge facts that are highly correlated to the dialog goal
G and dialog context U . The knowledge discernment mod-
ule first receives the encoded information of G and U and
then generates a knowledge facts distribution, which is used
to represent the discernment weights over the knowledge
facts K for generating an appropriate response. The knowl-
edge discernment module consists of two sub-modules: (1)
The prior knowledge discernment module. (2) The posterior
knowledge discernment module.

The prior knowledge discernment module obtains the
prior knowledge distribution by calculating the semantic

1The knowledge encoder receives one piece of knowledge fact
at a time. A knowledge fact is concatenated as a sequence if it is in
the form of a triple.
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similarity between the prior information and each knowl-
edge fact ki:

P (kj |U,G) =
exp(sK,j · dprior)∑NK
i=1 exp(sK,i · dprior)

(2)

Here, dprior is the prior information, which can be ob-
tained by dprior = tanh(β � sU + (1 − β) � sG). �
means dot product. β is a gated fusion unit adapted from
(Yao et al. 2017) which is used to balance the contri-
bution between sU and sG. It can be obtained by β =
σ(Wp[tanh(WUsU ); tanh(WGsG)]), where WU ,WG ∈
Rde×de andWp ∈ R1×2de are three parameters matrices. In-
tuitively, the dialog goal will serve as the prior information
to estimate the prior knowledge distribution when β = 0,
which is especially suitable for the scenario that the machine
proactively leading the conversation, in which case the dia-
log history will be hardly considered for the discernment of
knowledge facts, while the dialog goal is dominant.

The posterior knowledge discernment module obtains the
posterior knowledge distribution by:

P (ki|Y ) =
exp(sK,i · dpost)∑NK
j=1 exp(sK,j · dpost)

(3)

Where dpost = tanh(WpostsY ) is the posterior information
andWpost ∈ Rde×de is a parameter matrix. The introduction
of posterior information can provide auxiliary guidance on
knowledge discernment since the actual knowledge used in
the target response is considered.

KLDiv Loss. The posterior knowledge distribution
P (ki|Y ) is hard to estimate at the inference time since
the ground truth Y is unknown. Therefore, we employ
the Kullback-Leibler Divergence loss (Kullback and
Leibler 2006) to minimize the KL-distance between prior
knowledge distribution P (ki|Y ) and posterior knowledge
distribution P (ki|U,G), which is optimized at the training
stage so that P (ki|U,G) could approximate P (ki|Y )
with its guidance. Hence, our model could maintain the
coherence of the discerned knowledge facts at inference
time. The KLDiv loss is defined as:

LKL (θ) =

N∑
i=1

P (ki|Y )

(
P (ki|Y )

P (kj |U,G)

)
(4)

BOW Loss. To further improve the knowledge estimation
accuracy, we adapt the BOW Loss proposed by (Zhao, Zhao,
and Eskenazi 2017) to ensure the relevancy between the es-
timated knowledge distribution and the response. Specifi-
cally, we define sk is the weighted sum over all the knowl-
edge representations {sk,j}NK

j=1, which can be obtained by

sk=
∑NK

i=1 δk,i · sk,i, where δk,i is the probability distribu-
tion of knowledge fact ki, δk,i=P (ki|Y ) if response is
available, otherwise δk,i=P (kj |U,G). The BOW loss can
be obtained by:

LBOW (θ) = −
∑
yt∈B logϕ (yt| sk)

|B| (5)

Where B is the bag of words in Y , ϕ (·) is a two layer MLP
activated by softmax function, which outputs the probability
distribution over the fixed vocabulary.

Decoder
The decoder is composed of a forward RNN encoder with
gated recurrent units. At each time t, it receives the embed-
ding vector yt−1 of the word predicted at time-step t− 1 as
well as the previous decoder state ht−1, and emits current
hidden state ht ∈ Rdh×1, which is formally defined by:

ht = GRU(yt−1, ht−1) (6)

Where ht can be used to obtain the generation probabil-
ity Pvocab (wt) over the fixed vocabulary obtained from the
training set. The Pvocab (wt) can be obtained by:

Pvocab(wt) =MLP (ht) (7)

Where MLP (·) is a two-layer MLP activated by softmax
function.

Context Manager
Copying from Multi-Sources. Our model allows copy-
ing tokens from multiple input sources. Specifically, we
use Φ to represent one of the input sources, where Φ ∈
{U,G, k1, k2, ..., kNK

}. Given the decoder state ht and the
encoder output state oΦ. We apply attention2 to the oΦ at
decoder step t, which can be defined by:

dΦ
t , c

Φ
t = Attention (oΦ, ht) (8)

Where dΦ
t ∈ RNΦ×1 is the attention distribution over each

tokens appeared in Φ, and cΦt ∈ Rde is the context vector
of Φ. The dΦ

t is then aggregated to obtain the probability
distribution PΦ (wt) over context tokens wt, which can be
computed by:

PΦ (wt)=
∑

{l:ϕl=wt}

dΦ
t,l (9)

Where ϕl is the token appeared in Φ, dΦ
t,l is the attention

weights corresponding to the lth token in Φ. The probability
of copying token wt from the dialog history U and dialog
goal G can be defined as PU (wt) and PG (wt) respectively.
While the probability of copying tokens from knowledge K
is a weighted sum of copying tokens from all the knowledge
facts over the knowledge fact distribution, which is formu-
lated as:

PK (wt)=
NK∑
i=1

P (ki) · P (wt| ki)

=
NK∑
i=1

δk,i ·
∑

{l:kli=wt}
dk,it,l

(10)

Recall that δk,i is the probability distribution of knowledge
fact ki.

Sources Fusion. We now present the mechanism to fuse
the sources by incorporating their distributions PU (wt),
PK (wt), PG (wt), as well as Pvocab (wt). We first obtain
the overall knowledge representations cKt by:

cKt =

NK∑
i=1

δk,i · ck,it (11)

2We have omitted the description of attention. Please refer to
(Bahdanau, Cho, and Bengio 2015) for the detail.
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Where ck,it is the context vector of knowledge fact ki. Then
the decoder state ht attends over the dialog history repre-
sentation cUt , the knowledge representation cKt and the goal
representation cGt by:

αt, ct = Attention

([
cUt , c

K
t , c

G
t

]T
, ht

)
(12)

Where ct ∈ Rde×1 is the overall representation of input

sources. αt=
[
α

(U)
t , α

(K)
t , α

(G)
t

]T
, αt ∈ R3×1 is used to

combine the distributions of input sources as shown in equa-
tion 13. We also use a generation probability pgent ∈ [0, 1]
described in (See, Liu, and Manning 2017) to balance the
contribution between input sources and the fixed vocabu-
lary, where pgent = σ (Wgen [yt−1;ht; ct]), and Wgen ∈
R1×(demb+dh+de). The overall distribution is obtained by:

P (wt) = pgent Pvocab (wt) + (1− pgent ) ·∑
{φ:φ∈{U,K,G}}

α
(φ)
t Pφ (wt) (13)

Training
Apart from the KLDiv Loss and BOW Loss, we also
use the NLL Loss to capture the word order information.
More precisely, given a model that produces a probability
P (wt| y1:t−1), we train the whole model end-to-end with
the negative log-likelihood loss function defined as:

L (θ) = − 1

|Y |

|Y |∑
t=1

log (P (yt| y1:t−1, U,K,G)) (14)

Where θ denotes all the trainable model parameters. In sum-
mary, the final loss is defined by:

L (θ) = LNLL (θ) + LBOW (θ) + LKL (θ) (15)

Experiments
Datasets
We conduct our experiments on two goal-oriented
knowledge-driven datasets. One is the DuConv (Wu
et al. 2019), and the other is DuRecDial (Liu et al. 2020).

DuConv. A proactive conversation dataset, which con-
sists of about 30k dialogs and 270k utterances. Each dia-
log contains 9.1 utterances and each utterance contains 10.6
words on average. There are 96.2 words per dialog, and 17.1
knowledge facts appeared in each dialog. For each turn of
the conversation, the machine needs proactively initiate the
dialog with the explicit conversation goal and the related
knowledge triplets, where the conversation goal is extracted
from the knowledge triplets. Similar to (Wu et al. 2019), the
data is normalized by replacing the specific two topics in
the knowledge triplets. Besides, we also select some rela-
tionships from knowledge triplets and substitute the object
entity that appeared in these triplets with the specific tokens
according to the relationships. Then, the model is required
to generate responses that are closer to the conversation goal
until the end of the dialog.

DuRecDial. A goal-oriented knowledge-driven conversa-
tion recommendation dataset, which contains multi-type di-
alogs. This dataset contains about 10k dialogs and 156k ut-
terances. In each dialog session, there are 15.32 utterances
and 21.93 knowledge facts on average. The average number
of words in each utterance and knowledge fact is 11.53 and
12.73, respectively. At each dialog turn, the machine needs
figure as a recommender to leads a multi-type dialog to ap-
proach recommendation targets with full consideration of di-
alog goal. The dialog goal is a sequence-like string obtained
from the knowledge triplets. Here, we extract each goal by
templets described in (Liu et al. 2020). For proving the in-
fluence of the dialog goal, we assume the complete goal is
explicitly given at the beginning of the conversation, which
is different from (Liu et al. 2020), where the goal needs to
be completely planned before the response generation.

Comparison Models
We implement our model on both DuConv dataset and
DuRecDial datasets, and compare our model with sev-
eral competitive models. On the DuConv, we compared
our model with: Pointer Generator Network (PGN)3:
The model proposed by (See, Liu, and Manning 2017),
which can copy tokens from input sources. This model
has exhibited impressive performance on many natural lan-
guage generation tasks. KIC: The model exhibits state-
of-the-art performance on DuConv data which is reported
in (Lin et al. 2020). In addition, we also compare our
model with the baseline models mentioned in (Wu et al.
2019), which are retrieval-based models and generation-
based models. On the DuRecDial, we compared our model
with: Seq2Seq4: The vanilla sequence-to-sequence models
proposed by (Sutskever, Vinyals, and Le 2014). PostKS: A
knowledge-grounded response generation model proposed
by (Lian et al. 2019), which utilizes a posterior knowledge
selection mechanism to select an appropriate knowledge
for response generation. MGCG R/G: The retrieval-based
models and generative-based models proposed by (Liu et al.
2020), which shows the state-of-the-art results on DuRec-
Dial. We remove the goal planning module of these two
models since the dialog goal is supposed to be known. We
re-implemented these models by ourselves with the default
settings described in (Liu et al. 2020).

Inplementation Details
Our model is implemented by the Pytorch Framework5. In
our model, all of encoder and decoder have two-layer struc-
tures, each layer has 800 hidden units with the dropout rate
0.3 and the gradient clipping threshold is set to 5. The vocab-
ulary size we used is 15k. We set the word embedding size
to be 300, and initialize the embedding vectors randomly in-
stead of using pre-trained word embeddings. We used the
Adam optimizer (Kingma and Ba 2014), to minimize loss,

3We implement PGN using the code shared by https://opennmt.
net/OpenNMT-py/.

4The model is implemented using the code shared by https://
opennmt.net/OpenNMT-py/ with the default settings.

5An open-source deep learning platform (https://pytorch.org/).
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the mini-batch size is 32 and the learning rate is 0.0001.
We trained our model on a GPU-V100 machine. The whole
training process is split into two stages. In the first stage,
we train the model for 5 epochs to minimize the BOW loss
only for pre-training the knowledge discernment module. In
the second stage, we train the model at most 25 epochs to
minimize overall loss.

Metrics
We use both human evaluation and automatic evaluation
to evaluate each model, the evaluation metrics are adapted
from (Wu et al. 2019; Liu et al. 2020). The automatic eval-
uation metrics include Bleu-1/2, F1 score, Distinct-1/2, and
Perplexity. The F1 score measures the precision and recall of
the generated response at character level; The Bleu score es-
timates the fluency of the response over n-grams level; The
Distinct-1/2 are used to evaluate the diversity of response;
The Perplexity is a widely used approach to estimate how
likely the model to generate the ground truth response. Our
model discerns the knowledge in a soft way instead of se-
lecting knowledge facts explicitly, thus we evaluate the per-
formance of the whole dialog but not measure the results of
knowledge selection independently.

As for human evaluation, we adopted the strategy sug-
gested by (Liu et al. 2020). We randomly selected 100
turns of dialogs from DuRecDial and employed seven well-
educated annotators to evaluate the experimental models.
The annotators are required to evaluate the models on 4 as-
pects, which are fluency, informativeness, appropriateness
and proactivity. The scores are settled from {0, 1, 2} to es-
timate fluency, informativeness, and appropriateness, while
the proactivity scores are assigned from {−1, 0, 1}. For a
fair comparison, the model name is masked during evalua-
tion process. The agreement among the annotators is mea-
sured by the Fleiss’ kappa (Fleiss 1971).

Results
Automatic Evaluation The automatic evaluation results
on datasets DuConv and DuRecDial are shown in Table 1.
Our approach outperforms all the comparison models, and
obtain a significant improvement over most of the evalu-
ation metrics. Specifically, On DuConv dataset, our model
achieves about 1.0%, 8.7%, and 3.8% on F1, BLEU-1, and
BLEU-2 compared to the best results of KIC model, which
indicates that our model prefers to capture more useful infor-
mation in n-gram’s level, thus generate more readable and
fluent responses. Besides, our model achieves about 4.2%
reduction on metrics PPL compared to KIC. The metrics
PPL reflects the perplexity of generated response, whose re-
duction indicating that the model is more likely to gener-
ate the ground truth responses. On DuRecDial dataset, our
GOKC model achieves about 12.5% improvements on F1
compared to the best performance of MGCG G, and obtains
9.0% and 19.5% improvements on BLEU-1 and BLEU-2
compared to the most competitive model MGCG R, which
is attributed to that the knowledge discernment mechanism
endows the GOKC with the ability to discern the coherent
knowledge facts that are close to the target response, and the
context manager helps the model to accurately restate the

Model F1 BLEU-1/2 DIST-1/2 PPL

DuConv

norm rtr 34.73 0.291 / 0.156 0.118 / 0.373 -
norm s2s 39.94 0.283 / 0.186 0.093 / 0.222 10.96
norm gen 41.84 0.347 / 0.198 0.057 / 0.155 24.3

PGN 42.13 0.336 / 0.211 0.087 / 0.201 10.62
KIC 44.61 0.377 / 0.262 0.123 / 0.308 10.36

GOKC 45.09 0.410 / 0.272 0.105 / 0.272 9.92

DuRecDial

seq2seq 26.08 0.188 / 0.102 0.006 / 0.013 22.82
PGN 33.95 0.243 / 0.161 0.010 / 0.039 24.28

PostKS 39.87 0.343 / 0.244 0.015 / 0.056 15.32
MGCG R 38.82 0.379 / 0.266 0.069 / 0.187 -
MGCG G 42.04 0.362 / 0.252 0.023 / 0.081 14.89

GOKC 47.28 0.413 / 0.318 0.025 / 0.084 11.38

Table 1: Automatic Evaluation on datasets DuConv and
DuRecDial. The results of baselines on DuConv are taken
from (Wu et al. 2019), norm generation is the PostKS under
DuRecDial.

Model Fluen. Appro. Info. Proact.

seq2seq 1.24 1.21 0.93 0.30
PGN 1.45 1.35 1.24 0.21

PostKS 1.94 1.62 1.49 0.62
MGCG R 1.98 1.46 1.57 0.49
MGCG G 1.93 1.74 1.60 0.65

GOKC 1.96 1.77 1.63 0.69

kappa 0.73 0.55 0.61 0.57

Table 2: Human Evaluation on DuRecDial. “Fluen.”, “Ap-
pro.”, “Infor.”, “Proact.” respectively denote fluency, appro-
priateness, informativeness and proactivity.

facts appeared in discerned knowledge as well as the dialog
goal and dialog context.

Human Evaluation The results are shown in Table 2, we
can conclude: (1) Our model achieves the highest score com-
pared with other comparison models in terms of appropriate-
ness, informativeness and proactivity, which demonstrates
the superiority of the proposed GOKC model. (2) Our model
can generate more fluent and informative responses. It is
highly like that the context manager allows the model to di-
rectly copy tokens appeared in input sources, which helps
the model restates the facts accurately. (3) The highest score
of Appro. and Proact. indicate that our model is prone to
generate more goal-relevant responses, which is attributed
to that the goal-oriented knowledge discernment mechanism
allows the model to choose more coherent knowledge facts,
these facts facilitate the model to generate more appropriate
responses and proactively lead the conversation to complete
the conversation goal.

Ablation Study We take an ablation study on both
DuConv and DuRecDial datasets. The key components of
GOKC are removed respectively for further dissection, Ta-
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Dialog Goal 

[START] → QA about <公转自转 (Revolution)> → Chitchat about <王力宏 
(Leehom Wang)> → Recommending the music <流泪手心 (Tears Palm)> 

 

Dialog 

D
ia

lo
g 

C
on

te
xt

 

User: 你知道<公转自转>的音乐主唱是谁吗？ 
(Do you know who is the singer of < Revolution >?) 
Bot: 是王力宏! 
(It’s Leehom Wang!) 
User: 知道啦，谢谢你。 
(Okay, thank you.) 
Bot: 我知道他是亚洲音乐最受欢迎男歌手呢！ 

(I know that he is the most popular male singer in Asian music!) 
User: 他可是我最喜欢的歌手之一呢！ 
(He is one of my most favorite singers!) 

M
G

C
G

_R
 

 是的呢，它可是亚洲音乐最受欢迎男歌手呢！ 

(Yes, he is the most popular male singer in Asian music!) 

M
G

C
G

_G
 那你听过他的<公转自转>吗？属于<unk>早期比较有影响力的

歌曲，和现在的演唱风格<unk>。 

Have you heard his < Revolution >? It belongs to one of the 
<unk> early influential songs, which is  <unk> to his current 
singing style. 

G
O

K
C
 

给你推荐一首他演唱的<流泪手心>，属于力宏早期比较有影响

力的歌曲，和现在的演唱风格迥然不同。 

(Let me recommend you <Tears Palm>. It belongs to one of the 
Leehom’s early influential songs, which  is disparate to his 
current singing style. ) 

 

Knowledge Facts 

王
力
宏

 

(L
ee

ho
m

 W
an

g)
 

出生地 

(Birthplace) 
美国纽约(New York in America) 

简介 

(Introduction) 
著名歌手(A famous singer) 

获奖 

(Award) 
亚洲音乐最受欢迎男歌手 

(The most popular male singer in Asian music) 

演唱 (Song) 公转自转(Revolution) 

演唱 (Song) 流泪手心(Tears Palm) 

流
泪
手
心

 

(T
ea

rs
 P

al
m

) 

评论 

(Comment) 

属于力宏早期比较有影响力的歌曲，和现在的演唱风

格迥然不同。 

(It belongs to one of the Leehom’ s early influential songs, 
which is disparate to his current singing style.)   

公
转
自
转

 

(R
ev

ol
ut

io
n)

 

评论 

(Comment) 

毕竟是拿了金曲奖双料大奖的一张专辑。 

(After all, it was an album that won the Golden Melody 
Award.) 

 

Figure 3: Case of example dialog. We use different colors to indicate different goals and use boldface to denote knowledge
facts, the red boldface means the wrong usage of knowledge facts.

Model F1 BLEU-1/2 DIST-1/2 PPL

DuConv

GOKC 45.09 0.410 / 0.272 0.105 / 0.272 9.92
- gl enc 44.63 0.398 / 0.266 0.102 / 0.261 11.38

- kg discn 39.72 0.363 / 0.220 0.089 / 0.221 14.10
- cxt mgr 36.23 0.348 / 0.211 0.077 / 0.191 16.60

DuRecDial

GOKC 47.28 0.413 / 0.318 0.025 / 0.084 11.38
- gl enc 45.59 0.401 / 0.303 0.020 / 0.081 12.45

- kg discn 43.62 0.363 / 0.258 0.016 / 0.068 15.79
- cxt mgr 41.32 0.359 / 0.262 0.018 / 0.060 19.38

Table 3: The ablation study on datasets DuConv and DuRec-
Dial. “-” means remove the module from the GOKC model.

ble 3 presents the results. First, we remove the goal encoder
from our model, the goal information is concatenated with
the dialog context and feed into the utterance encoder. The
F1, Bleu-1&2 results decrease slightly on DuConv, but de-
crease distinctly on DuRecDial, it indicates that the goal
encoder has a potential influence on knowledge discern-
ment and response generation, especially when the dialog
goal contains much information that is relative to the knowl-
edge and response. Second, we remove the knowledge dis-
cernment module from our model, thus the computation of
knowledge facts distribution depicted in Figure 2 is ignored.
We observe that the results are significantly decreased over-
all metrics on both DuConv and DuRecDial, it is highly like
that the contribution of each knowledge fact is not equal for

response generation. Third, we remove the context manager
which is substituted by concatenating the final hidden state
of each encoder and feeding it into the decoder to generate
a response, the results show that such alternation also de-
creases the performance of GOKC by a significant margin.

Case Study As shown in Figure 3, we present the re-
sponses generated by GOKC, MGCG G, and MGCG R.
Given background knowledge, dialog goal, and dialog con-
text, the proposed GOKC is superior to generate knowledge-
enriched responses, and the knowledge facts appeared in
generated responses are not only coherent to the dialog con-
text but relevant to the dialog goal as well. Compared with
GOKC, MGCG G/R show less ability to utilize the knowl-
edge facts that are coherent to the dialog goal, since they lack
of a proper mechanism to consider the dialog into the knowl-
edge discernment and response generation. Furthermore, our
model also shows an ability to alleviate the oov problem,
while the MGCG G seems to suffer from that since it leaves
out the important words appeared in knowledge facts, such
as “Leehom’s” and “disparate”, despite these words are in-
frequently appeared in the fixed vocabulary.

Conclusion and Future Work
In this paper, we propose a goal-oriented knowledge copy
network that could copy tokens from multiple input sources
and discern coherent knowledge for response generation.
The experimental results show that our model obtained
impressive results on two goal-oriented knowledge-driven
datasets. In the future, we intend to incorporate transfer
learning into dialog system and enhance the quality of gener-
ated response by alleviating knowledge repetition problem.
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